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EfFect of phonons on the Josephson current density
in superconductor-normal-metal —superconductor junctions with a strong-coupling normal layer
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We consider SNS junctions with a strong-coupling normal layer N, and calculate the Josephson criti-
cal current density J, as a function of the electron-phonon coupling properties of the N layer. It is
shown quantitatively that J, drops quickly as the coupling strength increases and that in thick junctions
with the thickness 2b ~ 2~(hs/ilto~h)gs, the falling rate depends only on the coupling constant A, regard-
less of the spectrum of a F(co).

I. IN raODUCnON

The Josephson effect in a superconductor-normal-
metal —superconductor (SNS) junction' arises from the
phase-coherent quasiparticle dynamics between the two
NS boundaries of the junction, rather than from "Cooper
pair tunneling" as in the superconductor-insulator-
superconductor junction.

Quasiparticles (holes) incident on a region where the
superconducting order parameter is spatially varying
have a finite probability of being Andreev reflected as
quasiholes (particles). In the N layer of an SNS junction,
particles moving in the direction P and holes moving in
the —P direction are closely coupled by means of this
process. Whenever they are twice Andreev reflected
from the two NS boundaries of the junction, they return
to their original state. However, since the magnitudes of
the momenta of quasiparticle and quasihole states at the
same energy s are slightly difFerent (p —

q =2s/vr ), there
appears a beat pattern in the wave function of the com-
bined state. The density of states for the quasiparticles in
the N layer, therefore, shows corresponding interference
structures, such as de Gennes-Saint-James bound states
below the lower energy gap of the two superconducting
layers and the McMillan-Rowell, or the compound oscil-
lations above the gap. In each case the period in the
structure is Av„'sr/2b, where 2b is the N-layer thickness
and u„' is the x (perpendicular to the NS boundaries)
component of the renormalized Fermi velocity In the.
presence of a phase difference q&=P, —Pz between the or-
der parameters of the two superconducting layers, a
quasiparticle which is twice Andreev reflected at the two
boundaries effectively picks up the phase difference y,
and the energy where the interference structure appears
becomes shifted by E = fiu„'q&/4b. This—phase depen-
dence of the density of states determines the Josephson
current J(y), which is naturally dependent on the elec-
tronic transport properties of the N layer.

If N is a strong-coupling metal, phonons not only re-
normalize the quasiparticle properties but can also
scatter electrons, destroying the interference of the
phase-coherent quasiparticles. The Josephson effect is
thus favored by the weaker electron-phonon coupling.

Since the quasiparticle transport in the presence of the
phonon relaxation and renormalization is well under-
stood in condensed-matter physics, the observable quanti-
ties in the strong-coupling SNS junctions, such as the
temperature, or the N-layer-thickness dependence of the
Josephson current, must be predictable in terms of the
coupling properties. One could, far instance, tell quanti-
tatively how unfavorable it is for an SNS junction to ex-
hibit the Josephson effect if the strong-coupling proper-
ties of the materials are known. Conversely, a measure-
ment of the Josephson effect could yield information on
the electron-phonon coupling properties of an SNS sys-
tem. With high-temperature superconductors, the range
of possibilities of probing the N as well as the S of the
SNS system seems to have become wider.

In this paper we investigate the relation of the Joseph-
son current to the electron-phonon coupling of the N lay-
er of an SNS junction. For this we consider an SNS sys-
tem consisting of a strong-coupling normal layer with
Einstein phonons, and calculate the critical Josephson
current density as a function of the electron-phonon cou-
pling properties. Several authors " have studied the
Josephson effect in SNS junctions, and calculated the
Josephson current in some idealized model configuration
using a variety of methods. We adopt the simplified mod-
el configuration used previously, and will assume the
same Fermi surface parameters (the effective mass, Fermi
velocity) for all three layers. The pair potential E adopts
the step approximation and at the boundaries the match-
ing is assumed to be perfect, which means there is no nor-
mal reflection there.

A brief description of the theoretical basis is given in
Sec. II. In Sec. III we present the numerical results for
the critical Josephson current density J„anddiscuss its
dependence on the phonon frequency co h and the
electron-phonon coupling strength k.

