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We prove that the universality of conductance fluctuations in mesoscopic, weakly disordered systems,
so far demonstrated for a contact scattering potential, is preserved in the case of an arbitrary potential.
This is so at least to first order in the disorder and as long as the electron lifetime and the transport time
are well-de6ned quantities. We also prove that the conductance fluctuations induced by the motion of a
single impurity in two dimensions are not as important and universal as if one changes the entire impuri-

ty distribution, in contrast to a recent claim. These conductance fluctuations explicitly depend on the
degree of disorder and on the characteristics of the system.

I. INTRODUCTION

The universality of conductance fluctuations in weakly
disordered systems of mesoscopic sizes has been put for-
ward by various authors. ' It was shown that the classical
result according to which the variance of the dimension-
less conductance behaves as L (L is the linear dimen-
sion of the system, D the dimensionality), is modified by
quantum-mechanical efFects and becomes of order 1. In
other words, the conductance fluctuations are indepen-
dent of the degree of disorder, size, and dimensionality of
the system. Such a result was demonstrated in the case of
independent impurities, and for an electron impurity
scattering potential of the contact type. '

We recently examined whether such a result survives
in the case of interacting impurities. Indeed weak-
localization experiments performed at low temperatures
first require quenching the system from a high tempera-
ture To so that the impurities are frozen at random. If
To could be infinite, the impurities would indeed be com-
pletely disordered at random, and be independent. How-
ever, in practice, To is always finite. Therefore, a local
positional ordering among the impurities always subsists
in realistic systems. This transforms the scattering poten-
tial into an efFective one, depending on the interactions
between the impurities and on the scattering angle, even
if it was of a contact type to begin with. Two important
results were thus obtained: (a) for a weak local impurity
ordering and to first order in the electronic disorder, the
universality of the conductance fluctuations is preserved
because, on a large scale, the conductance fluctuations
are insensitive to such a weak local impurity ordering;
and (b) on the other hand, moving a single impurity away
induces nonuniversal conductance fluctuations in two di-

mensions, in contrast to what was claimed in Ref. 3 for
the independent impurity case. Indeed this is a local per-
turbation which is certainly sensitive to the local posi-
tional ordering of the impurities.

In the present paper, we confine ourselves to the in-
dependent impurity case (for simplicity). The results em-
phasized in the present paper are the following.

(i) We prove that conductance fluctuations are univer-
sal not only for a contact scattering potential, but also for
any momentum-dependent potential, in the weakly local-
.ized regime, and as long as the electron lifetime r and
transport time ~„are well defined. Actually the interact-
ing impurity case appears as a particular example of this
more general one, since, as we stressed above, the
effective potential induced by the local impurity ordering
is a particular form of momentum (or scattering angle)
dependence for the potential. We recently showed that
the electrical conductivity of a weakly disordered system
may be computed without any knowledge of the particu-
lar form of the potential as long as ~ and v„are well
defined. The precise form of the potential is only needed
to compute ~ and ~„. The integrability of the potential
mentioned in Ref. 4 is actually not necessary. A singular
potential may yield we11-defined ~ and ~„under certain
conditions. Therefore the existence of r and v;, is the
only necessary condition, in the present paper, for our re-
sults to hold.

(ii) On the other hand, and under the same conditions,
we examine the extra conductance fluctuations induced
when one moves a single impurity away. Here too, as in
the interacting impurity problem of Ref. 2, we prove that
the extra conductance fluctuations induced that way are
not universal in two dimensions. Actually, as stressed
above, the effective potential resulting from interactions
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between the impurities in Ref. 2 becomes momentum
dependent and thus represents a particular example of
the arbitrary potentials studied here, i.e., they can all be
considered as finite range scattering potentials. It is thus
reasonable to expect that the local perturbation induced
by the motion of a single impurity is sensitive to such a
finite range potential, i.e., to the characteristics of the
problem. In other words, the claim made in Ref. 3 that
conductance fluctuations induced by the motion of a sin-

gle impurity are, in two dimensions, as strong and univer-
sal as if changing the entire impurity distribution holds
only in the particular case of independent impurities and
a contact scattering potential, and if an extrapolation to
strong disorder can be made. In realistic systems, and in
the weakly localized regime of interest here as well as in
Ref. 3, this claim does not hold. As in Refs. 2, 4, and 5,
we use the Born approximation.

