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Relaxation in the neighborhood of a magnetic impurity in the s=; Heisenberg chain
at high temperatures
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A Mori-Lee theoretic study of spin relaxation in the neighborhood of a magnetic impurity in the s= 2

nearest-neighbor (NN) Heisenberg chain at high temperatures is presented. Our calculations suggest that in the

limit of zero impurity coupling, the spectral function for the "surface spin" is consistent with a set of discrete
frequencies given approximately by w„=[n(wo+4) —

4] against a shallow continuum background, where

w0=3J/4 with 2J being the coupling between NN spins. The frequencies broaden as the impurity coupling is
increased to the NN coupling.

The behavior of the dynamical spin-pair correlations
(DSPC's) in the nearest-neighbor (NN) s=1/2 Heisenberg
chain (HC) remains an open problem which has attracted
considerable attention in recent years. Often, however, some
of the interesting realizations of HC's contain a small con-
centration of impurities, which motivates us to study the
DSPC in the immediate neighborhood of an impurity

It has recently been suggested that the DSPC for a bulk
spin in the isotropic HC at T+~ is consistent with an
e '-like decay (at least for times 4(Jt&12). It should,
however, be mentioned that the magnitude of this DSPC at
Jt~12 is O(10 4) and hence a more precise calculation
than in Ref. 3, which remains difficult to carry out, is called
for to truly test this suggestion. Given this information, it is
of interest to understand the relaxation processes near the
imperfections (which break translation invariance) in the
HC. Indeed, the single-impurity HC has attracted much at-
tention in recent times. The relaxation process near an im-
purity has been shown to dier drastically from that in the
bulk for the s= 1/2 XY chain. It is expected [and has been
demonstrated for s=1/2 XY chains at T=~ (Ref. 6)] that
upon the absence of a "healing length" in the chain and at
sufficient distances (of the order of 10—15 spins) from the
chain end for a semi-infinite chain, one should recover the
bulk spin DSPC.

It is known that impurities and surface imperfections
could lead to the presence of long-lived excitations in HC's.
We show that such long-lived excitations, which are charac-
terized by well-defined peaks in the spectral functions (SF's)
of the NN's of the impurity, become progressively dominant
upon weakening the impurity coupling. One would expect
that such dominant frequencies (coming from a few of the
N~~ spina) in a HC with few impurities will be difficult to
extract from the inelastic neutron-scattering spectrum. We
suggest that these frequencies could perhaps become observ-
able upon carefully probing the shape of the SF as a function
of frequency in dilute s = 1/2 HC systems. A second way to
determine the low-frequency peaks may be via Mossbauer
effect spectroscopy, which allows one to probe into the local
spin dynamics in a low-frequency windo~, on suitable sys-
tems.

Given how little is actually known about the DSPC's in
HC's (Ref. 1) it is important to ask about how the DSPC's of
the NN's of a single magnetic impurity differ from that of the
bulk spins in the chain. This is precisely the problem we
focus upon here. Our study therefore probes the spin dynam-
ics in the immediate neighborhood of the impurity. The re-
sults are expected to be approximately valid in the low-
impurity concentration regime (&4% say). The analysis is
based on the continued fraction formalism (CFF) (Ref. 7) of
Lee and others. Our study reveals the existence of character-
istic frequencies associated with the parameter J', where 2J'
describes the coupling between the impurity and its NN's
while 2J describes the NN coupling between the other spins
in the HC. The frequencies become progressively distinct as
J'~0, i.e., the case of a chain that has been cut at site j+1.
For simplicity the analysis is performed at T=~, at which
the static correlations are trivial to evaluate. The calculations
remain invariant up to O(p), where p= 1/kT. However, we
expect, based on our recent studies of DSPC's for other
simple low-dimensional spin systems, that the features of
the DSPC's in the neighborhood of the impurity are likely to
possess similar behavior at finite T's in the HC. To our
knowledge, this is one of the very few studies in which the
high-T spin dynamics of a single-impurity system has been
addressed.

