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The spin-% and spin-1 Heisenberg antiferromagnet and XY model are studied at zero tempera-
ture on the simple cubic, body-centered-cubic, and (for the XY case only) face-centered cubic lat-
tices. Series expansions around the Ising limit are calculated, for the ground-state energy, staggered
magnetization, transverse susceptibility, staggered parallel susceptibility, energy gap and dispersion
relation, using a linked-cluster technique. The results are compared with spin-wave perturbation
theory, which has been extended to third order for the Heisenberg antiferromagnet, and the agree-
ment is excellent. The finite-size scaling corrections which are calculated from the spin-wave theory
are also entirely consistent with the predictions of effective-Langrangian theory.

I. INTRODUCTION

The Heisenberg antiferromagnet on a square lattice
has recently attracted much attention,! due to its possi-
ble connection with high-T,. superconductors. Following
work of Singh,? we were able to show® that results of high
accuracy can be obtained for the zero-temperature limit
of the model using series expansions about the Ising limit.
Their accuracy has only recently been matched, in fact,
by the quantum Monte Carlo calculations of Runge.*
Furthermore, it was shown that spin-wave theory agrees
very well with the series results, when carried to higher
orders,®® and that the spin-wave theory also gives de-
tailed predictions for the finite-size scaling corrections in
the model,® which are consistent with universal formu-
las derived from the effective-Langrangian approach.”®
Similar results were also obtained for the quantum XY
model at zero temperature on the square lattice.?

In view of these results, our purpose in this paper is
to apply the same techniques to the three-dimensional
versions of these models. There are many real magnetic
systems which may be described by these models in three
dimensions: See for example the reviews by de Jongh and
Miedema!! and Betts.!? The lattice coordination number
is generally larger in three dimensions than in two, and so
the quantum fluctuations are less effective in reducing the
long-range order. As a result, spin-wave theory and the
series expansions should be even more accurate. These
expectations are borne out by our results.

The study of quantum spin systems in three dimen-
sions has a long history.® The existence of long-range
order in these models on the cubic lattice at low tem-
peratures has been rigorously proven by Dyson, Lieb,
and Simon,'* Kennedy, Lieb, and Shastry,'® and Kubo
and Kishi.'® The development of spin-wave theory for
the Heisenberg antiferromagnet goes back to early work
by Anderson,!” Kubo,'® Oguchi,'® and Stinchcombe,2°
among others. Nishimori and Miyake?! have given a self-
consistent spin-wave treatment to second order. Spin-
wave theory was previously thought to be unsatisfactory
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in the case of the XY model,’® but recently Gomez-
Santos and Joannopoulos?? have shown that, by a dif-
ference choice of quantization axis, an accurate the-
ory can be developed. Variational approximations have
been used in early work by Marshall?®* and Taketa and
Nakamura.?* Perturbation expansions about the Ising
limit have been used by Davis2® and Parinello and Arai?®
for the Heisenberg model. A related approach, us-
ing projection operator techniques, has been developed
by Becker, Won, and Fulde?” and applied to three-
dimensional lattices by Kim and Hong.?® However, long
expansions, comparable to those in two dimensions, have
not previously been obtained for three-dimensional lat-
tices. A finite-cell calculation has been presented by
Oitmaa and Betts,?® for both the Heisenberg and XY
models. Quantum Monte Carlo simulations have been
confined to the two-dimensional models, as far as we are
aware.

The remainder of the paper is set out as follows. In
Sec. II we briefly describe the method of derivation of the
series, discuss some technical details, and present results.
Series are obtained for the ground-state energy, staggered
magnetization, parallel staggered susceptibility, uniform
perpendicular susceptibility, and energy gap. In Sec.
III we develop spin wave theory to third order for the
Heisenberg antiferromagnet on the simple-cubic (sc) and
body-centred-cubic (bcc) lattices. Results are obtained
for all above quantities as well as for the spin-wave veloc-
ity. Finite-size scaling corrections are discussed and com-
pared with the predictions of effective-Lagrangian theory.
We have previously given a second-order spin-wave analy-
sis for the XY model on the three dimensional lattices.3?
In Sec. IV we present an analysis of the series and a com-
parison of the results of both approaches. The agreement
is extremely good. Finally in Sec. V we give a summary
and conclusions.

II. DERIVATION OF SERIES

We consider the anisotropic Heisenberg antiferromag-
net (X XZ model) with Hamiltonian:
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H =) [S{S; +(S7Sq + 5/S%)] , (1)
(tm)

where (Im) denotes a sum over all nearest-neighbor pairs.
The limits £ = 0 and £ = 1 correspond to the antifer-
romagnetic Ising model, and isotropic Heisenberg model
respectively. We also consider the anisotropic quantum
XY model

H=-Y (575 +xSySY,). (2)
(tm)

In each case the Hamiltonian has the form H = Hy+zV
and we seek to derive long perturbation expansions in
the anisotropy parameter z, i.e., about the Ising limit.

