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Effective mass of one He atom in liquid He
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A microscopic calculation of the effective mass of one He impurity in homogeneous liquid 3He at zero
temperature is performed for an extended Jastrow-Slater wave function, including two- and three-body dy-
namical correlations and also backflow correlations between the He atom and the particles in the medium. The
effective mass at equilibrium density, m4/m4=1. 21, is in very good agreement with the recent experimental
determination by Edwards et al. The three-particle correlations appear to give a small contribution to the
effective mass and different approximations for the three-particle distribution function give almost identical
results for m4/m4.

Recently, Edwards, Petersen, and Culman' have used the
Zharkov-Silin Fermi liquid theory of dilute solutions of

He in normal liquid He to determine the chemical poten-
tial (p4) and the effective mass (m4 ) for the limiting case of
one 4He impurity. The experimental input data for this
analysis were the recent low-temperature measurements of
the phase separation by Nakamura et al. The same theory
was previously applied to older experimental data by
Laheurte and Saam, ' and their predictions for p,4 and m4
differ notably from those of Ref. 1. At zero pressure, Ed-
wards, Petersen, and Culman report p,4= —6.95 K and

m4/ 4tn=1. 1,' whereas p4= —6.60 K and m4/nt4=4. 5 in
Refs. 3 and 4. The disagreement was attributed to the fact
that the validity of the Fermi liquid theory is ensured at
temperatures below 0.1 K, while the results of Refs. 3 and 4
were obtained from experimental data at T~0.5 K. Although
the difference between the two experimental values of p, 4 is
rather small, our recent microscopic calculations seem to
support the more strongly bound result of Edwards, Petersen,
and Culman. On the other hand, the experimental determina-
tions of the impurity effective mass are appreciably different.
At this point, it is clear that a fully microscopic calculation
of m4 would be very enlightening.

In the present work, we evaluate the excitation spectrum
and the effective mass of a He impurity in liquid He using
a trial wave function of the type

where pt(k)=exp(ik rt) describes the impurity travelling
through the medium as a plane wave of momentum k and the
correlation operator

Ftt = ftt(k rtt). . . .

where

H(A+1) =H(A) +H,(A+1),

is the Hamiltonian of the pure He background, and

A

Ht(A + 1)= — Vt +g V(r;t)
2m4

(6)

incorporates backflow correlations between the impurity I
( He atom) and the A He atoms of the bulk. Backflow
correlations have proved to be relevant for a realistic study of
the effective mass of one He impurity in liquid He.
They play also an important role in the evaluation of the
binding energy of pure He. '

The Hamiltonian of the system is written as

O„(k)=ps(k) 'Po,

where %0 is the ground-state wave function of the He me-
dium plus one He atom and ps(k) is an excitation operator
defined as

are additional terms related to the impurity.
The variational approach starts with the choice of the trial

wave function %"0. As in our previous paper, we take an
extended Jastrow-Slater wave function for the 8+1 par-
ticles:

ps(k) = pt(k)F& 0 O=FyFrg(1, . . . ,A)
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where P(1, . . . ,A) is the Fermi gas wave function for the A

He atoms, FI is a Jastrow correlation operator embodying
two-body dynamical correlations

and

(15)

A A

. f""(r;I) f""(r;I),

and the triplet correlation operator FT is written as

(8) (pl(FJFT)'PB(V pB)V~I p)
(q'ol q'o)

(0'IVn pB(V apB)(FIF r)'I 0)
(16)

F =
i&j&k

exp[ —q, ,k
' /2] exp[ —

ql, k
' /2], (9)

i&j

with

qt k' =g g
' (r I)gt ' l(r k)r,"r k .

cyc

Here, X&, denotes a summation on the cyclic permutations
of the indices n, j,k, where the index n may either represent
a He atom or the He impurity. The triplet correlations have

been found to be very important to improperly describe the

equation of state of the pure phase ' and to calculate the
chemical potential of the He impurity.

The expectation value of the Hamiltonian with respect to

W, (k) is given by

where the subscript n labels the generic particle. The arrows
indicate in which direction (right or left) the derivatives are
acting.

The term X~ (15) is analogous to the expression obtained

in the case of the He impurity in liquid 4He. ' The second
one directly origiriates from the Fermi character of the He
medium, as it comes from the kinetic energy operator acting
on the Sister determinant P. Clearly, a=I does not contrib-

ute to X~. Moreover, by inspecting the cluster expansion of
X~, it results to be strictly zero. In fact, for direct cluster
terms, where the u-particle is not exchanged, each of the two

pieces of X~ is zero, after summing over the momentum

carried by a. Terms in which n is exchanged cancel because
each of them gives the see contribution in both pieces.