We briefly summarize the CFF below. The details of our
results on the DSPC's near the magnetic impurity are given
thereafter. We close with a discussion of the implications of
our calculation.

The calculation of the DSPC (S, (t)S,. )/((S,. ) ) where
a=(x,y, z) for a HC with j being a NN of the impurity has
been accomplished as follows. The CFF (Ref. 7) provides a
prescription for constructing solutions to the Heisenberg
equation of motion (HEM) for some dynamical variable and
in turn for calculating the DSPC's involving the dynamical
variable under study. Using the CFF we first express the spin
operator S (t) as an orthogonal -expansion in a Hilbert space
[spanned by a complete set of orthogonal bases with the
orthogonality being realized via a suitable scalar product,
e.g., the Kubo scalar product (KSP) (Ref. 7)]. Thus,
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S, (t)=g f„a„(t),
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where f„'s form a complete set of time in-dependent orthogo-
nal bases and a„(t)*s are their time de-pendent coegcients
The orthogonality of the f„'s are realized through the KSP
which leads to a simple recurrence relation (RR), RR I, for
the f„'s given by
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f„,=(i/h)[H, f„]+h„f„,, (2)

where the square brackets denote commutators and

5„=(f„,f„)/(f„„f„&), and for this problem which

addresses high-T dynamics we choose (X,Y)—=(XYt)
—(X)(Yt) (a special case of the KSP), and from now on

we shall set 6=—1. Since Eq. (2) above must satisfy the

HEM, a second RR, RR II, emerges for the a„(t)'s,
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Ap+ra„+, = —da„/dt+a„&, v-0, a &=—0.

Another way of writing RR II is by taking its Laplace trans-

form and thereafter expressing ao(z) as a continued fraction

(CF). Typically, d~00 in Eq. (1) and ao(z), as a result, is an

infinite CF (ICF) (Ref. 7) as described below:

ao(z) =1/(z+ b&/(z+ Az/[z+ b 3/(z+ ~ to ~)])).
(4)

Realizing that ao(t) =4(S (t)S, ) at T= ~, it follows that

the necessary information for computation of the Laplace
transformed relaxation function given in Eq. (4) is contained
in (5„)which are, in general, functions of multipoint static
correlations in the system. The calculation of the magnitudes
of 5„'s is greatly simplified at high T's at which the traces
over the spins that enter into the 5„'s become trivial to
evaluate. The resultant dynamics describes a system with the
eigenstates nearly equally Boltzmann weighted (unless
T= ~, when aII the states are equally weighted).

The following summarizes the calculations to obtain the
DSPC's for the NN's of a magnetic impurity at site j+1.
The main focus of the study is to arrive at an estimation of
b, „'s as a function of v. As stated above, for most systems,
in the thermodynamic limit, v~(x. Even at T=~ the calcu-
lation of (b „j is an impossibly difficult task for most many-

body systems. Typically, the best one can do is to estimate
the first few 5„'s and extrapolate therefrom, via some "rea-
sonable ansatz, "to guess the higher 6„'s.The dependence of
the resulting DSPC on the details of the ansatz then becomes
an important issue. The calculations presented here invoke
such an ansatz, to be described below. We believe that the
ansatz chosen is such that the DC's under study are essen-
tially invariant upon minor amendments to the ansatz (such
as varying the slope and the intercept by (1—2 %), at least
for relatively short times (i.e., Jt-100). The b, „'s thus ob-
tained are then used to construct a finite CF (FCF) with a
large number of levels and hence poles, this number being
typically between 10 and 10 depending upon the conver-
gence properties of the ICF (see Cai, Sen, and Mahanti in
Ref. 7). Such large FCF's can be readily evaluated on a small
supercomputer. The estimation of the CF and a subsequent
numerical inverse Laplace transformation calculation (see

FIG. 1. Inset: 5Jv vs 1/v for J' =0, 0.1, 0.2, 0.9, 1.0 (from top
to bottom). Main figure: The DSPC for J'=0 (fast relaxing solid

line), 0.1 (dashed), 0.2 (dot-dashed), and 0.9 (slow relaxing solid

line) cases. The results for J' = 1 and J' =0.9 are practically indis-

tinguishable.