Our approach uses a cluster expansion method due to
Nickel,3! which has been explained in some detail in one
of our earlier papers.3? We present here a brief summary
of the essential ideas.

To obtain the ground-state energy EYY for a lattice of
N sites one considers a set of clusters {a} and writes

EY =) Clea, (3)

where CY is the embedding constant for cluster a and ¢,
is the “cumulant energy” of cluster a, as defined below.
The ground-state energy for cluster § can also be written

Ef =) Clea, (4)

and this results in an iterative method for obtaining the
cumulant energies €, via the ground-state energies of a
set of clusters of increasing size. The ground-state ener-
gies Eéa are obtained as power series in = through an ef-
ficient computerized Rayleigh-Schrodinger perturbation
algorithm. The calculation of the energy gap is a lit-
tle more involved and we refer the reader to Ref. 32 for
further details.
What is needed then is the following information.
(i) A list of all clusters up to the order required. For
the expansions considered here the clusters are grouped
J
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TABLE 1. The number of clusters generated for each lat-
tice.

Ground-state energy Energy gap
Order No. of Clusters Order No. of clusters
sc lattice 12 12280 11 5510
bcc lattice 12 49021 11 15295
fcc lattice 9 7215 9 9431

according to the number of sites or vertices. An efficient
computer algorithm is used to generate all connected
clusters.

(ii) The embedding constants CY. These are the
“strong” or low-temperature lattice constants, in stan-
dard terminology, and are enumerated by direct counting
or algebraic reduction methods.

(iii) For each cluster a, a list of subclusters and cor-
responding embedding constants. For the ground state
only connected clusters are needed while for the energy
gap disconnected clusters, including those with one iso-
lated vertex, are also needed. Table I gives the number
of clusters generated for each lattice. Not all of these in
fact contribute to the order of the series obtained, the
acceptance ratio being of order 50%.

A number of checks with previous work have been
made. The list of connected clusters and their embedding
constants may be used to define a generating function

F(z,b) = Y A, (b)z", (5)

where A, (b) is a polynomial whose coefficients give the
number of connected r-site clusters with various numbers
of bonds (edges). Sykes and Wilkinson®® and Sykes®*
have given the A,’s to order 13 for the sc and bcc lat-
tices, respectively. Our data agree completely with these
results. The data for connected and disconnected clusters
can be used to compute the low-temperature polynomials
L, (u) for the Ising model.3® The polynomials obtained in
this way agree completely with published results for the
sc lattice,3 the bcc lattice,3%36 and fcc lattice to order
8.35:36 The polynomial Lg, which is obtained from our
data as

Lo = 80u3® + 438u3* + 177643 + 6976u3° + 23898u37 + 46567u® + 126346u>°

1
+53220u%° — 179270u*! — 1353313u*? — 6743976u*3 — 4449786u*t — 37125033§u45

+192574385u*® + 452391180u*” — 1018385574u*® — 4958299828u° + 18998141497u°°
4
—27672861980u°" + 20978781848u°* — 826964814853 + 1346898697§u54, (6)

is, to the best of our knowledge, new.

For the X X Z model, series have been calculated for
the ground-state energy per site Eo/N, the energy gap m,
the staggered magnetization M, the parallel staggered
susceptibility xﬁ , and the uniform perpendicular suscep-
tibility x 1. The staggered perpendicular susceptibility
x3] is related to x 1 by the relation x5 (z) = xi(—z).
The resulting series for the spin—% and spin-1 Heisenberg
antiferromagnets on the sc and bcc lattices are listed in
Tables II and III.

[
For the XY model on bipartite lattices, such as the sc

and bcc lattices, the isotropic antiferromagnetic model

HA =) (SPSy +S/S%) (7)
(tm)

is related to the ferromagnetic one by a simple spin trans-
formation. Hence, there exist the following relations be-
tween the isotropic XY ferromagnet (F'), antiferromag-
net (A), and the model described by Eq. (2):
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TABLE II. Series coefficients for the ground-state energy per site Eq/N, the staggered magnetization M +, staggered parallel
susceptibility xf," , and the energy gap m. Coefficients of ™ are listed for both the spin—% and spin-1 Heisenberg antiferromagnets.

