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Magnetic- and electric-field effects on the width, surface tension, and velocity of the interphase bound-

ary are calculated for solid-solid and nematic-isotropic first-order phase transitions described by the
Landau expansion with a cubic term. The exact solution of the Ginzburg-Landau —de Gennes equation
including an external field is obtained. The results are compared with the experimental data in nematic
liquid crystals and ferroelectrics.

where I is the Landau-Khalatnikov transport coefficient
which sets the time scale of the relaxation process and is
assumed to depend noncritically on a temperature. In
the case of nematics I = I i~A, where r is the relaxation
time. F is the free energy

F[Q(r, t)]=J jf [Q(r, t)]+D[VQ(r, t)] ]d r, (2)

where

f ( Q) =—,
' A Q

—
—,
' BQ +—,

' CQ —HQ,

where coefficients B and C are positive, coefficient A is a
temperature-dependent one: A =a (T—Tp) Tp is the
temperature of the stability limit of the high-temperature
phase; coefficient a does not depend on temperature. D is
the positive coefficient of the inhomogeneity term. The
functional derivative 5F/5Q is a term tending to restore
the value of Q to its thermal equilibrium value. It is the
thermodynamic force that drives the system towards
equilibrium. H is the external Seld. This expansion for
the order parameter can be applied for structural, fer-
roelectric, martensitic, nematic-isotropic and quasicrys-
talline phase transitions. ' ' For example, in ferroelec-
trics Q is the spontaneous polarization, H is the electric-
field strength. In nematics Q =—', (cos 8—

—,
' ), where' 8

is the angle between the long axis of a molecule and the
local optic axis, the angular brackets denote a statistic
average. D &0 describes the extra free energy due to a
distortion in Q. If the long axis of molecules is parallel
(8=0) and antiparallel (8=m. ) to the optic axis, Q=1
(the completely aligned material). If the orientation of
the molecules is chaotic, then (cos 8) =—,

' and Q =0.
The term Q arises because of the quadrupole symmetryaQ rat = —r5Fy5Q,
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A significant fraction of solid-solid and nematic-
isotropic phase transitions are first-order diffusionless
ones. ' Many such transformations can be described by
the Landau expansion of the free energy density as a
function of the order parameter including the cubic term.
In recent years there has been increasing interest in the
rates and mechanisms of interfacial kinetics for first-
order phase transitions. The growth process is usual-

ly associated with the propagation of interfaces separat-
ing the high-temperature parent phase and low-
temperature product phase. The phase transition
proceeds by interphase boundary migration. By means of
this process one phase grows at the expense of another
one. The temperature kinetics of the diffusionless first-
order phase transitions have been considered as a kink-
type movement of the interphase boundary and studied
experimentally and theoretically in Refs. 2-11. Unlike a
presence of the theoretical consideration of the thermally
induced interface propagation, there exists so far no
quantitative description of the kinetics of a diffusionless
transformation in external electric and magnetic fields.
In this paper we examine the nonlinear dynamics of an
interphase boundary which arises under the influence of
electric and magnetic Selds. We carry out the estimates
for nematic-isotropic and ferroelectric phase transitions.

The model outlined here assumes that the interfacial
dynamics are governed entirely by the evolution of the
order parameter. The relaxation of the metastable sys-
tem to equilibrium provides the propagation rate of the
phase transition front. We use the time-dependent
Ginzburg-Landau-Gennes equation' ' for the evolu-
tion of the order parameter Q:
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of the ordered state. If Q is positive the molecules order
with their long axes parallel to the optic axis. The exter-
nal field H may be an electric or magnetic one

where n = AC/8 is the temperature factor and

P=arccos[[(H/2H, )+(1—9a/2)]/(1 —3a) ~
] . (10)

H =
—,'Ayh (4) In nematics we have —,'(h/h, ) instead of ,'(H—/H, ) in Eq.

(10). b, is the width of the interphase boundary given by
where hy is the coefficient of the anisotropy in the di-
amagnetic susceptibility, ' by=a —g„g and y, are
the diamagnetic susceptibilities parallel and transverse to
the optic axis. The external magnetic field h interacts
with the nematic liquid crystal through the anisotropy of
its diamagnetic susceptibility tending to align the director
parallel to the magnetic field. If h is an electric field, Ag
is the volumetric susceptibility anisotropy.