The explicit expression for the impurity single-particle
excitation energy, measured with respect to the He chemical
potential, is then

where we have taken advantage of the unitary character of
the excitation operator pB(k). If one ignores backflow cor-
relations between the impurity and the medium, by assuming

pB(k) =pl(k), a simple parabolic spectrum for E"(k) is ob-
tained:

6 k
E'(k) =Eo+ 2' 4

where

fi2k2 m4
ek=E (k) Eo= 1 +e2+ e + e3

2m4 p

f

e2= p drl; gl, (2r/II+ 3rlj rjlj)
(2) 2

f
drl, gl, (Vl;+3[rl, (VI ) +2', rl; VI ])

(17)

(18)

FB= exp[ik. rl; rj(rl;)] (13)

As the interatomic potential depends only on the relative
distance between the atoms, it commutes with pB(k). There-
fore, in Eq. (11) it is only necessary to consider the commu-
tator with the kinetic energy operator. After soxne integration
by parts, a generic contribution of the kinetic energy operator
to Eq. (11) may be expressed through the following relation:

with

(q'ol PB [v'. ,PB]l po&

( I )
=x~+x+ (14)

where Eo=(%'olHI3Ilo). In this case, the He effective mass
is equal to the bare mass, pointing to an excessively simple
choice for the excitation operator.

A better ansatz is given by W„(k) of Eq. (1) which ex-
plicitly contains backflow correlations between the impurity
and the He atoms. In particular, the backflow correlation
operator has been taken of the form '

and

(19)

(3) 1 r
e3 P drljdrlk glj k[ 71j 71k+ 43rlj 71j 7lkrlk(rlj ' rlk)

+2 qlj 7lkrlkl& (20)

/4, is the reduced mass (p, '=m3'+m4') and gl, and

gl.I, are the two- and three-body distribution functions be-
tween the impurity and the He atoms of the medium. They
are the only quantities carrying information about the anti-

symmetry of the He bulk. It is worthwile to remind that, by
changing m4 with m3 in Eq. (17), one recovers the expres-
sion for the reverse problem of one He impurity in liquid

He [Eq. (2.26) of Ref. 8], with the obvious substitution of
the appropriate distribution functions.

All the calculations presented in this paper have been per-
formed in the framework of the so-called average correlation
approximation (ACA). In this approximation one considers
the same dynamical correlation functions for all the pairs and
triplets in the system, not distinguishing between the two
isotopes. This assumption relics on the fact that the inter-
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atomic potential is the same for all the pairs. The slight draw-

backs of the ACA in the evaluation of the chemical potential
of the "He impurity have been extensively discussed in Ref.
5. In the present problem, corrections to the ACA are ex-
pected to be even lower than in the calculation of the chemi-
cal potential because their influence is reduced to small

changes in the distribution functions [Eqs. (17)—(20)].
%e have used the interatomic Aziz potential and the

two-body correlation factor f(r) has been taken of the

McMillan type:

1 (bt'
f(r) =exp ——

2 ir)
(21)

The variational parameter b has been Axed by means of a
numerical minimization of the energy of pure He liquid.
The value b=1 15 o. .(o——2.556 A), determined at the He

experimental equilibrium density (pP"=0.277 o ), has

been used for all the densities. The function ((r) of the trip-
let correlation (10) has the same parametrized form used in

pure phase calculations:

g(r) = ~k,exp—
[r r, l
'-

(22)

The density dependence of the triplet variational parameters

is neglected and the optimum values at pz" ' have been used

everywhere. These values are k, =—0.75 o. , r, =0.85 a and

c,=O.45 cr."
The distribution functions have been computed by using

the Fermi hypernetted chain (FHNC) technique, in the so-
called FHNC/S(T) approximation to take into account the

elementary diagram (and triplet) contributions. As reported
in Ref. 5, the chemical potential provided by the variational
wave function 4'o, at the FHNC/ST equilibrium density

(p&=0.252 o ), is —6.60 K.
The function r/(r) (13), adopted for the backflow corre-

lation, is of the form

~r-r0~2
r/(r) =A oexp— ~0). (23)

In our case, the backflow parameters AD=0.2, r0=0.8 cr and

coo=0.375 u, taken from Ref. 13, are used at all the densi-
ties.

As the single-particle spectrum (17) is quadratic in k, the
effective mass is given by

(m*~ [Plm4

~ m4)

1

1+e2+(m4/p) e +es
(24)

where P labels the approximation used in evaluating the
three-body distribution function.

Table I reports the effective mass obtained at the experi-
mental equilibrium density p~" ' in different approximations.
Also given is the value of the two-body contribution

(m4/m4), i.e., taking ezp=0 in Eq. (24).
The Jastrow (FHNC/S) and the Jastrow plus Triplet cor-

relation (FHNC/ST) models give nearly the same results.
The three-body distribution function has been evaluated in
the Kirkwood superposition approximation (KSA), in the
convolution approximation (CA) and including the Abe

TABLE I. He effective mass at pa~'=0. 277 cr in different

approximations.

