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String correlations of the antiferromagnetic spin-1 chain: Excited states and
magnetic-field efFects
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We calculate energies and wave functions of S = 1 antiferromagnetic Heisenberg chains with
single-ion anisotropy in a symmetry-breaking external magnetic field. From results for the string
correlation function for low-lying excited states we identify these states as solitons with respect to the
hidden string order. For finite anisotropic chains we investigate the transition to the fully magnetized
state at high magnetic fields and conclude that Bose condensation in an external magnetic field
occurs also for the anisotropic chain.

I. INTRODUCTION

It is now widely accepted that the ground state of the
isotropic antiferromagnetic S = 1 chain is disordered and
separated by a finite gap from the lower edge of the ex-
citation continu»m at wave number k = z'. Originally
this was conjectured by Haldane, i who argued that this
behavior is a general feature of one-dimensional antifer-
romagnets with integer spin S. This behavior is in sharp
contrast to that of chains with half-integer spin where
a gapless spectrum and an algebraic decay of correla-
tions are expected as is known f'rom the exactly solvable
S =

z problem. Although there is still no mathemati-
cal proof of Haldane's conjecture, numerical studies (ex-
act diagonalization of small systems and quantum Monte
Carlo simulationsz s) have left little doubt that a "Hal-
dane phase" with the described properties really exists in
some region of parameter space including a neighborhood
of the isotropic Heisenberg antiferromagnet.

In the past few years much progress has been made
in understanding the nature of the ground state in the
Haldane phase. There exists one model, with additional
biquadratic exchange, whose ground state is exactly solv-
able, giving an example of a Haldane state. e Further-
more, Kennedy and Tasakir have shown that the S = 1
Hami&tonian contains a hidden Z2 (3 Z2 symmetry. The
complete breaking of this hidden symmetry characterizes
the Haldane phase and is described by a nonlocal order
parameter introduced earlier by den Nijs and Rommelse
in the context of surface roughening. Numerical calcu-
lations of this "string order parameter" have indeed es-
tablished finite values for this quantity in the Haldane
ground state.

Investigations for excited states have mostly concen-
trated on calculations of the spectr»~. Besides e8'orts to
determine the gap at k = m, special attention has been fo-
cused on the lowest excited state with k = 0, because the
O(3) nonlinear cr model predicts that this state should

consist of two elementary excitations with k = z. Thus
the gap at k = 0 should be twice the gap at k = z.ii
This also follows from the approximate mapping of the
Haldane chain to a fermion or effective S =

z chain z'

and has been confirmed by Monte Carlo simulations and
exact diagonalization studies. 4 s

In this paper we investigate the Heisenberg antiferro-
magnetic chain with single-ion anisotropy in an external
symmetry-breaking magnetic field as described by the
Hamiltonian:

a=) S„S„„+D)(S„')'-B.) S„

= Hexc+&D+&Z .

The S„are spin-1 operators placed on a chain with pe-
riodic boundary conditions. We have calculated the en-
ergies and the spin and string correlation functions of the
ground state and some of the lowest excited states with
k = 0 and k = z'. Our results for energies and wave func-
tions were obtained on an IBM RS6000 workstation using
a Lanczos algorithm to diagonalize finite chains with up
to 16 sites (up to 18 sites for the case with conserved
S, ,). The maximum number of sites, N = 18 and
16, respectively, is the current limitation &om the avail-
able memory space and agrees with the maximum chain
length treated in previous calculations. ' Much longer
chains can be dealt with in good approximation by the
recently developed density matrix approach; this ap-
proach, however, is not well suited for nonlocal operators,
such as string correlators. Therefore, for a discussion of
the string correlations, we found it appropriate to use the
standard diagonalization approach, which gives the exact
results for chains up to 18 sites.