The equilibrium value of the order parameter Q is the
one that provides the lowest possible free energy. Minim-
izing the free energy density with respect to Q gives the
equation of state for the uniform state

6 =(3DC)'~ /B (1 3—a)' cos(P/3 m—./6) .

f(Q)=f'(Q')B /C

where

(13)

The solution (8) exists when the velocity of the interphase
boundary is equal to

u =21 B(D/C)' (1—3a)' cos[(n+P)/3] . (12)

To analyze the interface dynamics described by Eq.
(12) we present Eq. (3) as follows:

Ag Bg +—CQ H=O —. (5) f '(Q') =—'ag' ——'Q'+ —'Q' —(H'l27)Q', (14)

For the zero-field case, when Eq. (5) has three real roots,
two of them correspond to minima in the free energy. At
temperatures well above To and in zero field the free en-

ergy is lowest when Q =0, but at T = T, =Tc+2B /9aC
the free energy becomes lower for the minimum at finite
Q. A first-order transition then occurs to the ordered
state at T, . The discontinuity in order parameter at T, is

Q, =2B/3C, and the latent heat is —,'T, g, . The first-

order phase transition exists for fields which are lower
than the critical field H, =B /27C . In the case of a
nematic-isotropic phase transition the critical field is
equal to h, =(B/3C)(B/3bg)' at which the boundary
between the isotropic and the nematic phases becomes
vague.

The theory of the kinetics of diffusionless first-order
phase transitions for H =0 based on Eqs. (1)—(3) was pro-
posed by Chan. We develop here a theory of the external
field effect on the interphase boundary dynamics.

Variating the functional (2), (3) and substituting the re-
sult into Eq. (1), we obtain the following expression for
the uniaxial or strongly anisotropic cases:

ag /at+ r( ag —Bg'+ Cg' —H) —2rD a'Q/Bx 2 =0 .

(6)

Using s =x —ut, we have

2I'D d Q/ds'+u dglds —I'(Ag Bg +Cg' —H)=0 . —
(7)
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where Q'=(C/B)Q and H'=H/H, .
In Fig. 1(a) the interphase boundary velocity u is shown

as a function of the dimensionless field H' for the temper-

Equation (7) was solved in Refs. 8 and 9 for H =0. We
solve it for HAO for the boundary conditions characteris-
tic of the interphase boundary. Then we derive the fol-
lowing equation for the interphase boundary profile:

0.4
order parameter

0.8 1.2

Q =Q +(Q —Q )/[1+exp(s/~)],

where Qi, Qz, and Q3 are solutions of Eq. (5):

Q, =(B/3C)[1+2(1—3a)' ]cos(Q/3),

Q2 =B/3C[1 —2(1 —3a)' ]cos[(n.—P)/3],

Q3 =(B/3C)[1—2(1—3a)' ]cos[(m.+P)/3],

(8)

(9)

FIG. l. (a) The interphase boundary velocity u [in units of
2I'B(D/C)' ] as a function of the strength of the dimension-

less field 0' for the dimensionless temperature factor a=0.25

[Eq. {12)] (the phase transition occurs at a =0.25 and
0'=0.25). (b) The free energy density as a function of the or-
der parameter at a=0.25 for three values of H': 1~0'=0.4; 2
(the heavy solid line describes the phase transition point)
~H'=0. 25; 3~H'=0 1[Eq. (14)]. .
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ature at which a=0.25. In Fig. 1(b) the free energy den-
sity [Eq. (14)] is demonstrated as a function of the order
parameter for a =0.25 and for three fields: curve 1 corre-
sponds to H'=0. 4; curve 2 (the heavy solid line) corre-
sponds to the field H'=0. 25 for which the phase transi-
tion point is reached because the two minima describing
the two coexisting phases are at the same level; curve 3
corresponds to 8'=0. 1. At the phase transition point
(a=0.25 and H'=0. 25) the interphase boundary stops
because of the equality of free energy densities of coexist-
ing phases. For fields H'=0. 4 and H'=0. 1 the inter-
phase boundary moves in two opposite directions depend-
ing on the "direction" of the asymmetry of the free ener-

gy density. As is known, for H'=0 the temperature fac-
tor a= —,'. Thus, Fig. 1(b) refiects the fact that the phase
transition temperature depends on the external field

strength. It is seen from Fig. 1(a) that the curve of the
interphase boundary velocity exists at the range of coex-
istence of two phases. In Fig. 2(a) the interphase bound-
ary velocity is shown as a function of the dimensionless
temperature factor a for H'=0. 3. At the point for

