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Quantum shot noise in a normal-metal —superconductor point contact
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The distribution function for the current noise in a normal-metal —superconductor quantum point con-
tact is calculated. It is shown that this distribution describes independent processes when a charge +eo
or +2eo passes through the contact. At low temperature and voltage only processes with double-charge
transfer are relevant. At zero temperature and low voltage the distribution has a binomial form.

I. INTRODUCTION

Discreteness of charge carriers gives rise to the shot
noise, i.e., to time-dependent fluctuations of the current
around its mean value I. Recent interest in the shot noise
in mesoscopic devices at low temperature was inspired by
the pioneering works of Khlus' and Lesovik. They de-
rived an expression for the mean square of current Auc-

tuations and found that, due to the quantum correlations
imposed by the Pauli exclusion principle, the intensity of
the shot noise is suppressed with respect to its classical
value. Later, their results were generalized and applied
to various cases.

It was shown by Lesovik and Levitov (LL) that not
only is the second correlator suppressed, but the entire
distribution function changes in the quantum regime
from Poissonian to binomial. LL also sho~ed that
when a small ac cotnponent with frequency 0 is added to
the voltage V, steps occur on the noise-voltage charac-
teristic at voltages V =A'Qn/eo with integer n.

The noise of a normal-metal —superconductor (NS)
junction was first considered by Khlus, ' and recently his
analysis was extended to a disordered case by de Jong and
Beenakker. Our purpose was to find the distribution
function for the shot noise in a clean NS point contact.
%e did this using a slight modification of the LL pro-
cedure, and found that the Andreev reflection at the NS
boundary leads to several new effects. At low tempera-
ture and voltage the distribution remains binomial, but
with a double charge. Thus, the LL steps on the noise-
voltage characteristic of an ac-biased junction exist at
even n only. At arbitrary voltage the distribution func-
tion is complex, and its first and second moments are
found to be in agreement with the results of Refs. 10 and
1, respectively.

II. NORIMAL METAL CASE

To pinpoint the most important elements of the prob-
lem, we discuss briefly the shot noise distribution func-
tion for an normal-normal (NN) quantum point contact.
Let us consider the Landauer resistor, i.e., a one-
dimensional channel with a scattering potential, and two
bulk electrodes attached to the left (L) and right (&)
sides of the channel. The electrodes are assumed to be in

equilibrium and biased with respect to each other by volt-
age V. We also assume that there are no inelastic pro-
cesses in the channel. The asymptotic forms of the wave
functions gr and 1bE of the electrons incident from left to
right, respectively, with energy F. =A' k /2m are

e
—ikx0 t

(x)= '-
fR 0 e ikx

r —i'

where &E and bE are annihilation operators in the left
and right electrodes, respectively. The current operator I
can be expressed via the number of particles in the chan-
nel, say, on the left-hand side of the barrier propagating
right ( ~ ) or left (+—):

where ep is the electron charge.
We want to calculate the distribution function P (Q, to)

of a charge Q transferred through the channel in time to.
Without inelastic processes, electrons on different energy
levels propagate independently. Thus, the characteristic
function y(k)=gkP(eok, to)e' " is a product of contri-
butions from different energies:

(4)

Actually, because of the uncertainty relation, the levels in
the energy interval EE-A/tp are mixed. This efFect can
be neglected only for long measurement times (see Ref. 11
for details), and we restrict ourselves to this situation
only.

The single energy characteristic function yE(k) is con-

where t and r are the transmission and reflection ampli-
tudes, respectively. The annihilation operator for a parti-
cle in the channel is

4E(x)= tpt (x)BE+g„(x)bE,
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nected with the probability PE(k) of transferring k elec-
trons with energy E through the channel. The latter can
be expressed in the form

P(k)= QP(1+k, l),
E=O

where P(m, n) is the joint probability of m electrons
propagating to the right and n to the left. Now the ex-
pression for gE acquires the form

mi distributions in the electrodes. Note, that the opera-
tors 8' and P do not commute, so the last identity in

(6) is not obvious. It does not matter which of the ex-
ponents comes first, because 8 is diagonal in & and b

It is important that there is a product of the exponents in
(6), and not the exponent of a sum of 8' operators. The
prescription (4) and (6) of writing characteristic functions
for transmitted charge is equivalent to that presented in
Ref. 6.

