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Superconducting networks and superfluid films in two dimensions are often described by a the-
oretical model in which the unique microscopic variables are phases. Among these models the XY
model with Villain’s interaction potential can be mapped exactly onto a lattice Coulomb gas. This
is well known, but several questions still have no clear answers: First, what is the meaning of the
charge of the Coulomb gas in terms of the original variables of the XY model? Second, how can the
helicity modulus be expressed exactly in the Coulomb-gas representation on a finite torus? In this
paper we answer these questions. The mapping onto a lattice Coulomb gas is done in a way that
differs from the usual one. This mapping is applied to a phase model whose partition function has
an identical mathematical structure as the one of the XY model with Villain’s interaction. For this
phase model, contrary to the XY model, the charges of the Coulomb gas describe indeed exactly the
topological charges as we can define them in terms of the phase variables. However, this Coulomb
gas contains an additional polarization energy and two additional fictitious variables accounting
for the specific topological character of the torus. The helicity modulus is exactly the inverse of a
dielectric constant which can be defined as the linear response to an external uniform electric field,
even on a torus. The meaning of the Coulomb-gas representation is also discussed in terms of the
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original variables of the XY model.

I. INTRODUCTION

The two-dimensional (2D) XY model can describe var-
ious superconducting networks,! in particular Josephson
junction arrays (e.g., Ref. 2) which correspond to a co-
sine interaction potential between the phase variables on
neighboring sites. It seems also to be relevant for the
theoretical understanding of superconductors with high
critical temperature (e.g., Refs. 3 and 4).

In 1973 Kosterlitz and Thouless® decoupled the XY
model into two subsystems, approximating the lattice by
a continuum. Each state was given by a topological con-
figuration (configuration of vortices) and small amplitude
fluctuations around the vortices. The fluctuation part
describes the linear spin waves of the system, and the
topological part was mapped onto a Coulomb gas.

In 1975, Villain® proposed an approximation for the
cosine interaction potential that has been used rather of-
ten since then. José, Kadanoff, Kirkpatrick, and Nelson”
based an exact decoupling into a spin-wave part and a
Coulomb-gas part on this approximation. However, in
this case, the charges of the Coulomb gas do not corre-
spond exactly to the topological charges as they are de-
fined in the original variables. Moreover, the spin waves
do not correspond to the fluctuations around a local min-
imum of the energy.

The crucial quantity for describing the behavior of the
XY model system as a function of the temperature is the
helicity modulus I', whereas for the Coulomb gas the rel-
evant quantity is the inverse dielectric constant 1/e. The
helicity modulus was introduced in 1973 by Fisher, Bar-
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ber, and Jasnow® in order to define the superfluid density

ps of the superfluid helium film. The theoretical link be-
tween p, and the dielectric constant 1/ of a Coulomb gas
has been studied, in a continuum version and in different
ways, principally by Nelson and Kosterlitz, Myerson,!®
and Minnhagen and Warren.!! The definition of ' has
been extended to the XY model by Ohta and Jasnow!?2
who consider the cosine potential at low temperature.
They also gave a link between I and 1/¢ at higher tem-
perature using Villain’s interaction instead of the cosine.
Later, Shih, Ebner, and Stroud!3 expressed the helicity
modulus of the XY model in terms of thermodynami-
cal averages. Their expression has been extensively used
in Monte Carlo simulations of the XY model with pe-
riodic boundary conditions imposed on the planar spin
variables.

Several aspects are still unclear. First, the integers mp
introduced by José et al.” are arbitrary numbers (even
if the angles of the spins are restricted to the interval
(—m,m]). They are called “quantum number for a vor-
tex excitation.”” However, the topological charge qg of a
vortex as we can define it in terms of the original vari-
ables takes only values in the set {—1,0,1} for the square
lattice. Even if in practice the values of the mp’s are of-
ten restricted to this set, mp and gr do not have exactly
the same meaning. This fact has been pointed out by
Savit,'* but the meaning of the charge of the Coulomb
gas has not been given in terms of the original variables.

Second, the influence of different boundary conditions
has not been carefully studied. Indeed, the periodic
boundary conditions in terms of the original variables
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have not been taken into account in the calculations of
Ref. 7. However, the calculation of the helicity modu-
lus as expressed in terms of thermodynamical averages
depends on the boundary conditions, and it is crucial to
calculate it with boundary conditions in the original vari-
ables. Fisher et al.* have considered an additional term
in the Coulomb-gas Hamiltonian taking into account the
periodic boundary conditions. Their Hamiltonian rep-
resents correctly the XY model (with Villain’s interac-
tion) for fixed boundary conditions, but their Coulomb
gas misses some variables in the case of periodic ones.

Third, a well known result in statistical physics al-
lows one to express the dielectric constant in terms of
the quadratic average of the polarization. As the helic-
ity modulus of the XY model can be defined on a torus,
what is the polarization of a configuration of the asso-
ciated Coulomb gas in such a manifold? Moreover, if
the twist corresponds to a uniform electric field, how can
we explain that the helicity modulus can be defined as a
linear response to a twist since we know that the linear
response of a Coulomb gas with periodic boundary con-
ditions to a uniform electric field is not defined (¢ — 00)?

The problem of the boundary conditions of the 2D
Coulomb gas is well known and has been studied by
Choquard, Piller, and Rentsch,'® who found a depen-
dence of the dielectric susceptibility on the boundary
conditions even in the thermodynamic limit.

Thus, the aim of this paper is to clarify the Coulomb-
gas representation of 2D XY models whose unique mi-
croscopic variables are phases. For this purpose, in Sec.
II A we consider a particular version of the XY model
where the planar spins are defined on a square wire net-
work, not only at the nodes but at each point along the
wires linking nearest neighbor nodes. We will call this
version the “wire model” and we will keep the denomina-
tion XY model for that involving spins only at the nodes
of a lattice. Experimentally, the wire model describes a
superconducting wire network in the case where only the
phase of the macroscopic wave function (in a Ginzburg-
Landau theory) is relevant. It would also correspond to a
superfluid film in a periodical porous medium as studied
by Gallet and Williams.'® We will show that the partition
function of the wire model is mathematically identical to
the one of the XY model with Villain’s interaction po-
tential. Then we map the wire model onto a Coulomb gas
on a torus but, instead of following the way of Ref. 7, we
shall use the same approach as Kosterlitz and Thouless,’
but for the discrete case and with periodic boundary con-
ditions. We shall see that in this model the charges of
the Coulomb gas represent indeed the topological charges
as we can define them in the original variables. We find
that the Coulomb gas involves an additional polarization
energy and two additional fictitious variables accounting
for the periodic boundary conditions. In Sec. IIB we
turn to the XY model. We define a useful bond vari-
able and the topological charge for the generalized XY
model. Here, a generalized XY model is one in which
an interaction potential different from the cosine is used.
Then we compare it with the wire model, considering first
Villain’s interaction and second the piecewise parabolic
potential. The interest of the second one lies in the fact
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that it is Villain’s interaction in the limit of low tem-
peratures and it permits one to split the Hamiltonian
exactly into a topological part and a spin-wave part. In
Sec. IIC we generalize the results briefly to the frus-
trated case. (Experimentally the frustration represents a
transverse external magnetic field applied to a supercon-
ducting network.?) The results of this generalization will
be used in the following Secs. III and IV.