II. BASIC THEORY

From the free-energy density F(R,y) of a supercon-
ducting system as a function of the phase difference y,
the y dependence of the Josephson current density J is
given by
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J(R,y) = Bg(R,q)),

with"

F(R,y)=2kT f dain 2cosh f dP p(PR, e, ;y),

(2)

For clarity, we place the XS boundaries at x =+b.
The boundaries are infinite in the yz plane, and the sys-
tem is invariant under translation in the y, z directions
and under rotation around the x axis. In the step approx-
imation, the solution of the quasiclassical equations in
each layer can readily be expressed in terms of the follow-

ing three trivial solutions:

where p is the quasiparticle density of states, which can
be determined most easily from the quasiclassical Green's
function g. The Green's function g (p, R, s;y } is a 2 X 2
matrix in particle-hole space and is the solution of the
quasiclassical equations' (see Ref. 15 for notation)

(Z+iQ)e

—(Z+iQ) e'~ 20x
exp

Vx

[er3 b„—g]+ivF Vg =0, (3)
(8)

g = 7T' (4)

with appropriate boundary conditions. ' The self-energy
b is expressed in the real gauge' by

Q (s+iQ)e

—('fkiQ)e'~
exp

Vx

(9)

0 Ae'

where the complex order parameter 5, together with the
renormalized energy Z, is the solution of Eliashberg's gap
equations. ' In the general case the gap equations must
be solved self-consistently with Eq. (3), which gives the
spatial dependence of the functions, h, c.. In the step ap-
proximation, which is good in thick junctions, b, and Z

are stepwise constant in space. In the normal state, 6 is
zero and Z reduces to the following analytical expres-
sion

s~=s~ dcoa F(co} imcoth . f —i——2 N 1 . 6 N

1 . 6+N+~
2 '2kT

where a F(co) is the electron-phonon coupling function
and f is the complex digamma function. In the weak-
coupling limit, b, reduces to the energy gap b, and s be-
comes c., the quasiparticle energy.

where 0=+K ~ —Z, with the branch cut along the neg-
ative s axis, and U„=vFp x. The + sign in Eqs. (8} and
(9) comes from vF.V=SU„Bx,where we take advantage
of the spatial symmetry of the configuration, namely, the
translational invariance of the system in the y and z direc-
tions. The first solution g, is the bulk solution which ex-
actly describes the superconducting state of the isolated
bulk material. The second and third basic solutions are
the so-called Tomasch solutions, which oscillate with the
Tomasch wavelength. This type of solution appears
whenever a system is in contact with another supercon-
ductor with different order parameter and incorporates
the transfer of the particle-hole coherence from one side
to the other.

In the present ideal model, where we assume the same
Fermi velocity and the same effective mass for all layers
and no boundary potential at the interfaces, the rather in-
volved boundary conditions for the quasiclassical Green's
functions reduce to a simple matching condition, namely,
the continuity of the g s through the interface. Applying
this condition to the two NS interfaces, we obtain the fol-
lowing solution for the ~z component of g, at x=0 in the
normal layer:

cgcos
2Z~b ~ 2s~b

+ +A+sin +
V 2 U

g (p, O, E;y}=m.

c,+sin
2c~b + Qscos

Ux

2c~b +
Ux 2

(10}

The p-resolved density of states is then given by

1
p(P, O, E;p)= ——Img(P, O, e;y) .

7T

III. RKSUI.TS AND DISCUSSIGN

I

phonon coupling of the W layer. The two S layers are as-

sumed to be in the weak-coupling lixnit with the saxne en-

ergy gap b, . In this case Zs and Qs in Eq. (10) reduce to c,

and +b, e, respectively. For the c—oupling function we

assuxne the Einstein spectrum

In this section we evaluate the maximum Josephson
current density J, and its dependence on the electron-

a F(co)=A, 5(co—co h),
2

(12)
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where co
„

is the single-mode phonon frequency and A, is

the electron-phonon coupling constant. While the actual
a F(ro) of a realistic system is usually a broad spectrum,
Eq. (12) is useful in understanding the underlying physics
of electron-phonon coupling.

