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We have investigated the ground state of an electron-phonon system with strong electron-phonon
interaction and a weak on-site Coulomb repulsion using the correlated squeezed-state approach.
We have introduced a variational ground state in which the phonon subsystem is in a correlated
squeezed state and the electron subsystem is in a superconducting pairing state. In addition to
the anharmonicity of each phonon mode induced by the linear coupling with the electrons, the
correlated squeezed state is able to take into account the nonlinearity of the induced interaction
between different phonon modes beyond the Hartree approximation. Also, with optimal values of
the variational parameters this trial state will by construction yield an energy lower than those
obtained in previous studies, and thus our variational ansatz is a more stable ground state for this
system. Furthermore, in this approximate ground state the reduction effect of phonons is much more
alleviated, and thus the mass enhancement inherent to the polaron effect is considerably weakened.
This weakening of the reduction effect should, in turn, affect other physical properties of the system;
for instance, it does suggest the possibility of higher critical temperatures for superconductivity
in the strong-coupling limit where the super6uidlike bipolaronic superconductivity is supposed to
occur.

I. INTRODUCTION

The study of the behavior of coupled electron-phonon
systems has long been an active research area in con-
densed matter physics because of its significance in de-
termining the resultant electronic properties such as
superconductivity or electron-driven instabilities. Re-
cently the interest in the interplay of electron-electron
and electron-phonon interactions in strongly correlated
fermion systems has been further intensified by the dis-
covery of high-temperature superconducting materials.
The role of electron-phonon coupling is of special inter-
est in view of the close proximity of these materials, e.g. ,

La2 Ba Cu04, to structural, insulating antiferromag-
netic, and superconducting instabilities. A simple model
that could account for such a complex phase diagram is
an extension of the Hubbard model where one couples
the electrons to phonons linearly. In this paper we shall
study a model which involves optical Holstein-phonon
modes coupled strongly to electrons which interact via
an effective on-site Coulomb repulsion. Such a model
could be general enough to also capture some aspects of
the physics of the C60-based superconductors where it
is possible that the electrons coupled to the on-fullerene

phonons may give rise to the observed superconductivity
in these materials.

The physics of narrow-band electrons coupled to Hol-
stein phonons is governed by three competing effects:
the itinerancy of the electrons, the Coulomb repulsion,
and the local electron-phonon coupling. With strong
electron-phonon interaction each electron carries with it-
self a lattice deformation in a coherent way, forming what
is called a small polaron, severely localized in its own
potential well. Provided that the interaction is strong
enough for the on-site electron-electron correlation to be
attractive after renormalization, the small polarons form
spatially overlapping Cooper pairs with .superconducting
properties similar to ordinary BCS superconductivity, ex-
cept for a few differences in the gap equations as well as in
the expressions for the critical temperature T . Fur-
thermore, if the polaron-polaron attractive interaction
is strong enough, a super6uidlike superconductivity, so-
called bipolaronic superconductivity, will occur. The
polaron effect can increase the electron mass by a factor
10 —10, and much more for a bipolaron. Thus, starting
born the BCS limit the pairing first increases with the
coupling, but for too large coupling the local pairs be-
come essentially localized and the critical temperatures
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extremely small. The intermediate region is very diK-
cult to treat due to the failure of perturbation theories.
Nevertheless, this region is of the greatest interest for it
is expected to yield the highest critical temperatures for
superconductivity.

Recently Zheng proposed a squeezed-state approach
for dealing with the superconducting properties of sys-
tems of strong electron-phonon interaction which are de-
scribed by the Hubbard model with a local Holstein-
type electron-phonon interaction. ~o He showed that a
better variational ground state of such a system is ob-
tained by assuming a squeezed state for the phonon sub-
system instead of the conventional coherent state. The
squeezed state has the virtue that the anharxnonicity of
each phonon xnode induced by coupling with the elec-
trons is being taken into account. It is shown that
the "squeezing" effect noticeably weakens the mass en-
hancement inherent to the polaron effect. Therefore,
despite that Zheng s investigation is based on a weak-
coupling mean-field theory treatment, it is sugguested
that by means of the squeezed polaronic state higher crit-
ical temperatures for superconductivity can be attained
in the strong-coupling limit where the superBuidlike bipo-
laronic superconductivity is supposed to occur.