In Sec. III we give the meaning of the charge of the
Coulomb gas associated with the XY model in terms of
the original variables. For this purpose, we consider the
second order variation of the free energy with respect
to frustration terms around two given plaquettes. The
derivation is performed in two different ways in Sec. III
A in the original one and the Coulomb-gas representa-
tion, respectively. In Sec. IIIB, we consider the two
different interaction potentials mentioned above and the
usual cosine interaction corresponding experimentally to
Josephson junction arrays. The calculations of Sec. IITA
will allow for an interpretation of the charge of the asso-
ciated Coulomb gas in terms of the topological charge as
it can be defined in the original variables.

In Sec. IV we first recall the notion of helicity mod-
ulus T'. In Sec. IV A, for the wire model on a torus we
transform I into the inverse dielectric constant 1/¢ of a
Coulomb gas whose charges represent exactly the topo-
logical charges. We will see that I' can indeed be repre-
sented by the second order variation of the free energy
of the associated Coulomb gas with respect to a uniform
external electric field. In Sec. IV B we turn again to the
XY model and compare I' in the two different represen-
tations.

This work establishes in an exact way the formal anal-
ogy between the XY model and the Coulomb gas on a
2D torus.

II. MAPPING ONTO TWO-DIMENSIONAL
COULOMB GAS

In Sec. IIA we begin to define the wire model. Then
we map this model onto a lattice Coulomb gas. In Sec.
IIB we turn to the XY model. We generalize it in the
sense that we consider other interaction potentials than
the cosine. We shall discuss how to apply the results of
Sec. ITA. In particular, we shall explain why we do not
find the same result as in Ref. 7. In Sec. IIC we briefly
generalize to the frustrated case.

A. The wire model

In this model, a planar spin S; determined by a phase
0; € (—m,n] is associated to each point indexed by I of
a square wire network (cf. Fig. 1). More precisely, a
state of the system is described by a continuous and dif-
ferentiable function S;, defined on a regular network of
horizontal and vertical straight lines. L will stand for
the linear size and N = L? for the number of nodes. For
simplicity, the lattice constant is put equal to 1. The
Hamiltonian of the system is
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FIG. 1. In the wire model a state is described by a contin-
uous function S; defined on the sites (r and r’) and on each
point along the bonds linking them.

J 95
- 2/dl(al), )
where J is the coupling constant.

For the description of a wire superconducting network,
the phase variation is proportional and opposite to the
supercurrent. However, it has to be noted that, for such
description, Hamiltonian (1) should be completed by a
term accounting for a charge energy related to the diver-
gence of the supercurrent. But every computational step
in this paper could be performed with such a term.

Let us consider an oriented bond 77/, linking a node r
of the lattice to a nearest neighbor r’ and parametrized
by ! € [0,1]. Then let us define the bond quantity ¢,
as the phase variation from r’ to its nearest neighbor r:

" (s 85,
fors = / dl (51 3l)z, ()

where 2 is a unit vector perpendicular to the plane of the
system. Thus J¢,, represents the supercurrent from r
to r'. We can also define integer bond variables p,,. such
that

¢,..,.r = 9,. — 01-' + 27rprr’7 (3)

where 0, and 6, correspond to the spin angles on the
nodes r and r’ and belong to the interval (—m, n|. In fact

S=(cos8,sinf) and (.5'1 X BSI/Bl)z 06;/0l except where
0; runs across the border of the interval.

The phase on this bond can also be expressed as a
continuous scalar function 9¥; € (—o0, ) (equal to 6; +
2mp; where the integers p; ensure that ¥; is continuous)
and can be written as follows:

"-91 = 61:0 - l¢r1" + Cl- (4)

The second term on the right hand side represents the
variation of ¥ along ! that minimizes the energy for a
given ¢, or for given 6,, 8,, and p,... The quantity ¢;
is the fluctuation around this configuration leaving un-
changed the given site and bond variables. It is a con-
tinuous and differentiable function in the interval [0, 1],
such that (o = {; = 0.

The calculation of the energy H,., for the bond rr’

gives
_ oG
H.. = / dl— ( 81)

J 2
—2" (¢r1") . (5)

The contribution of {; to the partition function of the
system is trivial (identical for each bond and independent
of the site and bond integer variables). In the following,
we shall no longer consider it.

It has to be noted that the equality .§=(cos 0,sin0)
does not permit one to replace S by 6 in Hamilto-
nian (1) because of the discontinuity occuring when 6
runs across the border of the interval. Nor can we put
§=(cos 9,sin), because that would impose S being a
gradient of a continuous scalar function and, therefore,
would not permit a nonzero winding number of the phase
on a closed contour on the lattice:

?{ dl‘”‘ =

Indeed ¥ cannot, in general, be defined continuously on
a closed loop. We can express S by ¥ only on an open
path on our lattice.

Since we can neglect the internal fluctuations in the
bonds, a state of the system can be described either by
the variables 6, € (—,n] and p,~ € Z or by the variables
@rrit € (—00,00) [definition (3)] but, in this last case, two
types of constraints have to be imposed on these bond
variables. The first of them is, for each plaquette R,

Z @rpr = 2TqR, (6)
OR

where the notation ), means that the sum is taken in
the clockwise direction over the bonds surrounding the
plaquette R on the lattice. The quantity gg is an integer
representing the topological charge on that plaquette. In
terms of the first kind of variables, gr is the winding
number of the phase around the plaquette R and is given
by qr = Y grPrr. The definition of gr yields also the
following property:

2y qr= thw VD, (7)

ReD

where the sum on the left hand side is taken over the
plaquettes inside any domain D on the lattice and the
one on the right hand side over the bonds of its boundary
9D in the clockwise direction.

The second type of constraint arises from the periodic
boundary conditions imposed on the 6, variables. To
simplify their expressions we introduce the vector field
J»‘, = (Pzr, Pyr) representing the two ¢, variables as-
sociated to the bonds rr’ pointing, respectively, in the
positive horizontal and vertical directions from the site
r. We can write them as

Z Gor = —2Tqza , Z ¢yr = _27T‘Iya ’ (8)

r€lza r€lya

where g, and gy, are integers and the two sums are taken
over the sites of an arbitrary horizontal line (r € l,,) and
a vertical line (r € l,,), respectively. The integer g, is
the winding number (defined in the positive orientation)
of the phase along the arbitrary chosen horizontal line.
It is equal to the sum of the p,,/’s over that line (keeping
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r on the right hand side of r’). It has to be noted that
the constraints imposed only on one horizontal and one
vertical line are sufficient to satisfy the periodic boundary
conditions on the 6,’s on all other lines. Indeed, from
property (7), the sum of the ¢.,’s along another line ,;
is equal to —2mgeq + D pcp qr, Where D is the domain
bounded by the two lines, considering the line /., as the
lower boundary of the domain D.