II. THE CONDUCTANCE FLUCTUATIONS
FOR INDEPENDENT IMPURITIES

AND A CONTACT POTENTIAL, RECALLED
(THE SUBSCRIPT 0 WILL REFER TO THIS CASE)

Quantum-mechanical effects amount' to multiplying
the classical value of the variance of the dimensionless
conductance, var(gp)= (gp ) —(gp ), by an integral in-
volving the two types of diffuson (or Cooperon) diagrams
displayed in Figs. 1(a) and 1(b), yielding

qo
var(gp)-L f, (q ) id q . (1)

The conductance Gp is related to gp by Gp =(e /h }gp, (e
is the charge of the electron, and h the Planck constant).
We recall that a diffuson (Cooperon) is an infinite impuri-
ty scattering ladder in the particle-hole (particle-particle)
channel, obeying the Bether-Salpeter equation corre-
sponding to Fig. 1(c). Reference 6 showed that diagrams
with only two diffusons (or Cooperons) are to be con-
sidered. In that case the two-Cooperon diagram is de-
duced from the two-diffuson one just by turning one of
the loops by m. around a vertical axis in the plane of the

11—
4 D—(Lqp)

(3)

The usual conclusion is that
2

2

var(gp}-1, var(Gp)- with Lqp »1, (4)

i.e., the conductance fluctuations are universal. Here we
wish to make a few remarks concerning the condition
Lqp » 1 involved in (4). In this weak-localization regime,
the disorder is assumed to be weak, but strong enough for
qo

' to be much smaller than I.. On the other hand, L it-
self is not very large since the sample is of mesoscopic di-
mension. Therefore, suppose for one moment that the
condition Lqp »1 is not fulfilled: then two remarks must
be made.

(i) In dimensions D &4, one obtains deviations from
universality when Lqo, although larger than 1, is not ex-
tremely large. This could happen, for instance, when the
localization is weak enough so that one is close to the
ballistic regime Note .that those deviations will be the
strongest in D =3 (due to the power 4 D). —

(ii) In dimensions D &4 (although such a case is not
very physical), (3) is evidently not universal, and reads
approximately

figure, so that they make identical contributions. There-
fore, in the following, we will speak only in terms of two
diffusons. In Eq. (1), q is the momentum common to the
two diffusons. qo is an upper cutoff given in the case of
independent impurities and of a contact scattering poten-
tial by

q, =l, ',
where the elastic mean free path is lp=kz~p (in atomic
units), and kF is the Fermi momentum. lp, in this partic-
ular case, is altogether the elastic lifetime and the trans-
port time. We recall that it is the lower limit in the in-

tegral (1) which essentially matters: the diffuson (or the
Cooperon) propagator diverges for vanishing q. There-
fore the quantum corrections will play a role only in the
neighborhood of q -L '. At q =qp one obtains only a
few corrections. Indeed, performing the integral in (1}
yields

var(g, )-L' 4 '
[qpD

4 L4 D]—
D —4

(bi vag(gp ) —(Lqp), Lq p » 1 .

Note that, strictly at four dimensions,

vag(gp)-ln(Lqp), whatever (Lqp) .

(Sa)

(5b)

('c&

FIG. l. (a) and (b) Two types of conductance fluctuation dia-
gram, according to Ref. 6. The two conductance loops are
linked with two diffusons (or Cooperons) obeying the Bethe-
Salpeter equation displayed in (c). The dotted line with a cross
denotes a one-impurity scattering.

In other words, at four dimensions and above, var(gp ) in-
creases with L.

III. THE CONDUCTANCE FLUCTUATIONS
FOR AN ARBITRARY SCAI I'RRING POTENTIAL

In Sec. II we recalled what is known in the literature.
In this section we examine a more general case in which
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V(Q), the Fourier transform of the scattering potential,
depends explicitly on Q. In that case and to first order in
the electron disorder, the two diffuson diagrams contrib-
uting to the conductance fluctuations are those of Figs.
2(a)—2(f). The extra diffusons appearing as vertex correc-
tions of the external lines obey the Bethe-Salpeter equa-
tion of Fig. 2(g). A dotted line with a cross indicates an
extra single, impurity line. Such an extra line may link
any two opposite sides of each Hikami-type box (the
squares} in all possible ways. Therefore there are actually
four-diagrams of the type described in Figs. 2(b}, 2(c),
2(e), and 2(f).