which a=0.255 the phase transition occurs and the in-
terphase boundary stops. It is seen that at the phase
transition temperature the interface changes the direction
of its motion in Fig. 2(b) which presents the dependence
of the free energy density on the order parameter accord-
ing to Eq. (14): curve 1 corresponds to a=0.24; the
heavy solid curve 2 (which describes the phase transition
for this field) corresponds to a=0.255; curve 3 corre-
sponds to a=0.27. The direction of the interphase
boundary motion is determined by the "direction" asym-
metry of the free energy density. The velocity curve ex-
ists at the range of coexistence of two phases. In Fig. 3
the interphase boundary width is shown as a function of
the field for a=0.25. The interface narrowing at the
phase transition point (here a=0.25 and H =0.25} is ex-
plained by the fact that on approaching the phase transi-
tion at which the minima of the free energy density have
the same depth the system overcomes the lowest barrier.

To our knowledge, there are no experimental data on
the field infiuence on the interphase boundary motion in
nematics. However, we can check our approach calculat-
ing the surface tension coefficient of the interphase
boundary. The data on the magnetic field effect on the
surface tension are available in p-methoxy benzylidene p-
n-butylaniline (MBBA): rr =(2.3+0 4)X10 ~ erg/cm2, '9

for the magnetic-field strength h =0.3 T. The data
were obtained for h =0: o =1.6X10 erg/cm . Let us
calculate rr in the external field. Using Eq. (8) and in-
tegrating we obtain

O=2D X X= D 3 1 2

For the estimate of the surface tension of the interphase
boundary in magnetic fields in MBBA we use the follow-

ing experimental values: a =6.2X105 erg K 'cm
8 =4.7X10 ergcm, ' C=7.9X10 er cm
D =6.1X10 dyn, ~ hx =1.25X10 erg G cm
h =3000 G. For T, —To=1 K we obtain o =10
erg/cm, which is very close to the experimental value. t

Within this range of fields the surface tension of the inter-
phase boundary is not changed. It corresponds to the re-
sult obtained by using Eq. (15}.

We can check our results by considering the two
known limited cases. For H =0 we obtain in Eq. (6) the
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FIG. 2. (a) The interphase boundary velocity u [in units of
2I'8(D/C)' ] as a function of the temperature factor a for
H'=0. 3 [Eq. (12)]. The phase transition takes place at
a=0.255 and 8'=0.3. (b) The free energy density as a function
of the order parameter at H'=0. 3 for three values of a:
1~a=0.24; 2 (the heavy solid line describes the phase transi-
tion point) ~a=0.255; 3~a=0.27 [Eq. (14)].
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FICx. 3. The interphase boundary width 6 as a function of
the Seld H' for a =0.25 in units of (3DC)' /B.
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Q =
—,'(Q, +Q2)+ —,'(Q, —Q2)tanh(x/2h), (17)

where Q, =0.
Let us compare our results with the experiment on the

electric-field-induced motion of the interphase boundary
in the ferroelectric substance SbSI. In Ref. 24 a con-
stant electric Geld applied to the crystal caused the inter-
phase boundary to move toward the cathode. The rate of
interphase boundary displacement in one of the investi-
gated crystals was u = 10 cm/s for the external
electric-field strength H =300 V/cm, which is much
lower than the critical electric field in SbSI. For this
reason we use Eq. (13) for the estimate. We use the
following experimental values: I =11 cm ', a =3.31

equation describing the temperature-induced motion of
the interphase boundary giving the following profile for
this type of phase transitions:

Q =Qz/1+exp[ —(x ut—)/6],
which follows from Eq. (8) when Qi =0. For u =0 we ob-
tain the known equation for the interphase boundary in
the static case from Eq. (8)

X10 K ' 8 =3.2X10 ' cgs C =7.4X10
cgs. %e estimate the coef5cient D according to
D = (vr/15 ) d, where d is the lattice parameter:
d =8.49 A. For temperatures close to T, =20 C
(b,T-1'C) we obtain u =0.7X10 cm/s. The light
difference between the experiment and the theory can
arise from the fact that we use the Landau expansion
with the cubic term instead of the expansion with the
sixth term. The expansion including the cubic term can
be used for the ferroelectric (NH4)zBeF4, for
Ag3AsS&, Ag3SbS3,

' and other "divertible ferroelec-
trics" in which the polarization cannot be reversed but
can only be turned in another direction: the states +Q
and —

Q are not equivalent and this permits the existence
of the Q term. The same expansion of the free energy
can be used in structural phase transitions, ' in martensi-
tic phase transitions, ' and in quasicrystals. ' This
means that our results can be applied in these cases.
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