By definition, to each state {6,,p,, } corresponds one
state {¢,} (the latter notation implying that all the
constraints are satisfied). But this mapping is not one to
one because we have to know 8, at one site to calculate
the other 6,’s and the p,., is starting from a state given
by {¢r~}. Therefore, there is a one-to-one correspon-
dence between each set {¢,,} and an equivalent class of
sets {0, prr }, two of them being equivalent if they differ
only by the same angle at each node. Then the partition
function can be written either as

Z = Z /_:[d@]exp

J 2
=B% D (6 = br + 2mprr)

{p,rr} (rr')
(9)
or as
2= [T T (- o
{ar:9aa} "~ R OR
<[] ¢ (27rqaa + ) ¢m)
a r€laa
X exp —,Bi Z ¢, (10)
2 T™r b

(re!)

where the two products take into account the constraints
(6) and (8) and the first sum is taken over all neutral
topological configurations {gr}. Indeed, the periodical
boundary conditions in the ¢,,’s along with the prop-
erty (7) imply the neutrality property of the topological
configuration {gr}:

> qr=0. (11)
R

The ¢,,’s represent gauge invariant phase differences.
For the superfluid films, the vector field b = (Pzrs Dyr)
stands for the superfluid flow (see, for example, Refs. 11
and 16. It has to be noted that our boundary conditions
restrict the gauge invariance as we shall see in Sec. IIC.
In order to map the wire model onto a lattice Coulomb
gas, the partition function (10) in the bond variables ¢,.,/
will be used.

Let us fix a neutral topological configuration {qr, gaa}-
The variables ¢, can be expressed by their deviation
¢ — @y from the minimum energy configuration {¢2.}
(because of the positive quadratic form of the Hamilto-
nian, the latter quantity exists and is unique):

(brr’ = ¢21-' + ©r — @pr. (12)
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So there is a one-to-one correspondence between equi-
librium states {¢%.} and topological configurations
{qR;4aa} satisfying the neutrality property. Moreover,
for a given set {qr,gaa}, We have a one-to-one corre-
spondence between each state {¢,,.} (satisfying the gg’s
and the go,’s) and an equivalent class of sets {¢,} (two
of them being in the same class if they differ by the same
quantity at each node).
The Hamiltonian of the system becomes

J 0 2
H= 5(2;)( rr! + or _(Pr’) . (13)

Since the set {¢?,} represents an equilibrium state, we
have at each node r

> o =0, (14)

where the notation +r means that we sum over the four
bonds linking r to its nearest neighbors. This condition
corresponds to dH/80, = 0. Therefore, the sum of the
cross terms in @2, ¢, in Hamiltonian (13) vanishes and
we have

J 2, J 0 \2
H=§;§%,%o+§§¥¢m- (15)

The system is decoupled into two subsystems. The first
one represents the fluctuations around a topological con-
figuration and has the form of a spin-wave Hamiltonian.
The second one is the Hamiltonian H, depending only
on the topological charges:

o= Y (¢%)" (16)
(re")

We now want to express (16) explicitly in terms of gr
and q¢uq-

First of all we need to show the following property for
any equilibrium state {¢2,.}:

g
> =1 (17)
r€l.; Y L

where the sum is taken over the sites of any horizontal
line I,; [do not confuse Eq. (17) with Eq. (8), cf. Fig. 2]
andoy =3, ¢2r. Indeed, summing the left hand side of
Eq. (14) over the sites r on the line I,; gives

N e L

|
|
1
|
|
i
|
|
J

FIG. 2. The bonds marked in the dotted line correspond
to those that are considered in Eq. (8) with lzqa=l,;. Those
in the bold lines correspond to Eq. (17).
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2t D =0

€l r€lzj-1

So the sum of Eq. (17) is the same for each line I,;.

Then we can turn to the dual variables 1r defined
on the plaquettes of the torus, with periodic boundary
conditions, such that

0’2
o =tYr_g3—Yr+ Iz’
o
21- = ¢R - "/’R—i + L_Za (18)

where R represents the upper right plaquette of the site r.
Thus we can calculate all the 1 g’s (corresponding to any
equilibrium state {#2,.}) using definition (18) and choos-
ing an arbitrary value ¥ for one plaquette R. When we
represent a state by its ¥g’s the equilibrium conditions
(14) are automatically satisfied. Note that the introduc-
tion of o, and oy is necessary, otherwise the sum of the
¢ar’s over the whole lattice could only be equal to zero
for any set {1g} satisfying the periodic boundary condi-
tions.
The Hamiltonian H, becomes

Hch = Hchl + Hch2 (19)

with
Har =5 Y (4r—vn)’ (20)

chl 2
(RR')

and
Ha = T (62 40 21
ch2 = ﬁ;(ﬂz + 0y)- (21)

The sum of the cross terms 0, (g —%r') vanishes because
of the periodic boundary conditions in the ¥ z’s. Now we
want to express the two terms in (20) and (21) explicitly
by the topological charges. We begin with Hg,; which
can be written as

J
Hy, = 5 Z YrRMRrr YR, (22)
RR'
where
4 ifR=R,
Mpgr ={ —1 if R and R’ are nearest neighbors,

0 elsewhere.

Note that the matrix M represents the discrete Laplacian
in two dimensions (with opposite sign). In the following
% stands for the vector representing {¢)g} and q for {qr}.
We remark that

My = 2mgq, (23)
P'M = 2nqt. (24)
Replacing M by MMM,

Heyy =2n%Jg*M™1q. (25)

In order to link this calculation to the usual procedure
in a continuum, let us consider the vector field q:‘:, =
(¢zr, dyr) in a lattice with free boundary conditions. So
the condition (14) reads V-¢, = 0. Therefore there exists
a scalar field ¥ g such that $, =2z X ‘71/)3. Then writing
the identity 2‘721&}; =V x (2 x 61/13) and considering,
in agreement with our definition of the gr’s, that vV x
¢_; = —22mqp, we obtain expression (23). Note that for
periodic boundary conditions, we should also introduce
quantities equivalent to o, and o, as in Eq. (18).

We shall call G the inverse matrix M~!. G stands
for the discrete Green function of the dual lattice. But
M~ does not exist because the normalized eigenvector
Vo = {Vor} with Vor = 1/v/N,VR has a zero eigenvalue
[note that such an eigenvector is unique regarding (20)].
In order to solve this problem, we replace M by M =
M_—cP in (22), where P is the projector on Vo (P=VoV{)
and c is any nonzero number. Then M, is regular:

Hepy = 2m2 JY M M Mty — tcPp. (26)

Instead of Eq. (23), we have M.y = 2mq + cPv and
Pt M, = 2nqt + cPyt. Thus

Hg,y =272J¢"M g + nJcPyt M 1q
+7Jgt M 1cPy + cPY M 'cPy — ¢icPy. (27)

The cross terms in % and g are equal to zero because
the eigenvector cPvy is composed of equal components
and m satisfies the neutrality property (11), and the two
last terms are equal with opposite signs. Expression (27)
becomes

Hepy = 27!'2thch, (28)

where G.=M_ ! for any nonzero c. We can diagonalize
the (symmetrical) matrix G. by developing the vector 1
in plane waves. The normalized eigenvectors of M, are
identical to those of M and their corresponding eigen-
value is the same except for k=0, for which it becomes
c. For k # 0, the normalized eigenvectors and the eigen-

values are
Vi = {—l—e—i“‘} (29)
vN ’

Ak =4 —2cosk, —2cosky, (30)

where k = (k., ky) is a reciprocal vector of the first Bril-
louin zone. Then we have

1 ; o1
Gerpr = il ik-(R—-R) . 31
RR' = C+ N ge:o € P (31)

We can choose the value of ¢ (that we call o) in order
to let vanish the diagonal matrix element G.gg:

1 1
C()E—'NZE. (32)