Since V(Q) depends on the momentum transfer
Q = ~k' —k~ (with k and k' the electron momenta before
and after collision on the impurity), r and r„are there-
fore different. Writing Q~= ~k' —k~ =2k+ (l —cos8),
where 8 is the scattering angle between k and k', we have,
within the Born approximation and with V(Q) =—V(cos8),

T =2oN(0)os f V (cos8)dQ/f dQ
(6)

T =2oN(0)os f (( c—os8)V (cos8)dQ/ f dQ

dQ is the angular element of integration. N(0) is the
density of states at the Fermi energy, nl is the impurity
density. We use the following results from Ref. 4.

(i) Each of the two diffusons I' behaves, at vanishing
frequency and for small momentum q,

I'= 1 1
(7)

2nN(0)H D„q
The diffusion coefficient D„ is given in atomic units by

(g)

As recalled in Ref. 4, the divergence of I when q ~0 (at
zero frequency) follows from the Ward identity, insuring
the conservation of total number of particles.

(ii) The upper cutoff on q is given (with I„=kz~„) by

1
qo =min

(a)

+
I

+
I

(b1

fe)

instead of (2), which was only valid for a contact poten-
tial for which I—:1„.

(iii) Each of the diffuson vertices renormalizing the
points connected to the various external lines introduces
a factor (~„/r) for vanishing external frequency.

With all these modifications compared to the standard
case of Ref. I, we compute the diagrams of Fig. 2. But
before performing any further calculation, we already
know that the results will depend on both ~ and v„.

Denoting by E~,i, E~b~, and K~, ~
the contributions of

the diagrams in Figs. 2(a) —2(c) we show that the sum of
these contributions remains unchanged compared to the
standard case. The calculation is straightforward. We
use the fact that the extra single-impurity lines, combined
with the scalar product of two momenta characteristic of
a current-current correlation function, introduce factors
such as f cos8V (cos8)dQ, which can be expressed in

terms of only w and ~„, as being proportional to
(r ' —r,, '). Below we indicate only the extra factors
which, for each diagram, represent a modification com-
pared to the standard case of independent impurities and
a contact potential. Thus we obtain

4
1 6

(r r„}
+tr

4E(b) ~ 2

4
1 7 1 1

7
(r g„)2

2

FIG. 2. (a)—(f) Conductance fluctuation diagrams in the gen-
eral case of an arbitrary electron-impurity scattering potential.
The external line vertices are renormalized by diffusons obeying
the Bethe-Salpeter equation displayed diagrammatically in (g).
The extra impurity lines may link any two opposite sides of the
conductance "boxes." There are thus four diagrams like (b), as
well as for (c), (e), and (f) (they are not all shown). These are the
only diagrams relevant to Srst order in the electronic disorder.

+tr= —2
7

4E(,)
0(-

4

2

1 8 1
2(pg„)2

'2

(l0)
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K( ) +E(b) +K( 1 — 1—7

In other words, the sum of the contributions of the dia-
grams in Figs. 2(a)-2(c) is unchanged compared to the
contact potential case of Ref. 1. A similar calculation
shows that the sum of the contributions of the diagrams
in Figs. 2(d) —2(f) is also unchanged.

The diagrams displayed in Fig. 2 are the most general
ones contributing to the conductance fluctuations for an
arbitrary potential V(Q), to first order in the disorder.
Therefore the only remaining difference from the stan-
dard case' is the cutoff qo. Thus here we obtain the same
result as that in formula (3} but with qo given by (9) in-
stead of (2):

In (10) the factors (r„/r) come from the four diffusons
renormalizing the external vertices. v, v. , and ~ come
from the integrals in the complex plane of the electron
Green's functions involved in each diagram.
1/(r ' —v;,

' } to the power 1 or 2 denotes the extra one
or two single-impurity lines combined with the scalar
product of the two momenta mentioned above. From
(10},it turns out that

'2-

Result (12a) is particularly interesting: even if I «L, if it
happens that 1„»l (although I„&L ), the deviation from
the universal value of 1 may become sensible. However,
to the accuracy of such experiments, the deviation may
be hard to detect.