There exist several magnetic chain materials, which
are good candidates for a realization of a Haldane phase
in nature. Among these, CsNiClq (Refs. 17, 18) and
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P = exp[nrS~* t]

survives as good quantum number. PSF commutes with
the Hamiltonian since K,„,and Kz do not change S~«
at all, whereas KD does change S~«by either zero or
k2. The possibility to classify eigenstates by the spin
Hip parity Psp refiects the invariance of the system under
reQections in spin space perpendicular to the external
field.

Prom the wave functions of the lowest states we have
calculated the following quantities: (i) the magnetization

(ii) the spin correlation functions

8 ' (n)= — ) 8;8,+„), 0! = X~Q~Z& (4)

(iii) and the string correlation functions

Ni(C2HsN2)2NO2CLO4 (NENP) (Ref. 19) are the most
prominent ones. Experiments in an external magnetic
field B have been done in some detail for NENP and ex-
trapolate to a gap vanishing at some critical field B .
For a full account of the behavior of this material, single-
ion anisotropies have to be taken into account, whereas
CsNiC13 is to a high degree isotropic.

Energies of the low-lying states of small chains for mag-
netic 6elds B ( B, were recently calculated by Golinelli
et al. using the Hamiltonian appropriate for NENP.
They found good agreement with experimental results
for NENP and we reproduce their results. In addition we
have calculated the correlation functions and also consid-
ered values of the magnetic 6eld B & B,.

From our numerical data we present the following re-
sults.

(i) String correlations for the lowest excited states will
be discussed for the isotropic chain (D = G, B = 0) in
Sec. II. From our results we find numerical evidence that
the lowest excited state of the Haldane chain is appropri-
ately described as a soliton in the string order.

(ii) The e8'ect of a symmetry-breaking magnetic field
in the anisotropic chain (D P 0, B g 0) will be discussed
in Sec. III. The phase transition at a critical magnetic
field B = B„which has been discussed for the isotropic
model, ' ~ is found to correspond to a smooth crossover
in the string correlations. The Bose condensation at the
critical 6eld is shown to persist when anisotropy is in-
cluded.

Translation and reHection symmetry allow us to clas-
sify the eigenstates of the system by wave number k and
parity R = k. For the isotropic model (D = 0, B = 0)
the total spin of the chain Sts„and one of its components,
e.g. , S~ ~, are conserved. In the case D g 0, B = 0
(D = 0, B g 0) only the component of total spin St t
(S~ ~) remains a good quantum number. In the general
case, D P 0 and B g 0, and there is no conserved com-
ponent of spin, but the spin Hip parity

o. = z, y, z. (5)

There exist some trivial identities between the string
and spin correlation functions for n = 0, 1 and between
spin as well as string correlation functions at sites related
by reHection symmetry, n and N —n We have used
these identities to make sure that our numerical results
are consistent. The numerical accuracy of our results can
also be checked by comparing the quantity

N ) (S (1) + DS (0)j —B.m,

with the energy E as calculated by the Lanczos routine.
For the lowest state in each subspace the two numbers
differ by slightly less than 10 s (for chains with 8 and 16
sites the two results actually agree up to 10 ).

II. STRING CORRELATIONS
AT THE ISOTROPIC POINT

For the isotropic model (D=G) the conservation of S, ,
enables us to deal with chains with up to 18 sites. Also,
it is sufficient to do calculations for the case of zero field
only, because every simultaneous eigenstate of 8,„,and
S, , will remain an eigenstate at finite B .

The ground state in the Haldane phase is a singlet
with wave number k = 0 and parity R = +. In zero field
the first excited states form a triplet (Haldane triplet)
with k = x and R = —.In the k = 0 sector the 6rst
excited states have Sq q ——2 and transform even under
spatial reHections, R = +. Furthermore we have calcu-
lated the multiplets with (Sq q ——3, k = m, B = —) and
(St q

——4, k = 0, R = +), because these can be consid-
ered approximately as three- (respectively four-) particle
excitations. 2i'22 From the fact that the correlation length
is known to be of the order of six lattice sites it is clear
that qualitative information only can be obtained from
our liinited chain length calculations for states with more
than one excitation.