Nevertheless, both the squeezed-state and conventional
coherent-state trial wave functions for the ground state
of the phonon subsystem are within the Hartree approx-
imation and thus uncorrelated. In order to account for
the strong phonon correlation and anharxnonicity of the
interaction between different phonon modes induced by
the linear coupling with the electrons, one needs to go
beyond the Hartree approxixnation. In this paper we
shall introduce the correlated squeezed-state ansatz as
a candidate for the ground state of the phonon subsys-
tem. The variational treatment consists of the follow-

ing steps: First, a unitary displacement transformation
and a squeezing transforxnation are applied to our model
Hamiltonian. Next, a variational wave function for the
phonon subsystem is used to take into account the inter-
site phonon correlation effects and we integrate out the
phonon degrees of freedom to obtain an effective elec-
tronic Hamiltonian which can yield an attractive on-site
interaction for strong enough electron-phonon coupling.
A weak-coupling mean-field theory treatment of the re-
sulting effective Hamiltonian is used to obtain the ground
state of our model system. 7 Our results are in general

agreement with those obtained by Zheng but somewhat
more accurate. We generally find that the usual Hol-
stein factor is much larger in our correlated approach
compared to Holstein's result and thus the polaron hop-
ping suppression effect is much more alleviated in our
calculation.

In Sec. II we shall apply the correlated squeezed-state
approach to the ground state of a system of strong
electron-phonon interaction described by the Hubbard
model with a local Holstein-type electron-phonon cou-
pling. Nuxnerical results for some special cases as well as
our conclusions will be discussed in Sec. III.

II. FORMULATION

Our model Hamiltonian is a generalization of the stan-
dard Hamiltonian first introduced by Holstein to de-
scribe electrons locally coupled to molecularlike oscilla-
tors; it includes an additional Hubbard correlation term

H=) (E —p)dt d; + ) ) Tdt d~ +) h(dbtb;

X)CF (~ 2)

+) Udttd;tdt~d;g+) gdt d; (b, +b;), (1)

where p, is the chexnical potential, dt and d; are the
creation and annihilation operators of electrons, bt and
b; are the creation and annihilation operators of phonons,
and g~, .

l
denotes the sum over nearest neighbor sites.

This model is an example of a more general class of cou-
pled electron-phonon models. It is characterized by a
dispersionless branch of phonons, and by a linear and lo-
cal coupling between the electron density and the lattice
deformation. %e shall hereafter limit ourselves to this
simple model which contains essentially all the impor-
tant physics of the problem. Generalization to phonons
with dispersion or nonlocal coupling is straightforward
and will be presented elsewhere.

Applying the Lang-Firsov unitary displacement
transformation~

D=exp& — ) dt d; (bJ —b;) )
h~ . -

Xq0'

to the Hamiltonian in Eq. (1), we obtain

H =DtHD
=) (E —p)dd; +) ) Tdde ,. exp{ [(5;, —b;) —(b. —be)])+) tetebb+) Ud&d~, d,zdz

C~C7 (i,j)
2

—) ) dtd; dt, d,
e,n I

This shows that the linear coupling with the electrons
induces nonlinear interactions between phonons not only
in the saxne mode, but also in different modes. At this
point one could suppose that the electron and the phonon
subsystems xnight be decoupled by making an average of
H over the vacuum state of the phonon subsystexn and

I

a Holstein reduction factor exp[ —g /(h2) ](dis2obtained.
This is the usual way of dealing with the electron-phonon
interaction in discussing the sxnall polaron problem.
However, as pointed out in Sec. I, for a strong electron-
phonon interaction the reduction effect would be fairly
strong and make the ground-state energy of the inter-



C. F. LO, E. MANOUSAKIS, R. SOLLIE, AND Y. L. %'ANG 50

acting system increase. In order to lower the ground-
state energy, we shall develop here a variational treat-
ment based on the correlated squeezed states.