IV. THE CONDUCTANCE FLUCTUATIONS
INDUCED BY THE MOTION OF A SINGLE IMPURITY;

THE CONTACT POTENTIAL CASE RECALLED

A very intriguing suggestion was made in Ref. 3, ac-
cording to which moving a single impurity away from its
original position induces, in two dimensions (2D), con-
ductance fluctuations as large and universal as those ob-
tained when one changes the entire impurity distribution.
Here we recall the derivation of this result for use in our
case in the Sec. V. More specifically we follow the for-
malism of Feng et (tl. 3 (FLS). These authors showed that
moving a single impurity a distance Sr away from its
original position amounts to splitting one of the diffusons
in two, as shown in Fig. 3. These two diffusons are thus
separated by a kernel involving four electron Green's
functions, and the modified potential V' = ( ~

k' —k
~

)

reads

1var(g)- 1—
4—D

1 lvar(g)- 1—
4—D L

ll„
L

4—D

4—D

if I„&1 . (12b)

if I„&t, (12a)

V'i(~k' —k~)=V (~k' —k~)ReI1 —e' "" (13)

where Re(x} is the real part of x. k and k' are the elec-
tron momenta before and after scattering on the (moved)
impurity. Formula (13) was given in FLS and rederived
in the Appendix of Ref. 2. Therefore the initial diffuson
has been replaced by

isr ()r.
' —k)+e —isr (k' —k)I"=

D D k, co„+„k—q, @„Gk', co„+, 6 k' —q, S„. V k' —k 1—
(2m ) (2n ) 2

(14}

q is the (small) momentum common to the two diffusons
I . It can be neglected in the Green's functions of (14).
The co's are the appropriate Matsubara frequencies of the
electron lines, including the electron lifetime. The
modification brought in by the motion of the impurity is
therefore contained in I"/I . We make use of some alge-
bra that we derived in Ref. 8, which shows that

M()(x =0)=1,
M()(x ~~ ), 2D, 3D .

(In 1D, and when x ~~, Mo is not well defined. )

In the case of Ref. 3, the impurities were assumed to be
independent, and the potential to be a contact one, i.e.,
V (~k' —k~)=est= V . Then I" takesthe form I'0:

f G(k, ro„+„)G(k,co„)e*'"'
(2m }

=2nN(0)rMo(krR ), (15)

with

I ()=I'()(2nN(0)ro) V I 1 M()(kF5r)I—

=I (2mN(0)~ )
1

t 1 —Mo(krfir ) I .
2n.N(0) ni ro

(18)

sinx

Mo(x) = Jo(x), 2D

cosx, 1D .
(16)

I
I
+
I

Jo is the Bessel function of the first kind of index zero.
%'e have

FIG. 3. One of the diffusons which is split in two by the
motion of a single impurity, denoted by a black diamond, and
which gives rise to the modified scattering potential of Eq. (13).
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The quantity I 1 M—o(kF5r }I is called a(kF5r } in FLS,
although these authors derived it only in 3D (with a
slight mistake: see the comment in Ref. 5 of Ref. 2).
I'o= [1/(2nN(0)qo)][D/(kF~oq )] for the vanishing fre-
quency of I p, and ~p '=2nN(0)nr V . In such a case FLS
evaluated the diagram corresponding in the present paper
to Fig. 1(a), with one I'p replaced by the I p given by (18).
I o can replace either of the two I o's. Compared to
varGp obtained from (1) in the case of FLS without mov-

ing an impurity,

e2 qp D —ld e26 LD —4

h r, '
( } h

Lqo » 1, (19)

we will call 56o the conductance fluctuation obtained
when moving an impurity a distance 5r away:

(56' )— 2
2

L
2 I 1 M(k—F5r )]k'~ nr

X q
D —

ldq
1 (q2}3

e2 L2 L2
2 [1 M()(—kF5r )],

nrlo n lip

with Ip =(kFTp) the elastic mean free path for this con-
tact potential and the independent impurity case. Equa-
tion (20) may be rewritten as

(56())—
'2

2 LD L
11 1o 1()

I 1 —M(~)(kF5r)] . (21)

(56())—
P 2

2

D=2, kF5r»1,
(22}

With LD: the volume —0, and 1 Mo(kF5r)—:a—(kF5r),
Eq. (21}is identified with formula (3) of FLS. FLS argue
that the individual impurity scatters so strongly the
(0/nrlp) 1, an-d in the case where kF5r »1,
a(kF5r}~1, so that

phasize that the hypothesis (0/nrl() }-1 holds only
when kF lp —l.