Let us call G’ the matrix associated with cp:
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o1 ik-(R—R) 1 Then we use Eqgs. (7) and (8) and choose the first hor-
Grr = N Z(e - 1))‘_1( (33) izontal line as the reference to define the topological

k#0

Hamiltonian Hc,; alone corresponds to the charge Hamil-
tonian given by José et al.” for the XY model with Vil-
lain’s interaction, but who found it in a different way.
Their statement will be discussed in Sec. IIB. In the
limit of large systems, G’z ., can be well approximated by
a logarithmic function for any couple (R, R') with R#R'
(exact in the limit of large distances | R — R’ |):

Glrp (L = ) ~ G"(R — R')

1
=-5-(n|R-R'| +3In8+7), (34)

v being Euler’s constant. This approximation [with
G"(0) = 0] can be used to estimate G'zp/ (L) for finite
L. For this purpose we consider an L-periodic neutral
configuration of the infinite system. The energy H,; for
an L x L cell becomes

Hepy ~ 21%J Z > mg[G" (R - R’ + Ln)
n.ny RR'

+c(n)|mg, (35)

where R and R’ run over the plaquettes of an L x L cell
and (ng,ny)=n over all integer pairs. Since the configu-
ration is neutral any function c(n) can be added without
changing the right hand side of Eq. (35). Thus we chose
¢(n)=—G"(Ln) and find the convergent estimation

re/(L) =Y [G"(R—R'+Ln) - G"(Ln)]. (36)
n

Now we turn to H 2. In order to get o4 in terms of
the charges we denote ¢, and gr by ¢q:; and ¢;; where
7 and j (running from 1 to L) indicate the coordinates of
a site 7 or of the lower left site of a plaquette R (cf. Fig.
3). We write 0, in terms of differences on consecutive

lines:

L-1 L L
o = Z¢¢ij = Z J (Z bzij — Z ¢zij+1)
ij ji=1 =1 =1
L L L
+L (Z baiL — ¢m~1) + LY dair.
=1 =1 =1

(37)

-1
I

I
-1
|

I

'

(o}

=1
i=1 i=Li=1

FIG. 3. Illustration of the coordinate system and of
the notation. The full (or empty) circle indicates a pos-
itive (or negative) charge. It can be written g¢3z=1,
g31=(1/27)(Py31 + =32 — Pya1 — Pz31)=—1.

charge ¢, [cf. Eq.
boundary conditions:

(8)] associated with the periodic

L L
Or = 27 Z] Z qij + qul . (38)
ji=1 =1

In the same way in the other direction

oy = =27 Zizqij + Lgy | - (39)

=1 j=1

Since the system is neutral, the charges can be grouped
by neutral pairs of unit charges. Considering each pair
such that the positive charge is on a plaquette R, and
the negative one on a plaquette R_,

oo =—2m | 3 [i(R+) —j(R)+Lger | . (40)

pairs

Now we define the suitable topological polarization vector
P=(P,, P,) for the case of periodic boundary conditions
in the 6,’s:

P, = )" [i(Ry) —i(R-)] + Lgy1 ,

pairs

P,= 3" li(Ry) - 5(R-)] + Laa. (41)

pairs
So we have

0, = —27P,, 0y = —27F;, (42)

P\* (P,)\?
(7) + (%)
The above definition of the topological polarization re-
moves the ambiguity of the polarization of a neutral pair
of charges in a torus. The problem of the definition of
the polarization of a Coulomb gas with periodic bound-
ary conditions is well known. The problem arises as soon
as a little pair is considered in the system: is it indeed
a little pair or is it a very large pair comparable to the
linear size of the lattice? However, the variables of the
Coulomb gas associated with the wire model do not con-
sist only of local charges, but also of two global charges
corresponding to the periodic boundary conditions. And
these additional charges permit one to define the polar-
ization on a torus. Thus a definite neutral pair can cor-
respond to different polarizations as it can correspond to
a different topological configuration (not the same ga1).
For instance, the polarization of the pair in Fig. 4(a) is
equal to (1,3) whereas it is equal to (1, —2) in Fig. 4(b).

Since P does not depend on the choice of the two ref-
erence lines defining the two go;’s, we can also define
integer quantities ¢z0, gyo, Prz, and Py, independent of

and

Heyz = 2m%J (43)
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a) b)
- AL g /_A_l_\___ﬂ
0 \ 1 ]
[} | ] 1
1 5 0 7
\ |
! | 7
1 Y .
0 o] \ 4 o 1

FIG. 4. Two configurations with same charges qr, same
gyi’s (same gyq), and different g¢.;’s (different g..). (a)
P=(1,3); (b) P=(1,—2). In this example, all the ¢,..’s are
supposed to belong to (—,+x]. The numbers on the left of
each lattice are the values of the g.;’s [cf. Eq. (8)].

reference choices using the following equations:
P, = Prz 4+ Lgyo , Py = Pry+ Lqzo, (44)

where P,, and P,, are restricted to the interval
(—L/2,+L/2]). Thus the P,,’s are the contributions of
the charges gr to the polarization P and the g,o’s can
be considered as the global topological charges associated
with the torus topology. Another advantage of using gqo
instead of gq; is that for a given set {gr} the Hamiltonian
value is always minimum for (g0, g40)=(0,0).

In order to understand the link of the wire model on a
torus to a lattice Coulomb gas, we can use approximation
(36) and write

1 /
Hch = _5 E deRGeR' (ln | R-R I
R#R'

+Z(ln|R—R'+Ln| —In|Ln |))
n#0
2 P2
+ qunﬂ t7 2 (45)
R

with g¢.r = (2nJ)Y%gqp, P, = (20J)Y/?P, and p =
(1/4)In8 + /2.

Thus the wire model with periodic boundary condi-
tions in the 6,’s and p,,/’s can be represented by a lattice
Coulomb gas with the two additional variables g, and
gyo and a polarization energy. The topological charge
qr is represented by the number of electrical elementary
charges on that plaquette. The two additional charges,
and therefore the polarization, have no static electric
meaning. However, in a dynamic case, they can be in-
terpreted. Indeed, assuming that charges can only jump
(and be created or annihilated by pairs) on nearest neigh-
bor plaquettes, we could define an electric polarization
variation between two electric charge configurations by
summing elementary polarization variations. So the po-
larization would be defined by its variation from a ref-
erence state. In order to give such a polarization at an
arbitrary time the positions of the charges would not be
sufficient. We must in addition keep in memory the two
gao’s which ensure that the polarization in Eq. (44) is
indeed increased by elementary quantities. Those two
variables can be interpreted as the difference between
the total winding numbers of the positive charges and

the negative ones around each direction of the torus.

Finally, the partition function of the wire model with
periodic boundary conditions can be expressed exactly
as the product of two factors:

Z = ZswZch, (46)
with

o J
Zsw = / [de-] exp —ﬁ-z— Z (or — or)? (47)
oo (rr)

and

Zep =

Z exp {—ﬁzﬂ 2J [Z qrRGRRqR!

{9r,qa0} RR'
2
(5]} e
where the sum is taken over all topological configurations
{gr, 40}, and the ggr’s and the gqo’s can take any integer
values subject to the constraint of neutrality, -, gr=0.

The first factor is the partition function of the spin
waves representing the quadratic fluctuations around any
equilibrium state and each of those states corresponds to
a topological configuration. The second one can be rep-
resented by a neutral Coulomb gas on a lattice with two
additional variables and a polarization energy. The topo-
logical charge gg is exactly represented by the number of
electric charges on the plaquette R. The polarization due
to the two additional charges g0 could have an electrical
meaning only in a dynamical version of the Coulomb gas.