First, to account for the anharmonicity of each
phonon mode, we shall perform the unitary squeezing

transformation

S = exp a bt —b,-

2

to the Hamiltonian H such that

(4)

0 = StHS
= ) (8 —p)dd; ,. b ) ) Td! d exp ( exp( —2ee)[(b,. —b;) —(b —b.e)]]

Z~C7 {2 2)

+—) h(d exp(4n)(bt + b;) ——) ho2 exp( —4n)(bt —b, )

2
——) h(d+ ) Udttd, tdt~d, g

—) ) dt d; dt, d,
CT K

2

It is quite obvious that the Hamiltonian 0 cannot be
solved exactly, and so we shall tackle it approximately by
the variational approach. Taking into account the corre-
lation between different phonon modes, we next propose
a generalized multimode squeezed vacuum state as the
trial wave function for the ground state of the phonon
subsystem:

so that

[cosh(l)91)]v = bv + 2, ) .P'~A*,
1

k=1
N

+—, ). P'aPgiPi P', +
k, l,m=1

I@~) =exp &
—) P;~(btb —b;b~) & lvac)

—= S((Pv })l~c),

St aS = cosh(lpl) a+ sinh(l)9I) lpl ')9a (7)
St at S = cosh(l)9I') a' +»nh(I]91') (I)9I') '&' a (8)

where l)9IT is the transpose of IPI, i.e., (]PIT);~ = IPI~;, a
is the column vector consisting of annihilation operators
a; (i = 1, 2, ..., N), and at is the vector of creation oper-
ators. Here the matrices l)9I and IPI are defined in the
following way:

(I]9I')v = ) .(I&l)'~(I)91)A~
= ):P'~PI'.,

k=1 k=1
N

bv =) (I&l ')'s(l&l)1~ (lo)

where P,~
= P~, . The generalized multimode squeeze op-

erator S((P;~})transforms the annihilation and creation
operators as follows:

[»nh(I&l) I)91 '&]'i = ) [»nh(l&l)]'I (I&l ')1~(&)v
k, l=l

1 1=
),P'~ + 3, ).P'aP)'. (Pig

k, l=1

1
+—, ) . P*I P)',&Pi-P*.P,

k, l,m, n=1

+ e ~ ~

[Note that we have set P,; = 0 (i = &, 2, ..., N) so that
the restriction on the double sum in Eq. (6) can be
lifted. ] Furthermore, provided ]9 is real, the general-
ized multimode squeezed state is a multimode minimum-

uncertainty state, which exhibits generalized multimode
squeezing in the Quctuations of the phonon Geld modes.

This correlated squeezed-state approach has been ap-
plied earlier to the linear E-e Jahn-Teller effect, a tun-

neling particle coupled to phonons and some coupled
electron-phonon systems. Taking the average of H
over the state I4'~), we obtain an effective Hamiltonian
for the electron subsystem as follows:

I,& = (4„]HI@„)

= ) (E, —)[b)d; d;~ + ) ) T,d; d~ + —) ha exp(4n)[exp(2p)]oo
Z2W (i,j) 2

+—) h(d exP( —4n) [exP(—2P)]oo ——) h(d + ) Ued;gdetd Jgd;g,
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where E, = E —J, U, = U —2J and J = gz/h(d. The
renormalized hopping integral T, has the form

T. = 7/T

the electrons,

for iei & D,
0 otherwise,

(2o)

J= T exp — exp( —4a)([exp( —2P)]pp
h(u

—
[~xv (

—2P)(oa) ~ (i4)

Ap

N
1—hu(exp(4a) [exp(2(9)]pp
4
+ exp( —4a) [exp( —2P)]pp)

1 iU in iU inz b2p——hler+ E —p,p — ' + ' +
2

'
2 4 iUi

——' & gz(i) *+cq,

Here 0 denotes the origin and b its nearest neighbor site.
It is clear that the renormalized correlation U, could be
negative, and in what follows we would concentrate on
the case that U, & 0. Also, it should be noted that a
new factor exp( —4a)([exp( —2P)]pp —[exp(—2(9)]ps) has
appeared in the exponent of the usual reduction factor.
As long as a P 0 and P;z g 0, the band-narrowing effect
of phonons would be modified and the ground-state en-

ergy of the interacting system lowered. If a = P;~ = 0,
i@„)will return to the vacu»m state ivac), whereas if
only P;~ vanishes, i%~) will reduce to Zheng's squeezed-
state ansatz. Therefore, our variational wave function by
construction gives a better representation of the ground
state of the phonon subsystem.