Indeed, in 2D

0 1 L
niio nI Io2 2

and

1 nI 1

1() 0 kF

so that

Q nI 1

nrlo (kFL ) kFlp

Therefore 0/(nrlo)-1, if and only if kFlo-1. This
occurs only in the regime of strong disorder near the
metal-insulator transition. In other words, FLS assumed
that they could extrapolate their result derived in the
weakly localized regime, i.e., to lowest order in 1/(kFlp ),
as such, to the strongly localized regime (kFlp)-1. This
does not appear very reasonable: when the disorder in-
creases, higher-order terms in 1/(kFlp} become impor-
tant, more diagrams are involved, and it is hard to guess
the result when kFlo~l. We will come back to that
point in Sec. V.

V. THE CONDUCTANCE FLUCTUATIONS
INDUCED BYTHE MOTION

OF A SINGLE IMPURi l Y IN THE CASE
OF AN ARBll RARY POTENTIAL

In this section we reexamine the modified difFuson

propagator given in (14) when the Fourier transform of
the scattering potential is momentum dependent, i.e., the
general case studied in this paper. We first show that for
an arbitrary potential even within the same (unreason-
able) hypothesis 0/(nrl() ) lof F-LS, the result for the
corresponding quantity 56' is modified compared to 56o,
while, as we saw in Sec. III, varG is unchanged compared
to varGo given in (19) for Lqp »1. Second, releasing the
unreasonable extrapolation to kFlp -=1, we show that 56'
is in reality much smaller than varG by an amount
1/(kF 1„).

In our general case V (Q=~k' —k~) is the Fourier
transform of some function F(R ):

0
nil o

D V'(g)= f F(R)e'~ "d R. (23)

Therefore, in 2D, 56p is as strong and universal as varGp
given above in (19}. However, in their erratum, . FLS em-

In the absence of anisotropy, F(R) depends only on the
magnitude of R. Inserting (23) into (14), with Q—:k' —k
we obtain

I"=r' f d RF(R}f f 6(k,co„„}6(k,co„.)6(k', co„,„)G(k',co„.)
dk dk'

(2n. ) (2n. )

i(k' —k) R 1(ei(lr.' —lr).(R+5r)+ei(k' —k) (R+5r)q)
2l (24)

With (15), (24) reads
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r'=r' f d RF(R)(2nN(0)r) [ufo(k R),'~,'(kFIR+5rl }——,'~0(k, l&—5rl)] .

Here

l D
2qrN(0)q k~~„q

(25)

with q
' and q.t,

' given in (6).
In what follows, we compare (25) with (18), and more precisely its contribution to (22), when kr5r »1. First, the

terms depending on 5r in (25) give vanishing contributions when kF5r»1. This is not possible to demonstrate analyti-
cally in 2D, but can be done straightforwardly in 3D. The derivation is given in the Appendix. It is reasonable to be-
lieve that the same result also holds in 2D. Taking this for granted, we are left with only the first term in (25) or,
equivalently, the first term in (13), yielding, with the help of (6),

I" = I' [2m.N(0)q. ]
kF5r~~ 2qrN 0 ~nl

(26)

qo D —ld
1 (q2}3

2 '2 —D
I. L k~5r»1 .

n, l

(27a)
kI; rq'„n2

'2
e 12

nl lit

2

(27b)

with I'=[1/(2qrN(0)ro)][D/(kgqoq )]. Compared to the result of Sec. III, the extra contribution is contained in
2I"/I . (The factor 2 comes from the fact that I" may replace either one of the two diffusons I . It is also contained in

FLS. Thus, for the conductance fiuctuations induced when moving a single impurity a distance 5r »1/kr, away, in

2D and 3D, we find

2
2

(56')2 e LD —4

h

D=2,
(28)

k~5r»1,

a result evidently different from (560) -(e //i ) in Eq.
(22).

To summarize, comparing our results for an arbitrary
potential with the result obtained for independent impur-
ities and a contact potential, we obtain the same universal
result when an impurity is not moved away:

r 2
2

varG =varG— (Lq, »1) . (29)

Instead, when mocing an impurity a distance 5r && 1,/kF
away, we obtain a different result:

2
2

2
2

(5G')—
h h

l (560 )—
(30)

D=2, Q —1
N11D

Clearly the inequality switches to an equality when

The 1D case is rather peculiar (see the Appendix), as it
always retains a dependence in (kF5r) and vanishes

periodically for certain values of that parameter.
The last expression in (27b} has been written under the

form (21} of FLS. Within the same hypothesis used by
FLS, L j(nil ) =0/(ni/ )-1, i.e., making the extrapo-
lation kr/ —1, we obtain