An alternative way to map exactly the wire model onto
a Coulomb gas without additional charges is to perform
the sum over go¢ in Z.,. But in that case we lose the
possibility to represent completely the topology of a state
by an electrical configuration.

A remark about fixed boundary conditions has to be
made: in such a'case, the Coulomb-gas Hamiltonian also
contains an additional term involving the square of a po-
larization, but the boundary conditions and one set of gp
determine completely the polarization and the topology
of a state.

B. Generalized XY model

We consider a generalized classical 2D XY model with
Hamiltonian

H=Y V(0 —6,), (49)
(rr')

where V is a 27-periodic, even, and continuous function.
The site variables 6, are restricted to the interval (—,x].
The partition function is

Z= /_ “dolew (V6 ~0.)).  (50)

(rr')

Again it is useful to rewrite the Hamiltonian (49) in bond
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variables ¢, defined as
Grrr =60, — 0 + 27p,r, (51)

where p,., is the integer determined by 6, — 6, such that
¢ar belongs to the interval (—m, 7). (For a consistent
definition of the ¢,,:’s, it has to be noted that if r’ is
on the left hand side or below r, definition (51) implies
¢pr € [—m,7).) Then the Hamiltonian expressed in these
variables becomes

H=> V(). (52)
(rr')
In order that Hamiltonians (49) and (52) agree, and for

periodic boundary conditions in 6,, the following con-
straints have to be imposed on each plaquette R:

z ¢1-1-’ = 27qu (53)
OR
and
Z Por = —2Tqaa. (54)
r7€laa

As for the wire model, the quantity gp represents the
topological charge of the plaquette R and g,, represents
the global topological charge due to the periodic bound-
ary conditions in direction a and is defined on an arbi-
trary line l,, of the lattice. But, contrary to the wire
model, the ggr’s and g4,’s are not arbitrary integers since
the ¢q,’s belong to the interval (—m, 7] and the topolog-
ical charges must satisfy the inequality

> ar

ReD

<wnLp, VD (55)

where the sum is taken over the plaquettes inside any
domain D on the lattice and Lp is the perimeter of D.
For instance, for the square lattice, the qg’s take values
in the set {—1,0,1}. gr=1 (—1) means that a vortex
(antivortex) is centered in that particular plaquette.

For periodic boundary conditions, we have a one-to-
one correspondence between each class of states {6,}
(where two states are in the same class if they differ only
by a same rotation of all spins) and each state {¢..}
satisfying the constraints (53) and (54). It is known that
the XY model can be mapped onto a Coulomb gas” us-
ing Villain’s approximation.® Actually, we shall see below
that the mapping has not been done correctly for periodic
boundary conditions in the original variables.

1. Villain’s interaction
The interaction potential proposed by Villain® is

Vo(A0) = -Tin ) exp (—ﬂiz”—(Ae + 21rn)2) + co.

n=-—oo

(56)
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In order that V, approximates some other given poten-
tial V, the parameter J, has to be fitted for each tem-
perature. This can be done by evaluating the value of
Jv = Ju(T') minimizing the mean quadratic difference on
a period (—m,n] of the two Gibbs factors, namely,

exp[—BV (AF) + ¢,

and
= Ty 2, .
exp[—BV,(A0)] = > exp —B5 (80 +2mn)? ) +c,
(57)
where ¢ and ¢, are normalization constants. In the

limit of low temperatures, the potential V, is a piece-
wise parabolic potential. For example, if we consider a
potential V(A#) with an absolute minimum at Af = 0
and such that the two first derivatives at A@ = 0 are
V'(0) = 0 and V"(0) > 0, then J, takes the value of
V"(0). On the other hand, in the limit of high tempera-
tures V,, becomes a cosine function.

Replacing V' by V, in the partition function (50), we
obtain

z=Y /_:[do,]

neer}

X exp —ﬂ% Z (0r — 0, + 270,00 )% | . (58)
(o)

Therefore the partition function of the XY model with
Villain’s interaction potential and periodic boundary
conditions is mathematically strictly identical to the one
of the wire model in Eq. (9).

However, in this case the n,,:’s are only independent
summation variables, giving the potential V,, [see Eq.
(56)], whereas a statistical configuration of the system
is determined by the 6,’s. We have defined ¢,,:, qr, and
goa With Egs. (51), (53), and (54) for the XY model in
order to give them a precise meaning in terms of the orig-
inal variables. In order to apply the same calculations as
done for the wire model, we have to introduce nonphysi-
cal variables ¢,,1, pp, mp, and Mmeyq correspondingly to
Egs. (3), (6) and (8):

Grpt =0, — 00 + 27000, MR = E L2 S
OR

Maya = — Z Nar- (59)

r€laa

Thus Eqgs. (46)—(48) are valid when replacing the gr,ga0
by mpg,mas0 in these equations, as well as in expres-
sions (38)—(41) for the polarization (replacing also ga:
by mga1), but now the mpg’s do not have the physical
meaning of topological charges, in the same way as the
¢r in Eq. (47) would not have a precise meaning in the
original variables. We cannot define a set of states {6,}
corresponding to one configuration {mg, mqo}. However,
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we shall see in Sec. III how to interpret the mp’s by ex-
pressing the correlation function (mgmpg:) in terms of
(grgr')-

Our Coulomb gas, containing a polarization energy,
does not correspond exactly to that of Ref. 7 where the
authors performed the Coulomb-gas mapping in a differ-
ent way, namely, by integrating the 6, of the partition
function Z. Noting that the contribution of a set {n,.}
is nonzero only if 3 4+p et = 0 for all sites r, they ex-
pressed the n,,.’s by dual variables. But their definition
of the dual variables was too restrictive in the case of
periodic boundary conditions in the 6,,:’s. Indeed, they
implicitly imposed the additional restrictions

> Mar =0. (60)

They would have obtained the same results as ours if
they had taken this effect into account in the same way
as given by our Eq. (18). On the other hand, we would
have obtained the same charge Hamiltonian if we had
taken the periodic boundary conditions only in the ¢,,’s
instead of the 6,,.’s. However in this case the system
would be decoupled into a spin-wave system, a Coulomb
gas [described by Hamiltonian (28)], and two additional
modes. The latter would correspond to Hamiltonian H
[as in Eq. (21)], but being independent of the set {mp}
and where o, and o, would characterize the states of the
modes and take any real value.

2. Piecewise parabolic interaction

The piecewise parabolic potential is interesting be-
cause it permits one to map the XY model exactly onto
a spin-wave system coupled to a Coulomb gas where the
charges are indeed topological charges. This potential
can be defined by

V(z) = %(z + 27p)2, (61)

where p is the integer such that z + 27p € (—=, w]. Thus
the Hamiltonian expressed in bond variables is the same
as the one of the wire model (see Sec. I[A):

J 2
H=3 (Z) ... (62)

Although the ¢,,’s are now restricted to the interval
(==, ], the same computational steps used for the wire
model Hamiltonian can be applied to treat the XY model
with a piecewise interaction potential. Therefore, we can
still split the Hamiltonian into two parts and express the
part in the variables ¢2 , in terms of topological charge:

J '
=L S (o0 gt + 2089 Y anGamam
(v RR'
2m2J
2L, (3)

However, the fluctuation part in the ¢,’s is now no longer
independent of the topological part (expressed by the
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gr’s) because for a given set of {gr} (corresponding to a
set {¢0,..}) the ¢,’s have to be such that each ¢, defined
by Eq. (51) belongs to the interval (—m,n]. This fact ex-
presses the coupling between the topological charges and
the fluctuations around them. Thus two different inter-
esting approximations can be applied in the case of the
piecewise parabolic potential in order to map the sys-
tem onto a Coulomb gas. The first one is to neglect the
above coupling and to release the restriction on the gg’s
(and gaq’s) thus yielding the same Coulomb gas as the
wire model. The second one is to apply Villain’s approx-
imation, calculating first J, as a function of J/T and
then decoupling the partition function. The advantage
of the first one is to give the possibility of interpreting
directly the charges of the Coulomb gas as topological
charges. However, the use of Villain’s approximation
yields a Coulomb gas mathematically identical to the one
obtained using the first approximation but with a cou-
pling constant J, instead of J. As J, is larger than J
at any temperature (for this particular potential) we can
interpret J,/J as a correction related to the fact that the
Coulomb-gas charges run through all integers instead of
being restricted as topological charges are.