Thus after integrating out the phonon degrees of free-
dom our effective Hamiltonian is the negative-U Hubbard
model. Here we shall consider the weak-coupling limit of
the model (since we expect that U to be smaller than
the electron bandwidth) where a mean-field approach to
obtain the ground state of our model system may be ap-
plicable. Taking advantage of the results of Ref. 7, we can
write directly the expressions for the ground-state energy
(Op) and the gap (hp) equation of the superconducting
state of the effective Hmniltonian JI,p as follows:

Op

N
1= —h(d(exp(4a) [exp(2P)]pp4
+ exp( —4a) [exp( —2P)]pp)

1 iU, inz nzrID (2gD'(
2 4 2 giU, iy

'

(ii) 6p ——0:

E, —pp — ' ——(1 —n)rID,
iU, in

2
(24)

Op 1= —hu(exp(4a) [exp(2(9)]pp

+ exp( —4a) [exp( —2(9)]pp)
1 iU, inz nzrID

2 4 2
(25)

For the sake of simplicity, we shall ass»me here P;~ =
P ps&,.&

8~g, where the sum is over the nearest neighbor
sites around the site i. In other words, P;~ is nonzero
only if i and j are nearest neighbors. With this choice
of P;~, we are left with only two variational parameters
r = exp( —2a) and P. The optimal values of r and P are
determined by the variational approach, that is, when
the energy Op arrives at its stable minim»m. Numerical
results in some special cases will be given in the next
section.

analytical results can be obtained, and it can be easily
verified that the solutions of Eqs. (15)—(17) are given by
(i) b,p$0:

E —yp — = (1 —n)rID coth
i i, (21)

iU, in (2rID )
2 &IU.I)

'

Qn(2 —n) rlD

sinh(2~D/iU. i)
'

1 ) E(k)

2+ Q2

1 ~ . iU, ]Ep
Lp ——

2N E

where

iU, in + gE'~,

Eg = T) exp(ik r~),
~(p)

E(k) = E, —pp— (is)

with P.
&p&

denoting the s»m over the nearest neighbor
sites around the origin. Clearly, Lp ——0 is a trivial solu-
tion of Eq. (17). Assuming a square density of states of

III. RESULTS AND DISCUSSION

The best estimates for the energies are obtained by
adjusting the variational parameters a and P so as to
minimize Eqs. (23) and (25). Since the minimized values
of the energies would be achieved at nonzero a and P, nu-
merical calculations are needed to determine the optimal
values of the variational parameters. For convenience, we
shall set the energy»~it such that D = 1 in the following.

In Fig. 1 we show the energy vs P for the same set
of parameters as those in Fig. 1 of Ref. 10. For each
value of P we let 7. vary to minimize the energy; the
values at P = 0 correspond to the result of Ref. 10. The
variational calculations have been performed for both a
square lattice and a simple cubic lattice. Et is clear that
keeping a finite P lowers the energies in both cases:
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(i) square lattice:

Op(Ap ——0) = —0.04767 at (7 = 0.4332, p = —0.06855),

Op(b, p g 0) = —0.04795 at (7 = 0.4337, p = —0.06850);

(26)

(ii) simple cubic lattice:

Op(b, p
——0) = —0.04500 at (7 = 0 42.78, p = —0.04380),

Oo(b, o P 0) = —0.04531 at (r = 0.4295, P = —0.04375); (29)

Again, this shows a considerable correction to Zheng's re-
sult (b = —0.000 35) even though both are of the same or-
der of magnitude. Furthermore, if only the conventional
small polaron approximation is used, i.e. , a = P = 0, we

would have 8 = —0.04, which is a hundred times larger
than the value in Eq. (30) and is too large to be a correct
condensation energy.

In Fig. 2 the optimal narrowing factor rl(b, o g 0) is
plotted as a function of J and n. Figure 2(a) indi-

-3.8- '.