It is essential for the calculation of yE(A, ) that the
operators 8 and 8' are projectors, i.e.,

[. This is obvious for P and for 8' is a conse-
quence of the anticommutation relation

yE(k)= g P(k)e'~"= g P(m, n)e' e
k=0 m, n =0

(6)

where ( ) stands for the statistical average over the Fer-

The projecting character of 8 [ [ allows us to simplify

the exponent e' -(-&=1+(e' —l }P [ [ and leads to
the LL result for y(A, ):

t0
Ep(), t)=exp fdE 1e[1+Itl (e' —1)et (E&[1—ee (E&[+ It[ (e ' —1)ee(E)[1—et (E)]f (8)

where nL (na ) is the occupation number in the left (right)
electrode.

Formula {8) has a simple physical meaning: electrons
and holes from the left electrode can travel to the right
with probabilities P, =

~
t

~ nL {1 nz ) a—nd Pt, = ~
t

~ n„( 1—
nL ), respectively. Therefore, the characteristic func-

tion is the sum of three contributions: P,e'~ for elec-
trons, Pt, e ' for holes and (1 P, Pt, ) for t—he pr—ocesses
when no net charge is transferred This su.m coincides
with the expression under the logarithm in (8).

Formula (8) gives the binomial distribution in the
zero-temperature limit:

The sketch above is by no means a substitute for
rigorous derivation, which can be found in the LL origi-
nal papers. Our goal was merely to present some physi-
cal motivations for Eqs. (4) and (6). These formulas are
used in the following NS point contact analysis.

III. NS BOUNDARY SCATTERING AMPLITUDES

In order to modify the above model for an NS point
contact, we follow the procedure described in Ref. 10.
The NS point contact is characterized by the gap func-
tion b,{x)and potential U(x). The electron annihilation
operator in a superconductor is a linear combination of
creation and annihilation operators for the BCS quasipar-
ticles b and b+:

where eoVto/{2m%} plays the role of the number of at-
tempts. From the semiclassical point of view it means
that only the electrons in the energy interval e0 V contrib-
ute to the noise.

1t =bu b+U', — (10)

and the x dependence of coeScients u and U is governed
by the Bogolyubov —de Gennes equation

u (x) u (x)
v(x) U(x)

d
, —p+ U(x)2~ dx

b,(x)

d —p+ U(x)
2m d~
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On the left-hand side of the contact (x~—co ), in a nor-
mal metal, 5 vanishes and Eq. (11)decouples into two or-
dinary Schrodinger equations with plane-wave solutions:

())
—~(pp+E/vF)x 1

r =e
0

i (pp—E /uF—)x 0
=e

(12)

(3) i (pp E/up—)x 0
I =e

(4) l(pp+E/up)x 1
=e

0

On the right-hand side of the contact (x ~~ ) we have
a superconductor with a constant gap function
b, (x }=b,a=const. There are four plane-wave solutions
provided E & 6p.

(16)

Equation (16) determines four main scattering amplitudes
r, r~, t, and t„ for the reflection, Andreev reflection,
transmission, and Andreev transmission, respectively.
The two latter processes are simply conversion of an elec-
tron into a BCS electronlike or holelike quasiparticle.

For an arbitrary solution of Eq. (11)with the asymptot-
ic form

where Jp=(A'/m)Im(u'V'u —v'Vv) is the probability
current. The normalization constant Co in (13) is chosen
so that the asymptotic states ()(I and (tiR carry the same
probability current.

To introduce the scattering amplitudes, we consider a
solution of Eq. (11), g", with an asymptotic form con-
taining gl(

' as the only state incident on the barrier:

6"+&6"+ r A O'I",

&A"'+rA 0"'

'=c up
=CePR 0

p

(3)
—

~ (Pp —(/up)x Vp

R =Cp
up

~(3) i (pp —g/vp )x vp=Coe
Qp

(4) i(pp+g/up)x up

R =Coe
vp

(13)

(17)

BL„2

BR 4

BR,2

=S
BR )

BR 3

(18)

the coefflcients BL,BR are connected by the scattering
matrix, which transforms the incoming waves into outgo-
ing ones:

BL„4

BI

&1+g/E
&1 g/E—

Qp

g = "(//E b,(), — (14)
vo

and Co = ( u ()
—v 0 )

' is some normalization constant
which we discuss later.