Cai, Sen, and Mahanti in Ref. 7) of the calculated ap(z)
yields the DSPC 4(S, (t)S )=—ao(t) in the CFF, and the cor-

responding SF.
As mentioned above, the challenge in the evaluation of

the DSPC's for many-body systems concerns the calculation
of the f„'s and the 5„'s which enter via RR I above. The
calculations quickly become algebraically challenging and it
typically becomes tedious to compute the f„'s and the 6„'s
for v~4 for spin systems with broken translation invariance.
We have calculated the first four f„'s and 5„'s exactly for the

system under study which is characterized by

N 3 3

H=2JQ g S, S,„2J'g S,„S,„,-
i=1 a=1 a=1

with the impurity site being at j+1 and the impurity cou-
pling being 2(J—J').The calculations have been carried out

by choosing f&=S';(0)=—S' in Eq. (1) and then generating
the higher f„'s via RR I. The detailed expressions for the
f„'s are long and will be reported in a detailed paper on
impure S=1/2 chains. ' Our choice of fs renders the
a (t)=(S'(t)S'.)/((S,') )—=P/(t), which is the quantity of
interest. The 6„'s thus obtained at T=~ are described in Fig.
1 (see inset) for various values of J' with J=1. The result
for the J' =0 case (which renders S,

' a bulk spin) was pub-
lished recently. The J'=1 case is less well explored. Al-
though the b, „'s given here for J' = 1 have been reported by
Stolzc et al. , a detailed calculation of the corresponding sur-
face spin relaxation function in a semi-infinite HC has been
unavailable. The DSPC's of the NN's of an impurity spin
described by cases with 0&J'&1 are not known at all. We
address the spin dynamics in this regime by carrying out a
perturbative treatment of the ICF against the J'=0 and the
J' = 1 cases. The main results of our calculation are summa-
rized below.
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FIG. 2. Main figure: DSPC vs time for the J' =0.9 case shown

up to t=100. Note the long-lived oscillations suggestive of an

oscillatory algebraic decay. Inset: SF corresponding to J'=0.9
(solid), 0 (dotted), 0.1 (dashed).

First of all, recall that the time-dependent behavior of
p; (r) for J' = 0 exhibits e '-like decay at "intermediate
times" (4&Jr&12). The oscillatory behavior of P;(t) for
the J'=0 case becomes more pronounced when J'&0, i.e.,
when an impurity is present. We present our calculations for

P;(t) with J' =0, 0.1, and 0.2 in Fig. 1.We also present our
results for the weak-coupling limit of the impurity with
J' =0.9 in Fig. 2. These calculations have been carried out
perturbatively by evaluating 6, through b, 4 exactly for the
chosen values of J' and then by replacing 55 through b,„
using the J'=0 case results for the small J' cases and by
the J'=1 case results for the "large" J' case. The extrapo-
lation schemes used for small J' in our calculations are: (i)
J'=0.1 case, 5„=2.50(v —4)+8.93, (ii) J'=0.2
case, b, „=2.30(v —4)+8.23, (iii) J'=0.3 case,
b „=2.18(v—4)+ 7.49 for v~4. The extrapolation
scheme invoked in Ref. 3 for the J' =0 case was
4„=2 65(v —7)+17.00 for v~8. The scheme used for
the J'=0.9 case study used the exactly known 5„'s for the
J'=1 case for 5~v~11 and the extrapolation scheme
b „=1.20(v —11)+1.0 for v~12 while that used for com-
putation of the case J'=1 consisted of the exact 5,'s for
1~v&11 and 5„=1.20(v —11)+1.0 for v&12. The
CF's obtained using these 5,'s were truncated at the 10000th
and 10001st levels in two separate calculations for each case.
We found no evidence of any odd even epee-t in P,(t) for the
cases studied, which in turn suggested that the estimated be-
haviors of the CF's studied were stable against truncation
effects within the accuracy of our calculations (typically
about 10 ). The results are expected to be reliable for
Jt~100 and when asymptotic dynamics is not considered,
which in our view can only be studied in the presence of an
exact solution.