Simple cubic lattice

L A.2-
'

~

-4.6— Square laNce

and that the reduction is as much as 12% for simple cubic
lattice and 18% for square lattice. Thus, the phonon cor-
relations are important and have to be accounted for to
obtain a good estimate of the ground-state energy. The
nonzero gap function b, o takes the value of 0.03020 for
the square lattice and 0.03123 for the simple cubic lat-
tice, whereas Zheng's estimate gives b,o ——0.033 14. From
the minimized energies given above, the superconducting
condensation energy can be determined as follows:

Op(Ep g 0) Op(b, p
——0)

N N
—0.000 28 for square lattice,
—0.000 31 for simple cubic lattice.

& )-
E I 2+~2

(())('E(~)I+~I\
tanh

)

I

cates that when the electron-phonon interaction becomes
stronger, ri decreases but its rate of decrease is much
slower than the usual Holstein factor, which is repre-
sented by a dotted curve in the inset. In Fig. 2(b) it
is shown that unlike the usual Holstein factor which is
independent of n (dotted curve in the inset), )l.increases
with the population of electrons. These results are con-
sistent with Zheng's (dot-dashed curve). Also, in both
cases our estimates of )1 is much larger than the usual
Holstein factor; in other worcb, the suppression eHect
is much more alleviated in our correlated squeezed-state
ansatz approach and in Zheng's approach as compared to
the Holstein's result. This weakening mechanism of the
narrowing effect suggests a much smaller effective mass
of polarons. Furthermore, in both cases our results show
considerable improvement with respect to Zheng's.

In Fig. 3 the nonzero gap function ho/hu is plotted
against J and n. Figure 3(a) indicates that b()/ha) in-
creases with the strength of the electron-phonon inter-
action, just as we might expect. On the other hand, as
shown in Fig. 3(b), b,o/her decreases on increase in the
population of electrons. This type of behavior for b,o

arises because )7(b,o g 0) increases when the population
of electrons increases, as can be seen from Eq. (22). In
both cases Zheng's results are also plotted for compari-
son. It is clear that our results are not only consistent
with his, but also show considerable improvement.

Now we shall try to estimate the critical tempera-
ture T, based upon the above results. In the finite-
temperature region the method of Robaszkiewicz et aL, ~

can be applied to derive the gap equation &om the effec-
tive Hamiltonian H, fr in Eq. (13):

%.8-
I ~ I

l
I I ~

l
I I I

l
I I I

l
I I I

with

-0.08 -0.06 %.04 -0.02 0.0
E(&) = &. —~(T) — + n-Eg

[U,
'

/n
(32)

FIG. 1. Minimum energy vs P in the case of h&u = 0.08,
J = 0.3, U = 0.3, and n = 0.8. (a) Simple cubic lattice: the
dotted curve is the result for Ao ——0, and the dashed curve
for nonzero 4(). (b) Square lattice: the dot-dashed curve is
the result for Ao ——0, and the solid curve for nonzero Ao.

E(I )n=1 ——)
2++2

(E)/E()I)I + AI\
tanh

2
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FIG. 2. (a) rl(AO g 0) plotted against
J for h~ = 0.08, U = 0.3, and n = 1.
(b) g(b, o g 0) plotted against n for hu =
0.08, U = 0.3, and J = 0.3. The solid curve
is our result for the square lattice, and the
dashed curve for the simple cubic. Zheng's
result is represented by the dot-dashed curve.
The dotted curve in the inset denotes the
usual Holstein reduction factor.
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Holstein reduction factor
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0.0
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l
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0.6 0.7 0.8 0.9 1.0

where p(T) is the chemical potential, P ~ = k~T, and
is abbreviated from ri (b,o g 0). Obviously, finding

solutions to these equations is a formidable task. How-
ever, if we are interested in the critical temperature T,
only, we can solve these equations without much diKculty
because b, -+ 0 when T ~ T,. When P ~ = P, ~ = k~T„
Eqs. (31)—(33) become

Using the simplified density of states in Eq. (20), it can
easily be verified that Eq. (34) can be rewritten as

where

. iV. i „&P.E(k) l
2N E(k) ~

2

where

E(k) = E, —IJ(T) — ' +rI Eg
iU, in

and

(P.E(k) in= 1 ——) tanh
N ( 2 )

(34)

(36)

Il, =E, —IJ,(T,)—iU, in

=(1—n)q D
1 1 —exp( —nP, ri D)

p ' 1 —exp[ —(2 — )pqD])',(3s)

It is clear that this equation cannot be solved analytically,
and we have to resort to numerical calculations.