C. Frustration

In the frustrated case, the Hamiltonian for the wire
model (1) becomes

- 2
J aS;
H_E/(W+Al) s (64)

with A; = A, - [ where 4 is a vectorial field (experimen-
tally, Ais proportional to a vector potential of a trans-
verse magnetic field) and [ is the unit vector oriented in
the direction of the wire. So the partition function (9)
becomes

Z = Z /_Z[d&,]exp (—ﬂ% Z(Gr — 0,

{p-r1} (rr')

—Apr + 27rprr')2> (65)

with A, = [T dI4,.
Now the bond variables have to be defined as

¢rr’ =60, -0 — Appr + 27 Pype (66)
and therefore satisfy the constraints
Z ¢rr' = 277(‘1}2 - fR)y (67)
OR

where fr = (1/27) Y g Arm [=—(1/27) §, di - A)).

In the frustrated case the bond variables are partic-
ularly convenient since the system is now described in
terms of gauge invariant quantities. So we are interested
in periodic boundary conditions in gauge invariant vari-
ables and that periodicity implies the condition of “neu-
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trality” for the frustrated case: ) p(gr — fr)=0. Then,
if we impose in addition the periodicity in the 6,’s, we
have to satisfy an additional constraint for each direction
a:

Z ¢ar = —27r(qaa - foza.) (68)

r€laa

with

fota = T a_ Z Aary (69)

relaa

where the sum is taken as in Eq. (8).

Two remarks are in order. First, it has to be noted
that, in the case of boundary conditions in the 6,’s, the
gauge invariance is restricted. Indeed, the system is in-
variant under a gauge transformation provided that the
closed integral of the vector potential around each of the
two directions of the torus is conserved. This condition
on two arbitrary orthogonal lines is sufficient for it to be
satisfied as well on all the other lines.

Second, no periodicity has been imposed in the A,.:’s
(otherwise the sum of the fg’s over the whole lattice
could only be equal to 0). So the usual uniform frustrated
case (fr has the same value on every plaquette) can be
considered. However, in order to satisfy the condition
Y r(gr — f)=0, the size of the lattice must be adapted
to any particular uniform frustration. For example, it
is never possible for an irrational uniform frustration to
have periodic boundary conditions in the ¢,,:’s.

After decoupling, we find

H= HSW + Hcln (70)

with
, P\?
Hch = 27['2.] Z(qR - fR)GRRI(qRI — fR') + <E) :|
RR'
and

L
ZZ qij — .fz] + L(qyl - -fyl) (72)

1 =

)

j=1

i
Mh

-

i

Il

Mh

(gi5 — fi) + L(ge1 — fa1)- (73)

1

<.
..
I

As for the partition function the sum over {qr,qao} is
taken over all configurations such that Y p(¢gr— fr) = 0.
For the frustrated XY model the Hamiltonian becomes

H=Y V(0 -6,
(")

- Arf’) (74)

and the ¢,.’s are defined as in Eq. (66). But in this
case the p,.’s will be determined by the 6,’s in order
to include the ¢q,’s in the interval (—m,7]. For Villain’s
interaction the partition function is again identical to the
one of the frustrated wire model, but after decoupling the

mp’s (that replace the gg’s) are the circulations of the
¢,r’s defined as

Gppt =0 — 01 — Appr + 2T (75)

For the piecewise interaction potential the Hamilto-
nian can also be split in terms of gr’s and spin waves.
The remarks about the gauge invariant property and the
uniform frustrated case for the wire model hold for the
XY model.

III. MEANING OF THE CHARGE IN THE
COULOMB GAS ASSOCIATED WITH AN XY
MODEL

For this purpose, we consider a frustrated XY model
with a nonzero frustration only around two plaquettes R;
and R, without common nearest neighbors (see Fig. 5).
We could also perform the same following calculations
for the frustrated case and they do not depend on the
type of boundary conditions. The bond frustration terms
around these two plaquettes (Rj with k=1 or 2), turning
in the clockwise direction, are £;. Therefore the plaquette
frustrations are

der/2m if R = Ry,
—er/2m if R is nearest neighbor of Ry,
0 else.

fr=

In order to see the physical meaning of the mpg, we
shall calculate in the following the second derivative

32

———InZ, 76
651862 nZ ( )

in two ways: first in terms of the original variables 8,
and second in terms of the mpg’s. Of course the second
way becomes possible only after performing Villain’s ap-
proximation, therefore it will be exact only in the case of
Villain’s interaction.

A. Partition function derivatives

Before distinguishing the two ways, expression (76) can
be expressed in terms of thermodynamical averages:

0? o*H , /OH 8H
Berde; 22 T _'B<361352> +8 <an-:1 aez>

o (a) (@)

Ry

FIG. 5. The arrows indicate the frustrated bonds. A, =€k
around Ri (k=1,2) and r7’ is to be considered with the same
orientation as the arrow. A, =0 elsewhere.
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Let us consider Hamiltonian (74) in terms of the ¢,,’s. The partial derivatives, evaluated at €, = €3 = 0 are

32

InZ
381862 .

We shall call cg the circulation of the derivative V'(¢,,)
around the plaquette R:

=Y V'($rr) (79)
OR

Now we note that the transformation 6, — -0, (or
¢rrt > —@ppr) on each node of the lattice does not
change the Hamiltonian value (V is even by definition)
but changes the sign of cg. Thus we can write

62

861362 lnZ

= ;62 (CR1 ch) . (80)

e1=€2=0

o?

RR'

- ﬂz(ZWJ <Z thGRR’ (mr — fr) > <

RR'

where
4 if R = Ry,
hgr = { —1 if R is nearest neighbor of Ry,
0 else.