We have calculated correlation functions for the two
lowest states with k = 0 (S = 0 and S = 2) and the
lowest state with k = vr (S = 1). The presence of the
magnetic field has the efFect of selecting &om the cor-
responding multiplet as the lowest state that with the
maximum value of S~ t. Therefore the data for the ex-
cited states are for St ~ equal to 1 and 2, respectively.
Only for the excited states with S~ t g 0 do we have
to distinguish between longitudinal and transverse corre-
lations. Figure 1 shows our results for the longitudinal
(parallel to the external field) string correlations T ' (n).
The results as shown are the original data of the chain
with 18 sites for the three states.

For the Haldane ground state (S~ ~
= 0 for magnetic

fields below the Haldane gap) we reproduce results as
found by other groups: The spin correlations decay quite
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FIG. 1. String correlation function T ' (n, ) parallel to the
quantization axis for the ground state (S = 0) and the two
lowest excited states (S = 1, 2) of the isotropic (D=O) chain
with 18 sites.

rapidly (the correlation length has been estimated to be
about six lattice spacings) while the string correlations
go to a finite asymptotic value:

lim T ' (n) = 0.37.

T ' (n) = const x (1 —2n/N) .

The numerical data as shown in Fig. 1 are in very good
agreement with this analytical result following &om the
soliton character of the excited state. Excited states of
this type have previously been suggested24 for the antifer-
romagnetic chain with additional biquadratic interaction,
which has an exactly solvable ground state.

For higher excited states our calculations have only
qualitative significance since due to the limited chain
length the interaction between elementary excitations
will be overemphasized; nevertheless, our results fit into
the picture just described.

The string correlations show periodic changes in sign,

It should be noted that this numerical value is quite
well reproduced by the approximate theory of Kennedy
and Tasaki, which gives p as asymptotic value (for the
isotropic Hamiltonian, independent of the strength of bi-
quadratic exchange).

We now proceed to a discussion of the behavior of T '

in the lowest excited state: From Fig. 1 we see that
T ' (n) for S~ ~

= 1 changes sign for n = N/2. This re-
sult allows us to characterize the lowest excited state as
a one-soliton state: The ground state has broken symme-
try with respect to the (nonlocal) string order parameter
and the simplest excited state is characterized by a lo-
calized region where a transition between two possible
values of this order parameter takes place. The wave
function of this state can be calculated in the mean-field
approximation of Kennedy and Tasaki~ and leads to the
following expression for the string correlation function
(n g O, N) 2s

which are correlated with the total magnetization S~ t.
For St*, = m, m = 3, 4, the string correlations change
their sign m times when going once around the chain.
This behavior of T (n) can be interpreted as an indica-
tion of the multiparticle character of the excited states,
with each elementary excitation changing the sign of the
order parameter once. Thus, our data can be considered
as qualitative evidence supporting the field theoretic pre-
dictions about the excitation spectrum. In contrast to
the results of Ref. 16 these results do not test the prob-
lem of m elementary excitations in the dilute regime; here
interactions have strong effects for m & 1. On the other
hand, the string correlation function shows much more
directly than the local magnetization the qualitative
effect of elementary excitations on the wave functions,
even for rather short chains.

The results for the string correlation functions are in-
dependent of the magnetic field since the wave functions
do not depend on the magnetic field in the isotropic case.
The energies, of course, do depend on the external field
and at a field strength equal to the Haldane gap the
St*~ = 1 component of the k = vr triplet crosses the
Haldane ground state. If excited states at k = O, x are
simply composed of the Haldane triplet as the basic el-
ementary excitation, then, in the thermodynamic limit,
states with any number of these particles will condense at
the same field. What prevents the condensation of states
with an arbitrary large number of elementary excitations
is the interparticle repulsion. ' For finite chains this
interparticle repulsion is observed already for two excita-
tions: Considering the lowest multiplets S = 0, 1, 2, the
ground state switches from S = 0, k = 0 to S = 1, k = 7r

at B = Aq and from S = 1, k = m to S = 2, k = 0
at B = 262, where A~ ——AA, — is the Haldane gap and
62 = Ag —p = 26i+b is the excitation energy of the two-
particle state with b & 0 due the repulsion in the finite
chain. A finite size analysis of the quantities —6 leads
to a limit independent of m for this quantity, which is the
numerical evidence for Bose condensation in the isotropic
chain. This result so far has been obtained only for the
isotropic chain —in the following section we will discuss
corresponding results for the ansiotropic system.