Numerical results for the critical temperature T vs J
and n are shown in Fig. 4. As shown in Fig. 4(a), T,
is getting higher when J increases; in other words, the
stronger the electron-phonon interaction is, the higher
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I
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FIG. 3. (a) As/hu plotted against J for h~ = 0.08, U =
0.3, and n = 1. (b) 40/h~ plotted against n for h~ = 0.08,
U = 0.3, and J = 0.3. The solid curve is our result for
the square lattice, and the dashed curve for the simple cubic.
Zheng's result is represented by the dot-dashed curve.

FIG. 4. (a) keT, /hu plotted against J for hw = 0.08,
U = 0.3, and n = 1. (b) RENT, /hu plotted against n for
her = 0.08, U = 0.3, and J = 0.3. The solid curve is our
result for the square lattice, and the dashed curve for the
simple cubic.

the critical temperature. This is consistent with what we
might expect. On the other hand, Fig. 4(b) shows that
T, decreases when n increases Rom 0.6 to 1.0, which is
qualitatively different from the results of Robaszkiewicz
et a/. According to their work, T, should increase when
n increases &om 0.6 to 1.0. The reason for the decrease
in T, in our work when n increases is the increase in rI

in the same n range.
In summary, using the correlated squeezed-state ap-

proach we have investigated the ground state of an
electron-phonon system with strong electron-phonon in-
teraction and a weak on-site Coulomb repulsion. The
crux of our treatment is to decouple the electron and the
phonon subsystems approximately by introducing a vari-
ational correlated squeezed-state ansatz for the phonons.
This correlated squeezed state has the virtue that the
nonlinearity of the interaction between different phonon
modes induced by the linear coupling with the electrons
are being taken into account beyond the Hartree approx-
imation. Then ass»ming the renormalized on-site elec-
tron correlation of the effective electronic Hamiltonian to
be attractive, we have applied the weak-coupling mean-

field theory treatment to obtain the ground state of the
system, which is a superconducting pairing state. With
optimal values of the variational parameters the corre-
lated squeezed state will by construction yield a ground-
state energy lower than those obtained in previous stud-
ies. This means that our variational ansatz is more stable
as the ground state of the system. Furthermore, our vari-
ational study shows that in the correlated squeezed state
the polaronic reduction effect of phonons is much more
alleviated, and thus the mass enhancement inherent to
the polaron effect is noticeably weakened. This weaken-
ing of the reduction effect should, in turn, affect other
physical properties of the system; for instance, it does
suggest that in the strong-coupling limit, where the su-
perauidlike bipolaronic superconductivity is supposed to
occur, higher critical temperatures for superconductiv-
ity can be attained by means of the correlated squeezed
polaronic state.

Besides, in our theoretical treatment of this system,
although an approximate decoupling of the electron-
phonon interaction is assumed, the interplay between the
two subsystems is still being considered within the mean-
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field approximation through the adjustable squeezing pa-
rameters a and P. The optimal values of a and P, which
describe the state of phonons, are dependent upon the
state of the electrons and the strength of the electron-
phonon interaction. This situation is completely diferent
from the small polaron case, where the phonon subsys-
tem is in the vacuum state. Hence, we believe that our
correlated squeezed-state approach is necessary for deal-
ing with strong electron-phonon interacting systems &om
first principles.

As a final remark, we would like to mention a re-
cent numerical analysis of the excitation spectrum for
the two-site polaron problem: electrons hopping between
two diatomic molecular units. In this study it has been
shown that in general the eigenspectrum of the single-
polaron problem cannot be obtained by simply renor-
malizing the electron hopping integral, T -+ T, = riT
[see Eq. (14)], as in the conventional small-polaron ap-

proach; in other words, polarons are no longer describable
in terms of quasiparticles having a well-defined dispersion
like that in Eq. (18). Also, for sufficiently strong electron-
phonon coupling, the conventional small-polaron theory
can no longer adequately describe the system. Of course,
these results are &om the study of a small cluster of
two diatomic molecules only; nevertheless, they do shed
doubt on the conventional assumption of the existence of
single-polaron band states for the case of sufficiently large
electron-phonon coupling. As a result, one might need a
new approach to treat the system more adequately.
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