This form of perturbation theory is known to be reliable
when the corrections to the 6„'s with respect to the "ideal"
5„'s grow linearly (or sublinearly) with v, a condition which
appears to hold here for the lower 6„'s. As is well known,
corrections to the first few levels of the ICF can play a more

significant role in determining the z-dependent behavior of
the ICF than the levels deeper down. "

The behavior of P,(t) for small J"s reveals the presence
of some oscillations which become progressively stronger as
J' is increased. The behavior of Pj(t) becomes distinctly
oscillatory with remarkably slow decay of PJ(t) in time as
J' ~1. Our calculations reveal very little difference between
the @,(t) obtained for the J' = 1 and J' =0.9 cases. The
large J' case suggests the onset of an oscillatory-algebraic
decay of P,(t) Gi.ven the times up to which Jt has been
studied here it remains difficult to reliably draw any conclu-
sions regarding the nature of the decay of P,(t) in t It a.p-

pears, however, that the decay is oscillatory-algebraic in na-

ture for large t. Our calculations also provide strong
evidence for a crossover regime from an overall exponential-
like decay of P;(t) at J'~0 to an overall oscillatory-
algebraic decay of P;(t) at J'~1. This observation suggests
that J'=0.5 is probably an interesting regime to study. A
reliable calculation with J'=0.5, however, remains to be
carried out at present due to a lack of knowledge of higher

5,'s which appears to be essential for such a study.
The SF corresponding to P, (t), i.e., P;(ro) is given in

Fig. 2 (inset). An interesting feature to observe in Fig. 2
(inset) is that the presence of the impurity leads to the pres-
ence of broad maxima in P, (co) at small co (co=0.2) and at

large ro (co=3.4). The high-frequency mode is obviously
related to the period of the small oscillations that develop at
short times in P,(t) with a characteristic period of 2Jt(2,
or Jt&1.The slight reduction in the periodicity of the oscil-
lations in P;(ro) presumably stems from J'&1. The long
time behavior of P, (t) still appears to be reasonably consis-
tent with e '-like decay, although the oscillations make it
difficult to make any claim in this regard. In fact, a similar
problem also appears when interpreting the long time behav-
ior of P (t) for the bulk spin case and we had reported that

the results were roughly consistent with t "-type decay with
y=0.77. The dynamical problem for the NN of the impurity

spin becomes very rich as J'~1. We study this case via
perturbation about the J'=1 case. It turns out that for
J' =0.9, it is hard to distinguish between the J' =0.9 and 1
cases within the limits of our resolution. The frequency spec-
trum P,(co) for the J'~1 case exhibits a set of well-defined
peaks. Except for the first peak, it appears that the peak po-
sitions are well approximated by the relation
cu„=n(coo+1/4) —1/4 for our system, where coo=3J/4.
The first peak which reveals the lowest dominant frequency
may be the most difficult one to determine unequivocally in
the absence of an analytic solution to the relaxation function.
We find that this peak is located at co =0.45, which is lower
than ~0=0.75 predicted by our suggested formula. The
higher frequencies are, however, much better approximated
by the above-mentioned relation.

To conclude, we have shown via approximate analytical
calculations that the presence of a magnetic impurity in the
HC profoundly affects the relaxation of its NN's. Our calcu-
lations invoke a simple ansatz, that 5,'s grow linearly with-
respect to v for large v, which happens to hold true for many
S=1/2 systems at high and low T's (see Sen et al. in J.
Appl. Phys. ), although other patterns exist. In particular, our
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results demonstrate that the frequency spectrum of the DSPC
of the NN's of a weakly coupled nonmagnetic impurity in a
HC is characterized by a sharp set of peaks of progressively
diminishing strengths with increasing frequency.
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