n Eo/N M* X m
Spin-—;- X X Z model on the sc lattice
0 ~3/4 1/2 0 3
2 —1.500000000000x 10! —6.000000000000x 10~ 2 4.800000000000x 10~ 2 —1.95
4 5.000000000000x 10~ 4 —4.011111111111x10~3 1.437209876543x 102 —7.480952380952x 10~ 2
6 —1.565320944488x 103 —3.724431496528 X103 1.172820560775x10~ 2 —2.386949857024x 10~ !
8 —4.704476286333x10™* —1.921150493841x1073 8.712598733252x10~3 —3.884790029204x 102
10 —2.617515568853x 10 * —1.282583243920x 1073 7.077235096534x 103 —1.028725932747x107!
12 —1.500007148263x10~* —9.023859053626 10~ * 5.955040359990% 10~ 3
Spin-1 X X Z model on the sc lattice
0 -3 1 0 6
2 —2.727272727273x107 —4.958677685950x 102 1.803155522164x10~ 32 —3.327272727273
4 —1.656649135988x 102 —1.072887293023x 10~ 2 9.078996187332x10~3 —6.352818729770x 107!
6 —4.402238091215x 103 —4.729751792196x 1073 6.071618928288x 103 —3.345548334284x107 !
8 —1.834625905661x10~ 3 —2.741948288721x10~3 4.682294372222x1073 —2.098357436338x 107}
10 —9.267889233149x 10~ * —1.779143740889x10~3 3.797492779253x10~3 —1.472426300104x 107}
12 —5.334684310134x 104 —1.249464211646x10~3 3.196605888446x 103
Spin—-} X X Z model on the bcc lattice
0 -1 1/2 0 4
2 —1.428571428571x 10~ ! —4.081632653061x 102 2.332361516035x 1072 —2.380952380952
4 —4.877775285939x10~ 3 —6.429355947185x10~ 3 1.006610968929 x 10~ 2 —3.196285196285x 10}
6 —1.649666357885x10~3 —3.035412156556 X103 6.737938708739x 103 —2.252299684735x 10!
8 —6.929303903362x10~* —1.773699786862x 102 5.198354403799x 103 —1.264167954066x 10!
10 —3.520035082119x10~*4 —1.154245309679x 103 4.216698493871x10~3 —9.455214371223x10~ 2
12 —2.037541131770x10~* —8.129275009943x 104 3.550840789723x 103
Spin-1 XX Z model on the bcc lattice
0 -4 1 0 8
2 —2.666666666667x10™* —3.555555555556 1072 9.481481481481x10~3 —4.304761904762
4 —1.991315453384x1072 —8.848010368105x10~3 5.202442595704x 103 —9.097495817418x10~ !
6 —5.314050576463x 103 —3.986869676812x 1073 3.579041013496x 103 —4.596687578938x 107!
8 —2.168020096514x 103 —2.281649098940x 103 2.742143507967x10™3 —2.877155097259x 10~}
10 —1.093837681014x 1073 —1.480212403691x 103 2.225922465809x 1073 —2.018710900252x 10!

Eo(z=1) = Eo(z = —1) = E{ = ET | (8a)  the case of bipartite lattices. The resulting series for the
My(z=1)= M,(z = —1) = MF = MAS | (8b) spin-% XY model on sc, bec, and fcc lattices are listed
7 AS in Tables IV and V.
Xzz (;c.—_— 1) = Xz=z (IE = _1) = Xez = Xzz > (SC)
Xyy(z =1) = XyA,}S = Xfy? (8d)
Xyy(T =—-1) = X;Ay = Xf{,s, (8e)
Xez(z =1) = x4 = xF,, (8f) III. THIRD-ORDER SPIN-WAVE RESULTS
Xoa(@ = —1) = x4 = xS, (8g) FOR THE XXZ MODEL

where the superscript S denotes the staggered magnetiza-
tion and susceptibility. The fcc lattice is not a bipartite
lattice, and the ground-state energy E, and its deriva-
tives are functions of x, rather than functions of z2 as in

The general third-order spin-wave theory and its ap-
plication to the square lattice has been discussed in Refs.
5, 6, where the physical quantities are mainly functions
of Cy,(z) defined by

TABLE III. Series coefficients for the perpendicular susceptibility x.. Coefficients of ™ are listed for both the spin-% and

spin-1 Heisenberg antiferromagnets on the sc and bcc lattices.

n Spin-} sc Spin-1 sc Spin-1 bcc Spin-1 bcc

0 /6 /6 1/8 /8

1 -1/5 —2/11 -1/7 -2/15

2 0.2047619047619 0.1827651515152 0.1446428571429 0.1337121212121
3 —0.2089841269841 —0.1855011895818 —0.1475695223144 —0.1353154533844
4 0.2093120630912 0.1857250599719 0.1478680866468 0.1354155330063
5 —0.2110707085205 —0.1867456123021 —0.1489148208821 —0.1360495759429
6 C.2113749749681 0.1868243559399 0.1490393875942 0.1360873635876
7 —0.2122818126498 —0.1873888712210 —0.1496187218766 —0.1364307482710
8 0.2124299805549 0.1874341182247 0.1496933120095 0.1364510018592
9 —0.2130062125841 —0.1877882149073 —0.1500571373779 —0.1366669886154
10 0.2131115958540 0.1878171707705 0.1501053807278
11 —0.2135065810254 —0.1880607495981 —0.1503559053134
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2 n
Calz) = 3 D11 —2™)™/* — 1), (9)
k
and the structure factor ~; is defined by
_1 ik-p
T = zp: etrr. (10)

z is the coordination number, and the sum over k denotes
a sum over the first Brillouin zone of the sublattice . For
a bulk system, the momentum k is continuous over the
first Brillouin zone, but for a finite-lattice system, the
momentum k is discrete. For the sc and bcc lattices, the
structure factor v, the first Brillouin zone for the bulk
system, and the discrete momenta k for a finite-lattice
system are the following:
(1) sc lattice:

Yk = [cos(kza) + cos(kya) + cos(k.a)]/3 , (11)
momentum k:

—m/a < kg, ky < m/a, |k;| <m/(2a), bulk system,

271

— 1=12,...,L
aL ¢ ’

kz(1), ky () =

k.(j) = ji=12,...,L/2, (finite lattice system.

oL’
(2) bec lattice:
Yk = cos(kya/2) cos(kya/2) cos(k,a/2) , (12)
momentum k:

—m/a < kg, ky,k, < 7/a, bulk system,
2w

k::.)k.’kz.:_-—v
(3, 0), K2 5) = 2

1=1,2,...,L, finite-lattice system,

where L and a are the lattice size and the lattice spacing,
respectively. For convenience, we set the lattice spacing
a = 1 from now on. For a bulk system, the asymptotic
behavior near z = 1 of C,, is given in Ref. 30. We must
note that the singularity here is different from that on the
square lattice, where the singular terms are of the form
(1 — 22)™/2, whereas here the singular terms are of the
form (1 — z2)"In(1 — z?) (n is a integer). The finite-size
corrections to C; can be calculated in the same way as
for the square lattice.® The results are the following:
(1) sc lattice:

TABLE IV. Series coefficients for the ground-state energy per site Eo/N, the magnetization M., and the parallel suscepti-

bility xz= of the spin-% XY model. Coefficients of z™ are listed.

n Eo/N Mz Xzz
Spin-; XY model on the sc lattice
0 ~3/4 1/2 0

—3.750000000000 %102
—2.781250000000x 1073
—7.641105083510%10*
—3.116037629649x10*
—1.569872619187x10™*
—9.016114952890x10~°

—
N O 0O RN

—

Spin-1 XY model on the bec lattice
-1

—3.571428571429x10~2
—3.334197690065 %1073
—9.009318847504x10™*
—3.672948080736x10~*
—1.852091587882x10*
—1.064041460129x10~*

—
N O WO S NO

72}
o]

in-3 XY model on the fcc lattice
-3/2
0
—3.409090909091 102
—6.198347107438x1073
—2.475737616016x 103
—1.184735853462x 1073
—6.643312716138x10™*
—4.094622435794%10*
—2.706300376371x10*
—~1.883309173349x10™*

© 0~ Ui W -=O

—1.500000000000% 102
—3.438194444444x1073
—1.575367408278x1073
—9.011185812862x10™*
—5.840152277071x10*
—4.099185424317x10™*

—1.020408163265x 1072
—2.890218493055x1073
—1.316221737101x1073
—7.540401362783x10~*
—4.895797329177x10*
—3.439572927014x 10 *

—6.198347107438x1073
—2.253944402705x 1073
—1.388229359974x1073
—8.912659135055x10*
—6.283570849856x10~*
—4.661098853272x107*
—3.601275380037x10~*
—2.867757000281x10™*

1.200000000000 % 102
5.723256172840x1073
3.932928543228x1073
3.001822149165x10~3
2.431110482685x1073
2.046130221965%x10~3

1/2 0

5.830903790087x 1073
3.357080496772x1073
2.317905365556x 1073
1.776563284100x 1073
1.443527472221x1073
1.217306755892x 102

1/2 0

0 0
2.253944402705x1073
1.229424219657x1073
1.039956403788x1073
8.397087738470x10~ 4
7.148069660409x10*
6.204928498120x10~*
5.490230234957x10~*
4.924784303546x107*




50 HEISENBERG ANTIFERROMAGNET AND THE XY MODEL AT ... 3881

Cs(1) = —0.220369512500 + 3.932/L% + O(L™") ,

(13a)
Ci1(1) = —0.0971580039513 — 1.934209/L* + O(L™®) ,

(13b)
C_1(1) = 0.156715415334 — 1.5642841/L* + O(L™?) .

(13c)

(2) bec lattice:

Cs(1) = —0.164974389703 + 1.2769393/L° + O(L™7) ,

(14a)
C1(1) = —0.0730376707635 — 0.83753691/L* + O(L~®)
(14b)
C_1(1) = 0.118636387164 — 0.903139838/L% + O(L™3) .
(14c)

A. Ground-state energy

As discussed in Ref. 5, there are two perturbation
terms AES™) and AE{™" contributing to the third-
order spin-wave results for the ground-state energy, and
at the isotropic limit z = 1,

AEY =0, (15)

while AEé_l) is a nine-dimensional integral over the first
Brillouin zone of the sublattice I. It can be computed
numerically in the follow way: = We first evaluate its
value for finite lattices, and then extrapolate the results
to the infinite lattice:

TABLE V. Series coefficients for the transverse susceptibility Xyy, Xz, and the energy gap m of the spin—% XY model.