The asymptotic states ((t/~(3)R(
' propagate to the right

and g(L')R( ' to the left in accordance with the sign of the
group velocity (see Fig. 1).

The Hamiltonian (11}preserves the probability density
of 6nding either an electron or a hole at a given point
(see, e g , Ref. .10.). Namely, P(x, t)=lu(x, t)l'+Iv(x, t}l'
obeys the continuity equation

There are many relations between the scattering matrix
elements. First, the probability conservation (15) leads to
S-matrix unitarity. Secondly, for a bulk superconductor
we can neglect the influence of the supercurrent through
the contact and b,(x) can be chosen real, provided there
is no external magnetic fleld. Thus, Eq. (11)becomes real
and complex conjugation gives another symmetry. To
summarize, the symmetries of the Smatrix are

SS+=1 (unitarity),

SS'=1 (complex conjugation} .

Thus, S is a symmetric unitary matrix:

az
+divJ& =0,

„Energy
R

r rg

rw r' t&

It t„r& r
I I

tz t r& r

(20}

FIG. 1. Energy spectra of a normal metal (left) and a super-
conductor {right). Solid (open) circles denote the asymptotic
states of quasiparticles (quasiholes}, and the arrows show direc-
tion of their velocities. The numbers 1—4 are related to the
asymptotic-state wave-function superscripts in Eqs. (12) and
(13).

The particular values of the scattering amplitudes and
their energy dependence are determined by the NS point
contact geometry. The case with potentials U (x )

=2Zpp5(x) and h(x) =608(x) is discussed in more detail
in Appendix B. There are no states in the superconduc-
tor with energy E & ho. Under this condition the S ma-
trix describes the reflection and Andreev reflection of
electrons and holes coming from the left:
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IV. NS POINT CONTACT
CHARACTERISTIC FUNCTION

(21)
(8,+c,):—n, =n (E —e V),

(c c )=—n =1 —n( E—e—V),

(c c ) =—n =n(E —5p),

(c~+c4 ) =n4—= 1 n—( E——5p, ) .

(28)

(22)

The coefficients in the expression for p, and ph are the
first two rows of the scattering matrix (20):

Pe =QSi[&[ Ph QS2;c( . (23)

The calculation of the characteristic function y for an
NS point contact will be performed in the same way as
for an NN junction. In order to avoid uncertainty with
the BCS quasiparticles charge, we calculate the current
on the normal-metal side of the point contact. We intro-
duce the operators p, and [|)h, which annihilate either a
particle or a hole propagating in the normal metal to the
left. These operators play the same role as the operator [))

in (3), and are linear combinations of the creation and an-
nihilation operators tt, 8+, b, and b+ for electrons in the
normal metal and BCS quasiparticles in the superconduc-
tor. It is convenient to introduce another notation for
the electron annihilation operators in order to present the
results in a compact form:

It should be mentioned, that the energy E is measured
with respect to the Cooper pairs chemical potential. In
Eq. (28) n (E) denotes the Fermi distribution, V applied
voltage, and 5p, the difference between the chemical po-
tentials of the quasiparticles in the superconductor and
that of the Cooper pairs. In an equilibrium superconduc-
tor 5p always equals zero, while the case with 5IhAO is
commonly referred to as branch imbalance. '

The result of averaging (27} can be presented in a com-
pact form introducing the density matrix p; =n;5; and
rewriting the 8' operators from Eq. (26) in the form

( )
—QIP ( )][jc; c {29)

IP~'],j S;iSij,—{P~][j Si2S~q .
(30)

The characteristic function for the NS point contact can
be expressed in the form (see Appendix A)

where matrices P are projectors on the appropriate states:

IP[ )
]

—5 5 IP(h) ]