The functions hyg appear in the derivatives of f.p with
respect to €. Those functions correspond to the kth line
of the matrix M, and therefore to those of the matrix
M.y — coP, and G’ is by definition the inverse of Mg
(cf. Sec. IIA). Furthermore, considering the neutrality
property > n(gr — fr)=0, the second variation at £, =
g2 = 0 becomes

62
———1InZ
851862 e1=e3=0

= ﬁ2(27rJU)2 (<mR1mRz> - (le) (mRz)) . (83)

Now we note that the transformation mgz — —mpg on
each plaquette of the lattice does not change the Hamil-
tonian value but changes the sign of mg. From Eqgs. (80)
and (83), we are now able to write

(crert) = 21, (T))? (mrmp) . (84)

This relation becomes exact for Villain’s interaction. We
have shown that the quantities mpg and cg are correlated
in the same way. This gives us an interpretation to the
mp’s. Therefore, the meaning of mp depends on the in-
teraction potential of the XY model. Thus, in Villain’s
approximation, the circulation cp around a plaquette is
composed of a quantized contribution and fluctuations
around this quantized value which are treated as decou-

Sers, 2= — B, <thGRR,th,>+ﬁ (2rJ,) <<

. =p [< (Z V'(¢",)) (Z V'(W)) > - <Z V'(¢",)> <Z V'(¢,,')>] . (78)

Let us now perform the same derivation, but consider-
ing the charge Hamiltonian H,; in terms of the quanti-
ties mp (the frustration does not contribute to the spin-
wave part in the ¢,’s and H is invariant under the
transformation) as obtained after using Villain’s approx-
imation:

Hy = 27r2Jv E(mﬂ - f:R)GIRRI (mR’ - sz')7 (81)
RR'

where J,=J,(T) depends on the considered interaction
potential. We obtain

> hrGrp(mr — fre ) (Z h2p:Grp: (MR — fR)) >

RR'

RR'

Z h2rG'rpi (MR — fR’)> ) (82)

RR'

pled spin waves.

Note that experimentally in Josephson junction arrays
(corresponding to the cosine interaction), the quantity
cr corresponds to the supercurrent circulation around a
plaquette R where the site R is a lattice node located at
the center of four superconducting grains.

B. Examples of interaction potentials

Now we can interpret the mpg’s in terms of the gg’s for
the XY model and end this section with three examples.

1. Villain’s interaction

The interaction potential is

= —-Tanexp(

and the derivative becomes

Ju
(¢ + 2mn) ]

(¢ + 2mn) )

V'(¢) =

e [
X ; [exp (—B—; (o + 21m)2) (o + 21rn)] .

(85)

We shall denote (---)4 such an average over all integers
n (not to be considered as a thermodynamical average).
Thus by definition we have
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V'($) = Jy (¢ + 27n) (86)

and

Z V! ($prt) = Jy2m (qR + Z(")tbrr’) . (87)
OR OR

Comparing the charge-charge correlation functions in qp
and mp we find

<((IR + Z(")dm’) (QR' + Z<n)¢rr') > (88)
OR ar’

= (mRle). (89)
2. Piecewise parabolic interaction

Since the variables ¢,, are defined in the interval
(==, m] we can simply write

V(g) = %qs’. (90)
Therefore
Vig)=J¢ (91)
and we simply find
T*{arar) = [Jo(T)*(mpmp). (92)
So for the piecewise parabolic potential, the result (83)

leads to a direct identification of the mg’s with the topo-
logical charges gg.

3. Cosine interaction

The cosine interaction potential is

V(g) = ~J cos(9). (93)
We can define the function X (¢) in order to write
sin(¢) = ¢ + X (¢) (94)

which yields
J? < ((IR + Z X(¢r1")> (QR’ + Z X(¢rr')) > (95)
OR arR'

~ Jf(mRmR:). (96)

IV. HELICITY MODULUS AND INVERSE
DIELECTRIC CONSTANT

The helicity modulus I' for a spin system with periodic
boundary conditions in the angles of the spins expressing
the “rigidity” of the system with respect to an applied

“twist” equal to Lé between two opposite boundaries is
given by Ref. 13:
1 8°F

r——+ 24 (97)
N 962 §=0

Applying a twist implies that the periodic boundary con-
ditions in the 0,’s in one direction have to be replaced by
the condition that angles at opposite ends of the sam-
ple differ precisely by Lé. Rather than changing the
boundary conditions, it is, however, more convenient and
strictly equivalent (it is simply a change of variables) to
modify the frustration terms A,,: in the following way:

1

Ay (8) = Aer + 68, A, (6) = Ayr, Vr, (98)

and to use again periodic boundary conditions. In fact,
this corresponds to a gauge transformation leaving the
frustration of all the plaquettes unchanged, but modify-
ing the “frustration constraint” f,, associated with the
periodic boundary conditions.

Now the second derivative can be performed and ex-
pressed in terms of the thermodynamical average:

()-GO

(99)

_re
N 942

_L1J/eHN 1
v \eez/) T

In the nonfrustrated wire model or generalized XY model
the term (9H/A6)? vanishes at =0 because each state
can be related to another one with the same energy and
a derivative of opposite sign. In the frustrated case, we
should adapt the gauge in order to fulfill the condition
(0H/8f) = 0in § = 0. Thus we can write

=y (G- (L) ) o

A. The wire model

I'= InZ

Now we map the helicity modulus of the nonfrustrated
wire model onto an inverse dielectric constant of a two-
dimensional lattice Coulomb gas. The frustrated case
could be treated in the same way. Since, in the charge
representation, the frustration does not affect Hsw and
the frustration variation § does not change the fg’s, we
can consider Hc2 instead of H in Eq. (100):

P\’ P,\?
— 2 z v
Hchz—ZWJ[(L) +<L)
where P, and P, are given by Egs. (72) and (73) with

fr = 0, fyj1 = 0, fz1 = —L§/(2w), so that we have
P,(8) = P,(6 =0) + L25/(27) and we can write

(101)

b

Hepnz = Hena(6 = 0) + 82w J P, (§ = 0) + %Lzaz (102)
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and

r=J (1 - f"’—Juﬂ)) (103)
Since the two axis directions of the model are equivalent,
we have (P?) = (P2). And as we can find for any state of
polarization (P, P,) another one with the same energy
and with a polarization (P, —P,), the quantity (P.P,)
vanishes. Therefore, the helicity modulus becomes

P=J(1—2—”—J(P2))

Now we can write H., and I in terms of a Coulomb gas
in electric variables with an electric polarization P, = eP
[e = (2mJ)/? is the elementary charge] and an external
electric field D = (0, —eé):

(104)

H(D)=H(D=0)-D -P.(D=0)+ f—;DZ (105)

and

r=J (1 - —(PZ)) (106)
where P.(D = 0) means [as in Eq.
defined with f,; = 0.

Thus we can represent the twist § in the direction «
as an external electric field D that interacts linearly with
the electric polarization P.. In order to establish the link
between I' and the dielectric constant €, we define 1/¢ as
the response of the macroscopic electric field to a uniform
external one:

(102)] that P, is

1 . E,
e =W, b (107)
By the use of the usual electrostatic relation
(Pez)
E, =D, - 2m- 7", (108)
where P, corresponds to P..(D = 0) as in Eq. (105)

and expressing (P..) by the free energy derivative with
respect to D,

2r . OF/0D,— LD, ox 8°F
-=1—-— lim o
2 p.5o D, ~ 12 8D2 —o
(109)
Then the derivative is performed by Eq. (100) with
Hamiltonian (105) and D, replacing 4:
1_ 2
o=1 ( ) =1 P2). (110)

Thus I'/J is exactly represented by the dielectric con-
stant of the associated Coulomb gas, I'/J = 1/e.
Furthermore, we can now correctly interpret our defini-
tion of the polarization in a dynamic Coulomb gas. When
the charges are moving in an electric field, we have to take
into account the winding number of the charges around
the torus. Our definition of P corresponds then to the
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sum of the small displacements of the charges and there-
fore the term —DP is well represented by the coupling
energy between the charges and the external electric field.
But, in order to define such a displacement, we have to
consider either a temporal succession of states (i.e., the
dynamical version) or two additional fictitious variables
that have no electric meaning in a static system.