Coeflicients of z™ are listed.

n Xyy Xzz m
Spin-1 XY model on the sc lattice
0 1/6 1/6 3
1 1.833333333333x10~! —1.666666666667 %102 -15
2 1.845238095238 %10~} 1.190476190476 x 103 —4.875000000000%107!
3 1.873815192744x107! —6.978458049887x10~* —1.359375000000x10~*
4 1.876285109968x10~* 5.022852635523x 10~ —1.249490327381x10~*
5 1.888562013916x10~* —1.320188413512x10~* —6.784615593850x 102
6 1.889751210970x 107! 9.887227440714x10~7 —6.115068171845x1072
7 1.896483343876x10~* —4.469817979089x10~5 —4.146406000229x 1072
8 1.897187379037x 10~} —3.315611370521x107° —3.804881048189x10~2
9 1.901446928063x 10~ —2.000372946766 %105 —2.859252703493x 102
10 1.901917971750x107 ! —2.979158322603x10~° —2.658763363254 1072
11 1.904864449354x 107! —1.060246590636x 105

Spin-; XY model on the bec lattice

0 1/8 1/8
1 15/112 -1/112
2 1.343750000000%10~* 4.464285714286x10~*
3 1.362220193709x10~ ! —3.993152893025x10*
4 1.363488832957x 107! 2.436475105581x10~°
5 1.371121252412x107! —8.208795576602x107°
6 1.371688102888x10~* 1.363244106281x10~7
7 1.375882716948x107* —2.857220803419x10~5
8 1.376213752550x 107! —1.859653069981 x10~¢
9 1.378873939349x10~* —1.308177910311x10~5
10 1.379094065898x 10~} —1.618780389665x10°
11 1.380935429306x10~* —7.047955217065x10°

Spin-1 XY model on the fcc lattice

0 1/12 1/12

1 23/264 —1/264

2 8.836733815427x102 —1.312844352617x10*
3 8.900716098023x102 —1.073920486615x10~*
4 8.939819341080x10~2 —4.207313931352x107°5
5 8.966174682517 %102 —2.396277185827x107°5
6 8.985190255424x1072 —1.440419034214x1078
7 8.999599726482x 102 —9.435544252908x10~°
8 9.010912739846x10~2 —6.512212791619x108

4

-2
—5.952380952381x107!
—2.182539682540x 10!
—1.617946207232x107?!
—9.604697554830%x 102
—8.165041651170x 102
—5.764716973423x1072
—5.108953815332x 1072
—3.951012871692x102
—3.578620551813x1072

6
-3
—8.681818181818x107!
—3.550000000000x10~*
—2.265922408057x10!
—1.553594338314x107!
—1.164133745557x1071
—9.120044923369x1072
—7.763085907377x10~2
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AECY /N = 0.0001596(4)/ S, sc lattice, 16 of AE,(,_I) in x up to order z2° for the sc lattice, and
by /N = 0.00008796(6)/S,  bcc lattice. (16) up to order z?* for the bcc lattice. Extrapolating this
series using integrated Dlog Padé approximants,3” one

Via MATHEMATICA, we can compute a series expansion can obtain an estimate near the isotropic limit z = 1:
J

AECD = { 0-00016(4)/S +0.0009(3)(1 —2%)/S + - -, sc lattice, o
b =\ 0.0000888(10)/5 + 0.00059(4)(1 — z2)/S+---,  bec lattice. (17)

The extrapolation of the full series for Eq/N gives

sc lattice,

sc lattice,

bcce lattice, (18)
bcc lattice.

—0.90246(5) + 0.162(1)(1 — z2) + - - -,
—3.2983(2) 4 0.350(2)(1 — ) + - -+,
—1.15121(3) + 0.1695(10) (1 — 22) + - - -,
—4.29739(2) + 0.359(2)(1 — 22) + - - -,

Eo/N =

nnnin
[ U T
ol e

By comparing the above results, we can conclude that the asymptotic behavior of the bulk ground-state energy per
site for the sc and bcc lattices is

€ = lim Eo/N = —35% — 0.2014740118295 — 0.00707975829764 + 0.0001596(4) /S
—o00

+(1 — 22)[0.3808115 — 0.0298393606 + 0.0009(3)/S] +--- , sc lattice, (19a)
€ = lim Eo/N = —45 —0.2021515 — 0.0053345 + 0.00008796(6) /S
— 00

+[0.383355 — 0.022739 + 0.00059(4)/S](1 — z®) + - - -, bcc lattice. (19b)
The finite-lattice corrections to the isotropic system are

Eo/N — e = — (5.802627S + 0.2818858) /L% + --- , sc lattice, (20a)
Eo/N — eoo = — (3.3501476S + 0.12234349) /L% +--- | bec lattice. (20b)

B. Staggered magnetization and parallel staggered susceptibility

Referring again to Ref. 5, near the isotropic limit z = 1, we have (we take this opportunity to correct a typographical
error in Eq. (2.29) of Ref. 5: the correct formula should be AM{™? = —(16z*S%)71(1 — z%)(C-, — C1){(1 —
132)[30_5(0_1 - Cl) + 4031 - 90_10_3 + 2C33 + 3C_301] + 201(0_3 - C_l)})

Ap(-2 — [ —0.00081162972(1 — z?)In(1 — 22)/S% 4+ ---,  sc lattice, 01
e 7] —0.00035460962(1 — z?)In(1 — 22)/S? 4+ ---,  bcc lattice, (21)
3a (-3 —0.0000517687968 In(1 — z2) + 0.000131881344 + ---,  sc lattice,
S Ax(3) = (22)
a —0.0000168905622 In(1 — z2) + 0.000029372845 + ---,  bcc lattice.