The unitarity of S matrix guarantees the anticommuta-
tion relations

tpdE ig( p«) p(» )
y(A, }=f lndet[1 —p+pe

2
—iA(P —P )Xe ]. (31)

0e, [h)0e, (h)+Pe, (h)'Pe, (h) 1~ Ne 0h + thee

The generalization of Eq. (6) for the characteristic func-
tion has now the form

iQ pf «) g (» );g(~(&) g(h) )
y (A, )=(e e ), (25)

~here we introduced operators for the numbers of elec-
trons and holes propagating left and right:

g[e) ~+) g(h) ~+p—C) ), —C2 C2,

g(e) ~+ ~ g(h)
(26)

Note, that the electrons and holes carry opposite charges
and the operators 8"and 8'"' commute. The 8' opera-
tors involved are projectors because of the identity {24).
Therefore, the characteristic function gE(A, } may be ex-
pressed in the form

&E(A)=( Il+(e' —1)A"'] I 1+(e ' —i)A'"']

X (1+(e ' —1)P"] f 1+(e' —1)g'"'] ) .
(27)

In order to obtain the characteristic function for the
total transmitted charge as a function of the applied volt-
age and temperature, the averaging in Eq. (27) must be
performed in accordance with the rules

This is our main result, analogous to that of LL for the
NN point contact. One can see that our formula corre-
sponds to the special four-channel case of the general
many-channel formula presented in Ref. 7.

Expression (31) can be rewritten in the form

tp E
y(A, )=f ln 1+ g A„(e' "—1)

2
(32)

which clearly shows that the elementary shot noise pro-
cesses are associated with either +ep or +2ep charge
transfer. General expressions for the coefficients A„
through the scattering amplitudes and occupation num-
bers are given in Appendix B. In the limiting case of low
temperature T« kp and no branch imbalance the
coeScients A„have the form

(33)

xq= f(1—lr, l )+lr~l exp(2t»gnV)32 2 ~ e~ /to/(2m%)
(34)

In the limit T «ep V«hp the energy dependence of
scattering amplitudes can be neglected and integration in
(32) gives the binomial distribution
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It is clearly seen from Eq. (34) that the elementary act
corresponds to a double-charge transfer into the super-
conductor (either two electrons at V & 0 or two holes at
V(0). This very fact leads to the changes in the noise-
voltage characteristic of the NS junction with a small ac
component of frequency Q in applied voltage. The origi-
nal calculations of LL (Ref. 8) can be repeated with the
characteristic function (34) as a starting point and show
that steps occur now at voltages V=fiQn /eo with even n

only. At higher voltages V& b,o single-electron transport
also exists, and steps at odd n arise.

In the other limit, epV«T«hp, the calculation
analogous to that in Ref. 7 gives a characteristic function:

—2A, toT
g(i(A, )=exp, sink, ,= ~rA ~sink, ,

its logarithmic derivative can be written as

[( !iC 1)G]
dx

where the Green function 6; is

1 J(:&,+& exp[x(e' —l)&+it]:)
1J U

After solving the Dyson equation we get

6 = [1+xp(e'" —1)] 'p,
U(1)=det(1 —p+pe' ) .

Analogously, the mean value of two exponents

ii.+ca +a —ii.+Da + a
~X=~e e

(A4)

(A5)

(A6)

which leads to the Nyquist formula for the mean square
of the current:

2e T
(36)

For arbitrary temperature and voltages the second mo-
ment of the distribution (31}can be calculated. The re-
sults concur with those obtained by Khlus using another
method. '
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APPENDIX A

= (:exp[(e'" —1 }a+a ]::exp[(e ' —1)a +a ]:)

can be calculated by the above method, using operators
ordered along the Keldysh contour. All operators thus
become matrices in the Keldysh space and in the same
way we arrive at the expression

iA, C 0 p p 1 0
xD

1 p 1 p 0 I
+y=det '

(A7)

y=det(1 —p+pe' e '
) .

This is the result presented in the text in formula (31}.