As a preliminary result, Ziv(e) and p(e, P) at various

temperatures are shown in Figs. 1 and 2 for a choice of
material parameters. The real part of Zz(e)/e measures

the effective renormalization of the quasiparticle proper-
ties. At a=0, it is equal to I+A, , which is the static re-
normalization factor. As e increases to Rcvvh, the effective
renormalization factor increases. It peaks at e =ficovh and
then drops sharply and eventually becomes unity at
higher frequencies. At the same time a finite imaginary
part appears at quasiparticle energies above fico h, which
measures the relaxation rate of quasiparticles by phonon
emission and is proportional to the coupling strength A, .
Correspondingly, the resonance structures in the density
of states, de Gennes-Saint-James bound states and the
McMillan-Rowell oscillation, deviate from the weak-

coupling feature. The energy-dependent renormalization
factor, which effectively makes the quasiparticle velocity

vz dependent on energy, gives rise to a change in the po-
sition of the bound states or the period of the oscillation
below the phonon energy Rco h. The phonon relaxation,
the imaginary part of X(e), very strongly suppresses the
resonance structure above e =fico h

These features of the electron-phonon coupling result
in a reduction of the Josephson current density. Figure
3(a) shows the Josephson current density J as a function
of the phase difference y in the presence of strong cou-

pling to a single phonon mode, for various coupling
strengths. At T=O, in both the weak- and the strong-
coupling cases, J(p} is a sawtooth function linearly in-

creasing from —J, to J, over each interval of y from

(2n —1)n to (2n +1)n [8,9]. At very low temperatures,
as the kT =0.001hz curves in Fig. 3 show, J(q) is near
this limit. In the strong-coupling case, the magnitude of
J(q) is reduced from the weak-coupling values according
to the coupling strength A, . At higher temperatures, as

2.0—
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e/i), s,

FIG. 2. The density of states p(P, O, s;y) for the phase
differences q= 0 (solid line) and m./2 (dotted line), at
kT =0.015hs The . momentum direction P is such that
v, =0.5vF, and the N-layer thickness is 2b =33gs, where

gs=v~z/2i4. fuo~h=0. 6hs and A, =1. The resonance energy
points move down as Rv„fp/4b with the phase difference y.
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the thermal energy kT exceeds the bound-state level sepa-
ration at smaller angle (P x 1}, J(p} becomes
efFectively averaged within the "thermal width" kT and

approaches the sinusoidal form with increasing tempera-
ture. Additionally, the amplitude falls with increasing T.
In the weak-coupling case this gives a universal tempera-
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FIG. 1. Real and imaginary parts of the renormalized energy
'E~(c) for a F(co) of an Einstein phonon, at temperatures
kT=0.01 (solid line) and 0.15Acoph (dotted line). Aco» is the pho-
non frequency and the coupling strength is A, =1. The slope at
e, =0 of the real part of Z& at T=O (dotted straight line) is the
static renormalization factor 1+A,.

FICr. 3. (a) J(y) for fuuph=0. 6hz and various coupling
strengths A, =2, 0.67, and 0.33 (the pair of curves a, b, and c, re-

spectively) at kT=0.001 (solid lines) and 0.015k,z (dotted lines).
2b =33gs. The uppermost pair of the lines (iv) are the weak-

coupling curves of the same configuration. (b) The coph depen-

dence of J(y) for the same configuration for A, =0.33.
%co» 0.1 (solid) and 0.6hz (dotted lines) at different tempera-
tures kT=0.001 and 0.015hz.
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=2f ,dm
a F(m}

(13)

The cv h dependence of J, of constant A, is shown in Fig.ph

5. The frequency above which J, has only weak Nph

dependence (the "thick regime") varies with temperature.
At the low temperatures considered in the figure, it is
comparable to coo-irvg /2b, the bound-state level separa-
tion at zero angle. In a "thick" junction with 2b -30gs,

1.0—

ture dependence of the critical current for a given sample
geometry. In the strong-coupling case, the density of
states itself is dependent on temperature according to the
temperature-dependent quasiparticle renormalization.
This results, for stronger coupling, in a more rapid de-
crease of the Josephson current with temperature. This
feature of Fig. 3(a), shown for fico h=0. 6b,s, does not
change very much with A'rosh. The cosh dependence (for
constant A, ) is negligible except at very small values of
fico h, where, as Fig. 3(b) shows, it results in a higher criti-

ph&

cal current density J, .
In Figs. 4-6 we plot, as a function of various parame-

ters, the critical Josephson current density J„which is
the maximum value of J(q&) normalized by the weak-
coupling value of the same configuration at T=O. Figure
4 shows J, (A, } for several frequency values of the Einstein
spectrum, at different temperatures. J, (A, ) is a rapidly de-