AMtE—z) is again a nine-dimensional integral, which upon numerical integration is

(-2) _ [ 0.000270(2)/S?, sc lattice,
AM, = = { 0.0001147(15)/8%,  bec lattice. (23)

Series expansions were also carried out for AMé_z) and Axg—s) to order z2° on the sc lattice and order 3¢ on the

bcc lattice for AM, ,f_2), and to order x'2 on the sc lattice and z'¢ on the bcc lattice for Ax,(,—3). Extrapolation to the

isotropic limit gives

SZAMCD) — 0.00031(8) — 0.0013(3)(1 — z2)In(1 — %) + - - -, sc lattice, (24)
b 0.000119(4) — 0.00048(5)(1 — z%)In(1 — z2) +---,  bcc lattice,
3. (—-3) _ [ 0.00025(8)1In(1 — z?) + -, sc lattice,
SAxy T = { 0.00008(3) In(1 — z?) — 0.00019(6) + ---,  bec lattice. (25)

The extrapolation of the full series for M+ and Xﬁ gives
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0.4232(5) — 0.0398(4)(1 — z)In(1 — 2?) +---, S =1, sclattice,
M+ = J 0-923(1) — 0.0507(4)(1 - z?)In(1 —z?) +---, S =1, sc lattice, (26)
T ) 0.4416(6) — 0.0345(4)(1 —z?)In(1 —2?) +---, S =3, becc lattice,
0.9413(4) — 0.0418(4)(1 — z?)In(1 —2?) +---, S =1, bcc lattice,
—0.0381(1) In(1 — z2) — 0.008(2) + - - -, S =1, sclattice,
s _ ) —0.019(1)In(1 — 22) — 0.011(2) + - - -, S =1, sc lattice, @27)
X' =\ —0.0226(10) In(1 — z?) — 0.008(2) + ---, S =1, bec lattice,
—0.011(1) In(1 — z2) — 0.007(2) + - - -, S =1, bcc lattice.
So we conclude that for the bulk sc and bcc lattices near z = 1,
Mt = S —0.078357708 + 0.000270(2)/S?
+[—0.065810 + 0.016707/S — 0.0018(3)/S?](1 — 2*)In(1 — 2®) +---, sc lattice, (28a)
M* =S —0.059318194 + 0.0001147(15)/S?
+[—0.0506606 + 0.00971032/S — 0.00083(5)/S?](1 — z®) In(1 — z2) + - - -, bcc lattice, (28b)
x| = [—0.0219367/S + 0.00106566/5> + 0.00019(4)/S°] In(1 — z?)
—0.0143905/S + 0.00626822/S% — 0.0005(3)/S> + - - -, sc lattice, (28c)
xjj = [—0.012665148/5 + 0.000462516/5* + 0.00006(3)/S°] In(1 — =?)
—0.0086209/S + 0.0027424/S5% — 0.00016(6)/S% + - - -, bec lattice. (284)
The finite-lattice correction to the staggered magnetization of the isotropic model is

My — MY = (0.782142+0x S™Y)/L? +---, sc lattice, (29a)

My — M} = (0.45156992 +0 x S~Y)/L% + ..., bec lattice. (29b)

C. Energy gap

Here there are five perturbation terms contributing to the energy gap at third order, and three of them can be
calculated analytically:

—0.048338779 + 0.05012226(1 — z2)In(1 — z2),  sc lattice,

— 2?2 (A (D -1 (-1)) =
S -z "5 (Amg™" + Amy " + Am.") { —0.036738944 + 0.03884128(1 — z2) In(1 — z2),  bcc lattice.

(30)
The remaining two can be evaluated by series expansion, the extrapolation to the limit z = 1 being
_2\-1/2 (-1) (-1)y _ J 0.046(3) +0.070(1)(1 — 2®)In(1 —2?) +---,  sc lattice,
S(1 =257 (Amy T 4+ Ame) { 0.0350(8) + 0.055(2)(1 — z2)In(1 — z2) +---,  bec lattice. (31)
The extrapolation of the full series for the energy gap m gives
2.530(2) - 0.11(2)(1 — 2®) In(1 —2?) +---, S =1, sclattice,
(1— 22)~V/2m = 5.534(6) — 0.25(2)(1 — %) In(1 — %) +---, S =1, sc lattice, 32)
=\ 3.525(4) — 0.215(5)(1 — 2?)In(1 —2?) +---, S=1, bee lattice, (
7.526(2) — 0.312(6)(1 — z%)In(1 —2%) +---, § =1, bcc lattice.
The results of numerical integration are
_ _o2\-1/2 (-1) (-1 _ J —0.0156788(2), sc lattice,
(25/2)(1 = 2%) 75 (Amy 7 + Amc™) = { —0.0089964(5),  bee lattice. (33)
Therefore, the results are summarized as
(1 —22)"Y%m = 65 — 0.4701462 — 0.0013024(6)/S + [—0.3948602 + 0.13(2)/S](1 — %) In(1 — 2?) + ---, sc lattice,