(A8)

In our particular case C =P ' —P ",and D =P ' —P "
[see Eq. (25)]. Under these conditions, formula (A7) can
be further simplified, taking into account that both C and

p are diagonal:

%e show here how to perform averaging of exponents
products, such as

(exp i AgC; ft;+, &~ exp i (((QD, '—
tl, +'tl, "

1&J lp J
(A 1)

+ i A, C,"
exp iAQC, &, &~ =:"exp. g(e "—I)&,. 8

where 8; are the electrons annihilation operators, C,D are
Hermitian projectors C =C, D =D, and the den-
sity matrix p is diagonal in electronic subscripts

p,, =(8,+&, & =n, 5,
By means of the Bogolyubov transformation the ex-

ponent can be presented in the form

APPENDIX B

r=r& = (vo —uo)(Z +iZ) iZ+1
r =r&= r

iZ —1

QpUp
i ri r

We present the general formulas for the coefficients A„
in Eq. (32) in the case of a special geometry of the NS
boundary.

Following Ref. 10, we restrict ourselves to a model NS
boundary with the 5-function potential U(x) =2Zpz5(x)
and steplike gap function 5(x)=b,o8(x). Under these
conditions, the scattering matrix elements for E)kp are

(A2)

where:: denotes normal ordering. Because of normal or-
dering, the mean value of the right-hand side in (A2) can
be evaluated by means of zero-temperature Green-
function technique. ' For a general expression of the
form

"o(1 'Z) ~ z z, 1+iZ

LUQZ

A Quo vo tA tA

y=u2+Z2(u~ v~)

(B1)

i A, C,"U(x(=(exp xX(e "—1(p; p, :j
l,J

(A3)

where uo and vo are froin Eq. (14). For E (b,o there are
no states in the superconductor and the amplitudes t, t',
t„, and t„' vanish, while the formulas (Bl) for r, r', and
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r„are still valid. It should be mentioned that the charac-
teristic length in the scattering problem is of the order
L, —hE/(Avr), where hE —max(To, eo V, bo). It means
that the formulas (Bl} for the scattering amplitudes
remain valid for the more general case, when both U(x)
and db, (x}/dx are located in the region much smaller
than I,

Note that electrons and holes are scattered essentially
I

in the same way, namely, the following identities are val-
id for E &h,o:

From S-matrix unitarity it also follows that tt„+rrz =0.
These relations between the scattering amplitudes en-

able us to present the coeScients A„ in the expression for
the characteristic function (32) in the form

A, =T[n, (1 n3—)+(1 n2—)n4]+ Tz [n, (1 n4—)+(1 n—t )n3]

—(T—T„) [n, n2(1 n3—)(1 n—4)+2n, (1 n2)(—1 n3)n—4+(1 n,—)(1 n2)n—3n4]

+2(T —Tz )(T„+R„)n,(1 n2)—(n3 n4—),
A2=R„n, (1 n2)+—(T T„) n—&(1 n2—)(1 n3—)n4 (T —T„)(—T„+R„)n,(1 n2)(n—3

—n4), for E&bo

A, =0, A, =R„n, (1—n, ), for E&b,

(B2)

where n &, n2, n3, and n4 are the occupation numbers in-

troduced in (28}, and T, Tz, and Rz are probabilities of
transmission, Andreev transmission, and Andreev
reffection, respectively:

The formulas for A „A 2 can be obtained from (B2)
with substitution n, ~n2, n 3 ~n4 and vice versa.

The coefficient in (B2) contain only the probabilities of
different scattering processes, not their amplitudes. Nev-
ertheless, each coefficient in the characteristic function
(32) cannot be reduced to a sum of contributions of in-
dependent processes of charge transfer contrary to the

NN point contact case. The origin of this difFerence is
quantum interference of the transmission and the An-
dreev transmission processes. It is only due to the S-
matrix symmetry that the result can be expressed
through the probabilities.

The coefficients A& and Az contain the contributions
due to branch imbalance, which are proportional to
n3 n4 an—d disappear for the NN junction, when both
T„and R„are equal to zero. In the latter case the
characteristic function (32) coincides with that for the
NN point contact [formula (8)]. Note, that the limits of
energy integration in Eqs. (8) and (32) are difFerent. In (8)
the integration is performed in the region —Do & E & oo,
while in (32}in the region 0 &E & ao.
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