creasing function of A, from the weak-coupling values at
A, =O. At higher temperatures, J, (A, ) decreases more rap-
idly with A, , as the inelastic electron-phonon scattering
rate increases with T and A, . However, the critical
current J, is almost independent of u h, as already shown
in J(p), except at very low frequencies (see the
fico„h=0.1b,s curves in the Figure), where the quasiparti-
cle relaxation effectively cuts off the higher-energy contri-
bution to the current [Eq. (1)]. Over the whole frequency
range above this small value, the effect of the phonon on
the Josephson current is well described by a single pa-
rameter, namely, the coupling constant
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FIG. 5. J,(co») for A, =0.3, 0.6, and 1, at temperatures
kT=0.001 (the dotted curves a, b, and c) and 0.015hz {solid
curves 1, 2, and 3). 2b =33gs. J, is normalized by the weak-

coupling value at T=O.

the frequency is about coo-rrb, s/15, that is, less than 1

meV for a junction with conventional superconductors.
With high-temperature superconductors, where b z -20
meV, this can be as high as -5 meV. Figure 6 shows the
temperature dependence of J,. The critical Josephson
current density drops quickly with temperature, and
more rapidly with stronger electron-phonon coupling. In
the thick regime, since J, is independent of the spectral
shape of the coupling function a F (ro }, J, ( T) gives a
direct measure of the coupling constant A, . The critical
current falls very rapidly also with the N-layer thickness
2b (Fig. 7). As the bound-state level separation becomes
smaller with increasing thickness, the thick regime ex-
tends to the lower-frequency region and the decrease of
J, with temperature becomes even faster with larger 2b.
However the qualitative features shown in the previous
figures remain the same.

Since T,ii (Ref. 21) increases with A, , for a strongly cou-

pling N layer we need a finite repulsive Coulomb pseudo-
potential p* to keep the N layer in the normal state, if AN

is not otherwise suppressed. The dotted line p* in Fig. 4
shows, for example, the magnitude of the potential need-
ed to ensure that Az =0, obtained by solving the
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FIG. 4. J, (A, ) for Ace»=0.6 (solid), 0.3 (dotted), and 0.16+
(dashed lines) at temperatures kT=0.001 (upper three) and
0.015hs (lower three curves). 2b =33(s. J, is normalized by
the weak-coupling value at T=O. The dotted line p* shows, as
function of A., the magnitude of the Coulomb pseudopotential
needed to keep the layer N in the normal state at kT =0.0154~
for Ace„h=0.64&.
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FIG. 6. J,(T) for A, =0.67 (lower three) and 0.33 (middle

three), and fico»=0. 1 (dashed), 0.3 (dotted), and 0.6hz {solid
lines). 2b =33gs. The additional dotted line is the weak-

coupling curve. J, is normalized by the weak-coupling value at
T=0.
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FIG. 7. J,(2b) for fico»=0. 66s and coupling constants A, =1
(pair of curves a) and 0.33 (pair of curves b) at temperatures
kT=0.001 (solid) and 0.015hs (dotted lines). The pair of
dashed curves (w) are the corresponding weak-coupling curves

at kT=0.001 (upper) and 0.0156s (lower line). J, is normalized

by the weak-coupling value of J,(2b =33gs) and T=O.

In conclusion, we have numerically evaluated the effect
of N-layer phonons on the Josephson current density in

SNS junctions. The strong electron-phonon coupling
suppresses the critical Josephson current density J,. The
dependence of J, on the phonon frequency is negligible

except for the case of couplings to a very soft phonon
mode, covh 5 nvr /2b. In thick junctions where the thick-
ness is 2b ~2m(bs/fico h)gs, the effect of the electron-

phonon coupling on the J, is governed by the coupling
constant A, alone, regardless of the spectral shape of the
coupling function a F(co) Th.us, in the thick regime the
temperature dependence of J, directly measures the cou-

pling constant A, . The electron-phonon coupling of the
two superconducting S layers, on the other hand, does
not contribute to the quasiparticle damping in the N lay-
er but gives rise to a phase shift in the interference pat-
tern of p(e). The infiuence of this phase shift on the
Josephson current is discussed elsewhere.

Eliashberg's equations with the parameters given in the
figure. The values indicate in this case that the observ-
able range of J, (A, ) is for A, & 1 with reasonable values of
p' ~0.5.
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