(34a)
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(1 —2?%)7Y%m = 85 — 0.474545 — 0.000753(2) /S + [—0.405285 + 0.094(4)/S](1 — z?)In(1 — z%) + ---, bec lattice.
(34b)

D. Perpendicular susceptibility

Using the Dyson-Maleev formalism, the third-order uniform perpendicular susceptibility is found to be [note that
we take this opportunity to correct an error in Ref. 5; the contribution from Fig. 3(a) there should only involve
the unperturbed energy of the intermediate state, so that the term m(~1) should be dropped from Eq. (2.60), and
the correct results for the uniform perpendicular susceptibility x, and staggered perpendicular susceptibility x5
for the square lattice are x; = 0.125 — 0.034446959425~! + 0.00204006(7)S~2 + O(S73), (1 — z)x5 = 0.25 +
0.068893918845~! + 0.013546(10)S~2 + O(S3)]

xe=xU +xTV +x0P + 0579, (35)
with
©_ 1 36
X1 z(1+z)’ (362)
(-1 _ C,—-C, 36b
t 2zSz(1 + )’ (36b)
X = [(1—2)(1+22)C? , — (1-22)(C—1—C1)C—s— (1 +22—22%)C_1C; + C3a][45%2z* (1 + 2)] 7 + %7 +x{ 2,
(36¢)

where Xg_z) + xgﬂz) is a six-dimensional integral, which can be carried out by series expansion in  via MATHEMATICA
up to order x2* for the sc lattice, and up to order z3° for the bcc lattice. The extrapolation of this series gives

0.00088(2) — 0.0008(3)(1 —z)In(1—z) +---, z =1, sc lattice,
2 (—2) (-2)y _ J —0.0315(5) — 0.0858(5)(1 — z)In(l — ) +---, z = —1, sc lattice,
2:5°(1+2)(xg 7 +xi ) 0.00038(1) — 0.00050(5)(1 —z)In(1—z) +---, =z =1, bcc lattice, (37)
—0.01813(10) — 0.050(4)(1 — z)In(1 —z) +---, =z =—1, bec lattice.
Analysis of the full series gives
0.06445(10) — 0.075(5)(1 — z)In(1 — ) + - - -, § =1, sclattice,
_} 0.073305(5) — 0.0075085(5)(1 — z)In(1 —2) +---, S =1, sc lattice, 38
XL= 0.051448(5) — 0.0066(2)(1 —z)In(1 —z) + - - -, S =1, bec lattice, (38)
0.056744(1) — 0.004842(5)(1 —z)In(1 —z) +---, S =1, bcc lattice,
0.2155(1) +0.032(3)(1 — ) In(1 — ) + - - -, S =3, sclattice,
(1—2)xS = 0.18944(10) + 0.01912(10)(1 — z)In(1 —z) +---, S =1, sc lattice, (39)
TIXL =19 0.15175(1) + 0.0218(10)(1 — z)In(1 —z) +---, S =1, bec lattice,
0.13767(1) + 0.0116(4)(1 —z)In(1 —z) + - - -, S =1, bcc lattice.
The results of numerical integration are
2 (-2) (-2), _ J 0.001736(8), z =1, sc lattice,
LA+ VX ) = { 0.0007533(3), =z =1, bec lattice. (40)

Therefore, the conclusions for the uniform perpendicular susceptibility x and staggered perpendicular susceptibility

xf near the limit z — 1 are



50 HEISENBERG ANTIFERROMAGNET AND THE XY MODEL AT . .. 3885

1/12 — 0.0105780585/S + 0.000550005(20)/5?

+[—0.0109683399/S + 0.00345(5)/S?](1 — z) In(1 — z) + - - -, sc lattice,
XL = (41)
1/16 — 0.005989814/S + 0.00023051(1)/S?
+[—0.00633257/S + 0.00145(5)/S?|(1 — z)In(1 —z) +---,  bcc lattice,
1/6 + 0.021156117/S + 0.00164(5)/S?
+[0.02193667974/S — 0.0027(1)/S?](1 — z)In(1 — ) + - - -, sc lattice,
(1-2)xi = (42)

1/8 + 0.0119796/ + 0.00072(2)/S?

+[0.01266514/S — 0.0011(3)/5%)(1 — z) In(1 —z) + - - -,

bcec lattice.