Usually the susceptibility x or the dielectric function
€ of a Coulomb gas is defined in the Fourier representa-
tion. Then the dielectric constant is defined as the linear
response to an oscillating field in the limit of large wave-
lengths. However, it has been known for a long time
that in the usual Coulomb gas the linear response to a
uniform electric field diverges (x,& — 00) in the thermo-
dynamical limit (even at zero temperature) for periodic
or free boundary conditions. The reason is that for an
arbitrary nonzero electric field there always exists a finite
distance of separation of the pairs beyond which the en-
ergy of the system decreases as their distance increases.
This problem has been studied by Choquard, Piller, and
Rentsch,'® who considered various boundary conditions
and showed that, even in cases where the susceptibility
remains finite, it depends on the boundary conditions
even at the thermodynamical limit. In our case at low
temperature the response to a uniform external electric
field remains finite because the additional polarization
energy stabilizes the system. In the case of fixed bound-
ary conditions, the wire model also has this additional
polarization term but the definition of the polarization
would not involve additional variables. For example, if
we impose ¢, = 0 on the boundary the charge represen-
tation would correspond to a Coulomb gas stabilized by
the use of the image method (where a charge and its four
images all have the same sign). In the case of free bound-
ary conditions the system does not contain the additional
polarization energy and the two additional variables are
replaced by two additional modes [representing o, and o,
as defined below Eq. (17) with Hamiltonian Hcp, (21)]
which are independent of Hsw and H.,; and take any
real value.

Alternatively, in order to map the wire model on a
Coulomb gas whose only variables are charges on the
sites of the dual lattice we can integrate the partition
function (48) over the gu0’s and the mean square polar-
ization appearing in Eq. (103), with P, expressed as

Pa = P1ra+qa0' (111)
We find
Zeh = Z exp {—,8 [H n1 + V4 (271'&—‘5)
C. v L
{qr}

P,,y

_ 2J /0 27 P,
S B R

Here the occurrence of Villain’s function is not due to
an approximation. Thus we can also interpret Z, as the
partition function of a Coulomb gas. In that case, the
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twist would be represented by an external field with a
nonlinear coupling to the polarization. Moreover, in this
case an electric state {gr} represents a whole family of
topological configurations.

B. Generalized XY model

In order to have a good understanding of the helicity
modulus of the XY model in its Coulomb-gas represen-
tation, we can express it by performing the derivation of
the Hamiltonian in Eq. (100) in the two representations.
In terms of the variables ¢,,,

r-+ <Z V"(¢z,)> -7 <(Z V'(qsm)) > ,

(114)

and in terms of the quantities mg and m;, after the use
of Villain’s approximation:

'~ J, N((27rJ,,Py) ) (115)
with

P, = ijij + Lmg;.

ij

(116)

In both expressions for I' the two quantities whose mean
square is taken are the first derivatives 9H/94 at § = 0.
Like this we can interpret the polarization in terms of the
original variables.

Note that this interpretation is completely consistent
with our results of Sec. III. Indeed, we could also express
exactly the sum of the derivatives V'(¢,,) in Eq. (114)
as a polarization of the circulations cg [definition (79)]
following the same computational steps [Egs. (37) and
(38)] as for the wire model. We obtain

Z Vl(d)::‘r) = Z]C‘zg + ch:la

2%

(117)

where c;; is the circulation of the current around a pla-
quette located by i and j. The quantity c,; would be
defined as the sum of the derivative V'(¢,.) over the
horizontal reference line l,;. After the use of Villain’s
approximation we can of course apply the results of Sec.
IV A with the mp’s and myo replacing the ggr’s and the
‘IQO,S-

We conclude this section by discussing once more the
three examples of interaction potentials.

For Villain’s interaction the two expressions for I,
given in Egs. (114) and (115), are, of course, equal and
I'/J is exactly represented by an inverse dielectric con-
stant even on a torus.

For the piecewise parabolic potential, we have to pay
attention to a é function appearing for V" (¢,, ) in Eq.
(114), coming from the point where two parabolas in the
potential join each other.

As for the cosine interaction, corresponding to Joseph-
son junction arrays, the polarization represents the
macroscopic current in the array and this current can
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also be expressed exactly as a “polarization” of elemen-
tary supercurrent loops.

V. CONCLUSION

We have studied the Coulomb-gas representation of the
2D XY model on a torus. We started from a phase field
defined on a square wire network and with a Hamilto-
nian depending on the square gradient of the phase along
the wire. After integrating the phase fluctuations be-
tween the nodes of the lattice, the partition function of
this model becomes mathematically identical to the XY
model with Villain’s interaction. We mapped the wire
model onto a lattice Coulomb gas defined on a torus.
The charges of the Coulomb gas represent the topologi-
cal charges of the wire model. The Coulomb gas contains
an additional polarization energy where the polarization
has been defined by the use of two additional integer vari-
ables. The latter come from the topological constraints
expressing the periodic boundary conditions. Indeed, the
topological charges corresponding to the plaquettes are
not sufficient to define completely the topology of a given
state of the system. The two additional variables allow
us to define a polarization and, in a dynamic case, they
correspond to the difference between the winding num-
bers of the positive charges and the negative ones around
each direction of the torus. The twist  allowing one to
define the helicity modulus can be represented as an ex-
ternal uniform electric field, and therefore the helicity
modulus is exactly related to the inverse of a dielectric
constant. In the thermodynamic limit with a nonzero
twist, the system is stable and the Coulomb gas with a
nonzero electric field is also stable because of the addi-
tional polarization energy in the mapped Coulomb gas.

Alternatively we integrated the partition function over
the two additional variables. Thus we obtained a
Coulomb-gas representation whose charge configuration
represents a family of topological configurations, and
twist no longer corresponds to an external electric field
coupling linearly with the charges of this Coulomb gas.

Since the wire model and the XY model with Villain’s
interaction possess a partition function with an identi-
cal structure, we can perform exactly the mapping for
this particular XY model. But then the charges of the
Coulomb gas do not represent the topological charges as
defined in terms of the original variables.

We have derived expressions giving the meaning of
the charges of the Coulomb gas associated with the XY
model with Villain’s interaction in terms of the origi-
nal variables. For XY models with other potentials,
the charges of the Coulomb gas obtained after perform-
ing Villain’s approximation correspond to the circula-
tions of the interaction potential derivatives around the
plaquettes.

We have emphasized the case of the piecewise parabolic
potential since it permits an exact splitting of the Hamil-
tonian into two independent terms: one expressing the
topological charges and the other one the fluctuations
around them. But the two subsystems are not really in-
dependent because the fluctuations have to belong to a
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phase space determined by the topological configuration.

Our results apply as well for the frustrated models.
We have performed our calculations with gauge invariant
bond variables but on the torus this gauge invariance is
restricted. Indeed, the usual gauge invariance is broken
by periodic or fixed boundary conditions (imposed on the
original variables).

Thus we have clarified the Coulomb gas representa-
tion of the 2D XY model on a torus. In particular we
have expressed exactly the helicity modulus of the XY
model with Villain’s interaction in this representation.
It becomes the inverse of a dielectric constant that we
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can define as the response of the internal electric field to
an external uniform electric field. This will permit one
to perform Monte Carlo simulations in a charge repre-
sentation to evaluate the helicity modulus corresponding
exactly to its definition in the spin variables.
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