HNC/S FHNC/S FHNC/ST

(m4 /m4)

(m /m )[
(m*/m )
( e

/ )[KSA+ABE]

1.209
1.197
1.187
1.197

1.221
1.208
1.196
1.206

1.225

1.213
1.200
1.210

terms (KSA+ABE). As shown in the table, the three differ-

ent approximations to gi, z give very close results.

The effective mass at po" ' in FHNC/ST, with the inclu-

sion of the Abe diagrams, turns out to be 1.21. This result is
in very good agreement with the most recent experimental

determination m4/m4=(1. 1+0.4/ —0.1). As it has been

pointed out by Leggett, ' the effective mass of one impurity
in a Fermi liquid is always larger than the bare mass. In

FHNC/ST, e2= —0.37, e =0.08 and the three-body term

(20), in all approximations, is very small, esp=0. 01. There-

fore, the denominator of Eq. (24) is smaller than unity, pro-
viding an effective mass larger than one.

The HNC/S results have been obtained by setting 4=1 in

the wave function, i.e., by treating the He as a bosonic fluid.
The comparison with the FHNC/S results indicates that, at
this density, the influence of the Fermi character of the me-

dium on the calculation of the effective mass of the impurity
is nearly negligible.

The density dependence of the calculated effective mass
is reported in Table II and it is also shown in Fig. 1 (full
triangles). As one can see, the effective mass increases lin-

early with density.
It is also interesting to compare our results for m4/m4

with the effective mass of one He impurity in liquid He.
As there are no exchange or spin correlations between the
two isotopes, one expects the effective mass to be driven

mainly by the density. To deeper explore this hypothesis we
have plotted in Fig. 1 the density dependence of the effective
mass of a He impurity in liquid He, for both the experi-
mental data (full circles) and the theoretical estimates, ob-
tained by using backflow correlations (empty circles). The
density dependence is in both cases approximately linear.
Although the slopes are different, the extrapolated values of

ms/ms, at the He equilibrium density, are similar and close
to the present evaluation of m4/m4. As it has been men-

tioned before, by taking the proper mass factor ms/p, in front
of e, Eq. (17) is approximately valid for one He impurity
in liquid He, since the differences in the distribution func-
tions in the two cases are small. ' In fact, if one performs a
calculation at pP' using the mass factor ms/p„ then the
HNC/ST result (shown by an open diamond in Fig. 1) coin-
cides with the backflow extrapolated value. The small differ-

p(o ')

(m4/m, )[']
( e/ )[KSA+ABE]

0.253

1.20
1.19

0.277

1.22
1.21

0.300

1.25
1.23

0.330

1.28
1.26

TABLE II. He effective mass as a function of density in

FHNC/ST approximation.
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3.2 ~m4i 1

( m4 ~
1+e2+ (ms/p) e + e3

1
=0.073,1+e2+ (m4/p, ) e +e3

(25)

2.4

2.0

1.6

1.2

0.8
0.267 0.31 7 0.367

p(units of o ')
0.417

ence between this value and the proper result (full triangle)
of m4/m4 arises almost completely from the different mass
factors in front of e . The difference practically coincides
with the estimate

FIG. 1. Density dependence of the impurity effective mass. Full
and open circles are, respectively, the experimental data and the

backflow results for m3/m3. The open diamond is the backflow
result for m3/m3 at po" ', indicated by an arrow. The full triangles
are the backflow results for m4/m4. The experimental result is
plotted as a full diamond with its error bar. The lines are linear fits
to the corresponding points.

obtained by assuming the same distribution functions in the
two systems. Assuming a linear extrapolation, the experi-
mental value for ms /ms (solid line) is close to the backflow

extrapolation (long-dashed line) at ptt*~', pointing out that

possible perturb ative corrections, beyond the backflow
terms, are small at this low density. These corrections have
been evaluated in correlated basis function theory (CBF) for

ms/ms in He. They result to be about 0.5 at the He equi-
librium density (p=0.365 o. ) and they rapidly decrease
with the density.

It is worthwile to notice that the effective mass of a He
atom at the Fermi surface of pure He (m*/m=2. 8) (Ref.
17) is much larger than the effective mass of the He impu-
rity. The statistics and the spin effects, which are suppressed
in the case of the He impurity, appear to be mainly respon-
sible for this difference.

To briefly summarize, we have calculated the effective
mass of one He impurity in liquid He by using backflow
correlations. These correlations provide for an accurate de-
scription of the He impurity spectrum at low momenta. Our
results support the experimental determination of Edwards,
Petersen, and Culman' and are far from the previous result of
Laheurte and Saam. '
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