2
2

(56')—, 2 e I

Ii I„

I.
(kF/ }

kF5r»1, (31)

and, in 2D

I =l„=la, which only happens in the case of a contact
potential. In contrast, when I„»lo 56' may be dimin-

ished considerably. In any case, the result for 5G', al-

though independent of L within the assumption
0/(nil )-1, depends on the characteristics of the sys-

tem via I and I„,in particular on the range of the poten-
tial. As a particular example, let us consider the case of
Ref. 11 with a Yukawa type of scattering potential behav-

ing like exp( ykrr) jr. W—ith y=2sinh(q&/2), it was

shown that (I /I„)= (q./q„) = 1 —e q'. Therefore when q
(or y ) decreases from infinity (the contact potential case),
the potential range increases and I ll „deceases below 1.

In some recent experiments on GaAs-Gai „Al„As
heterojunctions, ' for dim'erent samples one finds 1=0.18

/4m with 1„=8.7 /4m, or / =0.07 It4m with 1„=4JMm; in

both cases 1/1„=2X10,a value much smaller than l.
In earlier experiments' on GaAs/Gai „Al„As hetero-

junctions, for two different samples one obtains
I/I„—1.1X10 ' and 2.6X10

On the other hand, and, more importantly, as already
mentioned, the extrapolation made by FLS that
Q/(nil )-1 is questionable. If we release this assump-
tion, it is clear from (27b) and from FLS that 56' and

5GO depend on the characteristics of the system. There-
fore in the weakly localized regime, using

Qj(nil ) [1/(k+1 ) —'], we obtain
2 2 —D

2
(56')—

h
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2
2

(56')—
F tr

(32)

We believe that formula (32) is the correct one to use in
the weakly localized regime. The result is therefore not
universal and can be considerably smaller than the
universal value (e /it) .

In the experiments of Ref. 12, for instance, in the sam-
ple for which l„=4 pm and kz '=65 A ', one obtains
1/(kFl„) =1.6X10

VI. CONCLUSION

We have examined the conductance fluctuations of a
weakly disordered mesoscopic system in the general case
of an arbitrary momentum-dependent scattering poten-
tial, and to first order in the electronic disorder. We have
showed that these fluctuations remain universal, as in the
case of the contact potential in Ref. 1. Thus we have gen-
eralized the demonstration of that universality indepen-
dently of the specific form of the potential. The only con-
dition required is that ~ and ~„are well defined.

However, we have also shawn that conductance fluc-
tuations induced by the motion of a single impurity are
not the same universal ones in 2D if one changes the en-
tire impurity distribution. They depend on the degree of
disorder and the characteristics of the system via r and
r„. Universality would hald only within the hypothesis
of Ref. 3 of a contact potential, independent impurities,
and in the limit of a strang disorder. Otherwise the
universal value is multiplied by the factor (krl„), a
quantity « 1 in the metallic regime. This factor in-
creases with the disorder; as such it would extrapolate to
1 at the Anderson localization transition. However, the
validity of that extrapolatian is not obvious: outside the
weakly localized regime (where the present calculations
as well as those af Ref. 3 are made}, it is diflicult to
presume whether kFl„will still appear as it stands here
or under a more complicated form.

The two results above can be understood physically:
on a large scale conductance fluctuations are insensitive

APPENDIX

I Calctd. ation ofEq. (23) in 3D

With (16), (24) reads

I"=I' (2nN(0)w) Y,
sin (kFR )r= I d'ar(z)

(k~R }

sin (kFIR —5rI)

(kg IR—5r I
)'

= Y) —
—,
' Y2 —

—,
' Y

(Al)

1 sin (kzIR+5rI)

( k~ IR+5r
I
)'

(A2)

As indicated in the text, Y, is more straightforwardly ob-
tained from the first term in (24), and yields

1Y)=
2nN(0)~nl

On the other hand, it is easy to verify that

Y2=Y3 .

We thus have to calculate Yz..

(A3)

(A4)

to the specific structure of the potential (at least to first
order in the electronic disorder), since this potential is the
same on each impurity. But when one moves a single im-

purity away, one induces an extra local perturbation
which is certainly affected by the specific nature and
range of the scattering potential.