III. ANISOTROPIC SYSTEM
IN A SYMMETRY-BREAKING

EXTERNAL FIELD

We now turn to the case of the anisotropic chain,
D g 0, where no component of the total chain spin is
conserved for B g 0. As discussed above, the only re-
maining good quantum numbers are k, R and the spin
parity PsF, this means that states with even (respec-
tively odd) values of S„~now mix. Owing to the reduced
symmetry we were only able to perform calculations for
chains with up to 16 sites.

In the following we present results for the value D =
0.2, which is close to the best known value for NENP,
D = 0.18. In addition, NENP is characterized by a small
in-plane anisotropy, H~ = Eg,.(S; ) with E —0.02,
which we did not take into account. As before, we have
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calculated the ground state (k = 0, R = +, Psp ——+) and
the lowest excited states with k = vr (R = —,Psp = —)
and k = 0 (R = +, Psp = +). Our data for the energies
of these three states in the chain with 14 sites as function
of the field are very close to those of Golinelli et al. , who
calculated the energies of the lowest states with the exact
NENP parameters. Due to the reduced symmetry the
discontinuous change in the ground state of the isotropic
chain is now replaced by a smooth behavior: The energy
diHer ence

N
6
8

10
12
14
16

B (k=z)
0.79038
0.67019
0.60617
0.56867
0.54543
0.53030

0.49 + 0.01

TABLE I. Critical field strength B (1)(N).

b,E(B ) = E(k = 7r, R = —,Psp = —,B )
—E(k = O, R = +, Psp =+;B )

of the two lowest states now oscillates around zero as
shown in Fig. 2. This illustrates that with increasing
external field avoided crossings occur; for finite chains
the ground state alternates between the two surviving
subspaces.

To discuss the phase transition at a critical field B, and
a possible Bose condensation in the anisotropic chain we
have followed difFerent approaches.

A critical field B, is determined &om the Grst zero
of AE(B ) with increasing B, B, = B, i. Values for

B, are given in Table I and extrapolate to B, = 0.49+(x) (x)

0.01 for N ~ oo. This result was obtained using a one-
parameter family of transformations, introduced by van
den Broek and Schwartz (VBS) (for a description see
Ref. 25). The free parameter in these transformations
was used to determine the error bars. It appears that,
although the zero field gap is smaller compared to the
isotropic case, the critical Geld strength is larger.

A critical field B( ) is determined f'rom the first avoided
crossing in the subspace (k = 0, R = +, Psp = +). The
string correlations refiect this avoided crossing as seen
from Fig. 3: They show a crossover between the values
corresponding to the two lowest states in this subspace.
B( ) may be defined as the magnetic field at which the
string correlations of the two states are equal. For both
states the string correlation increases (respectively de-

creases) linearly near the transition and B, ; they are

therefore suited better than energy data to determine
the critical field. When we approach the isotropic case
the crossover in the string correlations becomes increas-
ingly steeper and all characteristic fields trivially agree.
In terms of b,E(B ), B( ) is to be identified with the
magnetic field corresponding to the first minimum of
b,E(B ). Numerical values for 8( ) have again been de-
termined Rom VBS transformations. However, since the
extrapolations are less accurate than for B( we only
mention that the result does not contradict the expec-
tation that all characteristic field strengths are identical
also for anisotropic interactions.