Our second result implies that it is necessary to reex-
amine the conjecture of Ref. 3 concerning possible inter-
pretation of 1/f noise at higher temperatures. Accord-
ing to our result, one would expect the noise to increase
with disorder, going from the metallic regime toward the
Anderson transition, where it would possibly approach
the universal value (e /k } . This tendency has indeed
been observed in Ref. 14, which represents an experimen-
tal attempt to study the noise as a function of the degree
of disorder.

sin (kFIR+5rI)
Y2= d RF(R)

(kr IR+5rl )'

sin (krVR +5r +2R5r cos8}
=2m R 2dR F(R } sin8

0 kr(R +5r +2R 5r cos8)
(A5)

Changing variable by setting y =MR +5r +2R 5r cos8,
we obtain

i k
Y2=2m R dR F R

~R —sr( R5r k y

f V2( Q)Q dQ [ Y2 —( Yz' —Yz" )],
2~k~br

00 ~ R +5r n.
Yz = sin(QR)dR ln =—sin(Q5r },

0 Q

Yz' =f sin(QR)dR Ci [kz(R +5r)],
0

Y2
' =f sin(QR )dR Ci [kr I R —5r I ],

0

(A7}

(A8}

(A9)

with

(A6} where Ci(x) is the cosine integral. A slightly lengthy
but simple algebra yields
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Yi —Y2' = [0(Q —kF)+,'5(Q —k~)],

(A10)

where 5(x) is the delta function of x. Putting (A7) and
(A10) back into (A6), we obtain

kF
Yz=

2
V sin r d

2k~5r

Now let us consider a particular example. Suppose that
the potential is

V(R)=
c +R

(A15)

such a form allows us to recover the contact potential
when e~O, since lim, o(Ve/rr)[1/(E +R )]=V5(R).
The Fourier transform of (A15) is

V(Q) = e'~"dR = Ve
c, +R

(A16)

—V (kF)sin(k~5r) ' . (A 1 1)

V (kF) is a finite quantity, and [sin(kt;5r)/(kF5r)]~0,
when k+'6r &)1.

On the other hand, the integral in (All) is bounded,
and the first term in (Al 1}also vanishes when kr5r » 1.
Thus we have proved that when kF5r »1, Y in (A2)

reduces to its first term given in (A3}, and thus one ob-
tains formula (26) in the text. We wish to add a remark
concerning the 1D case.

Then

F(R)= ' f'" V2(Q), «dQ="V'
2' co ~ R 2+4~2

(A17)

Inserting (A17) into (A14) yields

+~ 2sV2 cos(2kfR)Y= [1 Mo(k~5—r ) ]
R +4m

2. Calculation of Eq. (24) in ID =[1 Mo(kt;5—r)]V e (A18)

= Y) —
Yq

—Y3 . (A12)

First, in contrast to the other two dimensionalities,

Y~4 Yi . (A13)

Furthermore, in the sum Yz+Yi, cos [kt, (R+5r)]
+cos [kF(R 5r)] contains a co—nstant term which can-

cels the one in cos (kIR ). Finally,

Y= f dR F(R)cos(2kFR)sin (kF5r)

= f dR F(R)cos(2kFR)[1 Mo(kF5r)] . (—A14)

This case is special due to the fact that, as noted after
Eq. (17), Mo(x) is not well defined when x ~ oo, while in

2D and 3D Mo(x ~ ~ )~0. In 1D Mo(x ~ ac } does not
necessarily vanish. Then Y reads

Y= f dR F(R)[cos (kFR )
—

—,'cos [kF(R+5r)]

—
—,'cos~[kF(R 5r }]]—

(5G')2iD-
2

e L
sin (kF5r),

n, l,',
(A19)

with no well-defined limit when kF5r »1. (5G')iD is a
periodic function of (k+5r ) and vanishes whenever

(kF5r)=no(n =0, 1,2, . . . ). We found the same depen-
dence in sin (k~5r ) in the interacting impurity problem
of Ref. 2 [see formula (28) in Ref. 2].

with, we recall, Mo(kF5r ) =cos (kF5r)
First we note that when c.~0, one recovers the contact

potential result of FLS. But second, for eAO, Y
is not proportional to I/r( =2N(0)nt[ V (Q =0)
+ V (Q=2kt;)]},but (I/r„)=2mN(0)ntV (Q=2kF). If
we discard ( Y2+ Y3) in (A12), Y, would indeed be pro-
portional to I/r. The difference again comes from the
fact that Mo(x —+ oo ) is not well defined in 1D so that
Y2 + Y3 do not vanish when (kF5r )~ ~ . In the 1D case
the equivalent of (27b) would be
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