The width of the first intermediate phase b,B,
B, 2 —B, i, where B, 2 is the second zero of AE(B ),
characterizes the influence of particle interactions and fi-
nite size efFects on the Bose condensation. In the isotropic
case this width extrapolates to zero in the thermody-
namic limit. In order to see whether this is the case for
the anisotropic chain as well, we have investigated EB,
in a finite size analysis as shown in Fig. 4, where the
width 6B,(N) of the first phase with k = 7r is plotted
versus I/N. For comparison the data of the isotropic
system [b.B,(N) = b, k —p(N) —2b, s (N)j are included.
The actual data are listed in Table II. We see that this
width extrapolates to zero for N ~ oo and we conclude
that the description of the phase transition in terms of a
Bose condensation as given by S@rensen and Affieck z'i

is consistent with the numerical data also for a symmetry-
breaking magnetic field. Assuming only a 1/N depen-

0.8-

0.6—

&(~*)/&(0)
0.4—

-0.2
0

I I I I I I I

0.2 0.4 0.6 0.8 1 1.2 1.4
B

0.2—

Tz,z(7)

0.05—

I I I I

0.55 0.6 0.65 0.7
I3

0.35- ++-
000 ground state && ++

0 excited state + ++00 +
0.25- 00 +0 +0 +0 +0 +

0+
+0

+ 0
0.1— + 0

+ 0+ 0+ 0
+ 00

0 — +++ 0++
00

00
-0.05— 000

I I I

0.5 0.75 0.8

FIG. 2. Normalized excitation gap b,E(B )/AE(0)
[b,E(B ) = E(k = z, B ) —E(k = 0, B )] for the anisotropic
chain (D=0.2) with 14 sites as function of the external field.

FIG. 3. String correlation function T ' (7) parallel to the
Geld for the ground state and the lowest excited state with
k = 0 of the anisotropic chain (D=0.2) with 14 sites as func-
tion of the external Geld I3 .
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0.7- TABLE II. Width EB,(N) of the first intermediate phase
with I(,'= m for finite chains.
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N
6
8
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D =0.0
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0.55329
0.44746
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0.31448
0.26958
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FIG. 4. The width AB, of the first intermediate phase with
a k = z ground state vs 1/N. The data shown are for the
isotropic (D=O.O) and the anisotropic chain (D=0.2).

dence of finite size effects gives slightly negative values
for N m oo. Obviously higher-order corrections are still
important. An estimate of the thermodynamic limit us-

ing the same type of VBS transforms agrees with the
expectation that EB, will vanish.

IV. CONCLUSIONS

We have successfully applied the concept of a hidden
(string) order parameter to the excited states of the an-
tiferromagnetic spin-1 chain. We have found that the
elementary excitations in the Haldane phase have a char-
acteristic effect on the string order: Each such particle
produces one change of sign for the variation of the order
parameter correlation function with distance. On this
basis we interpret the elementary excitations as solitons
with respect to the string order. The discussion in terms
of the string order parameter is thus the most adequate
presentation of the wave function of the low-lying excited
states.

We have also considered the effect of an external mag-

netic field on energies and wave functions of the Haldane
ground state and the low-lying excited states. An ex-
ternal field decreases the energy of excited multiparticle
states until at a critical field B, Aa the Zeeman en-

ergy compensates the particle "rest mass" and a phase
transition occurs. In the isotropic limit (and equally in
the case of rotationally invariant anisotropies), interac-
tions between the elementary excitations are essential to
lift the degeneracy at B, of the Haldane ground state and
the multiparticle states and to establish the new state as
described by Tsvelickzi and Affieck. zz For finite values of
N these processes occur as a sequence of discrete steps.

For the anisotropic chain without rotational symmetry
with respect to the magnetic field, degeneracies are lifted
not only by interactions but also by the coupling between
all states with a given spin fiip parity: The multiparticle
states no longer differ by quantum numbers related to
rotational symmetry; there are only two subspaces left,
corresponding to even and odd values of St t. In the
thermodynamic limit we again have found degeneracy,
indicating a Bose condensation as in the isotropic case.
This result then establishes the interpretation of the ex-
citation spectrum in terms of elementary excitations also
for the anisotropic case.
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