E. Spin-wave velocity

The spin-wave velocity can be calculated as usual from the dispersion relation involving the spin-wave energy m(k)
of a single-boson state with momentum k. Here we only consider the isotropic case (z = 1):

m(k) = mM (k) + m@ (k) + mCV(k) + 0(57?) (43)

where

m® (k)= z5(1 - )"/?,
z
m® (k)= -5 - ARG

7o) *mpe k),

I

mY (k)

<
"ﬁ(l‘

(44a)
(44b)

(44c)

and mg(k) is a six-dimensional integral defined in Ref. 6, which can be carried out in the same way as for the square
lattice. Figure 1 shows the dispersion relation along the line k, = k, = k, for the sc and bcc lattices. In the limit

k — 0, we get

__f —0.00253(4), sc lattice,
mee(0) = { —0.00154(2), bec lattice. (45)

Therefore, the energy gap of the isotropic Heisenberg antiferromagnet at the small k limit is

23S [1 + 0097158004 o.%t;?)tiia) + 0(5‘3)]k . sc lattice,

m(k) =

(46)
bcc lattice.

4S8 [1 4 0.073037671 | 0.0(02?)2(4) 4 0(5‘3)]k ’

2S

and the spin-wave velocity is

23S [1 + 0‘0972158004 + 0:00506(8) | 0(5_3)] , sc lattice,

0.073037671 0.00308(4
45[1+ + 0:00305(4)

2S

F. Finite-size scaling

The finite-size scaling behavior of the isotropic Heisen-
berg antiferromagnet has been predicted by Neuberger
and Ziman” and Fisher,® and has been formulated as
a systematic large volume expansion by Hasenfratz and
Niedermayer.® These predictions are based on general ar-
guments that the large distance behavior will be domi-
nated by massless Goldstone bosons, which are precisely

+o(s79)]

(47)
bcec lattice.

the spin waves or magnons, and result from spontaneous
breakdown of the O(3) symmetry of the system. A sim-
ple effective Lagrangian can be written down for the
Goldstone modes, which at leading order involves just
three unknown parameters, which can be taken as the
spin-wave velocity v, the helicity modulus or spin-wave
stiffness p,, and the staggered magnetization ¥ = M.
On this basis, universal formulas can be derived for the
finite-size scaling corrections, which are compared with
our spin-wave results below.
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FIG. 1. The spin-wave energy m(k) as a function of mo-
mentum k. along a line k; = ky = k. for the sc and
bee lattices. The three curves shown are the first-, sec-
ond-, and third-order spin-wave predictions corresponding to
short-dashed and solid lines, respectively.

1. Ground-state energy

The predicted finite-size correction to the ground-state
energy per site is
Eo ,B’U

7 — o = — 557 + OLTP) (48)

in D space dimensions, where 3 is a calculable shape fac-
tor appropriate to the particular lattice. According to
the notation of Hasenfratz and Leutwyler3® for a hyper-
cubic lattice

2
p=af)(1)+2-

D+1
= 1.675074, sc lattice. (49)
Equations (20) and (47) are in precise agreement with
the prediction (48) up to the order calculated, with the
shape factor 3 given by (49) for the sc lattice, and 8 =
0.83753690 for the bcc lattice. Note that 3 for the bec
lattice is half that for the sc lattice, probably because the
primitive unit cell for the bcc lattice contains two sites

but the primitive unit cell for the sc lattice contains only
J

2 S2[1 — 0.029778698/S — 0.00084(4)/5?],
p = v X.L — .
y S?[1 — 0.0227993582/S — 0.00044(2)/S?], bcc lattice.

as may be verified by a direct calculation.?®

Thus the spin-wave results are consistent in every de-
tail with the predictions of effective-Lagrangian theory,
as one should expect, and in addition they give explicit
expressions for the parameters v, p,, and X of the effec-
tive Lagrangian.

one site (here we take the size of the primitive unit cell
to be one lattice unit).

2. Energy gap

The predicted finite-lattice energy gap at zero momen-
tum is
1
1) =
) x1LP

my(k = +0(L*~%P) . (50)

The leading-order spin-wave result for this quantity was
obtained in a previous paper:®

2z

where z in the lattice coordination number. Equations
(50) and (51) are consistent to leading order.

3. Staggered magnetization

Neuberger and Ziman” have discussed the finite-lattice
corrections to the staggered magnetization predicted by
the effective Lagrangian theory for the square lattice. A
generalization which includes their result is

vy
+ +
My - Mo = 751

4+, (52)
where v is another calculable shape factor. This result
must be interpreted with some care. Strictly speaking,
there is no spontaneous symmetry breaking on a finite
lattice at zero field, and the staggered magnetization is
zero. Equation (52) describes the value obtained either at
a finite but very small field, or else perhaps by a measure
of the mean-square magnetization. In the notation of
Hasenfratz and Leutwyler,3® for a hypercubic lattice

_1 2 (D)

7‘47r[2+D—1 iy ()
_J 0.3103732, square lattice, (53)
T ] 0.2257849, sc lattice.

Equations (29) and (47) agree precisely with (52) to the
order calculated, with the shape factor -y given by (53) for
the sc lattice, and v = 0.1128924797 for the bcc lattice
(note that again « for the bec lattice is half that for the
sc lattice), and with ¥ = M given in Eq. (28) and the
spin-stiffness constant p, given by

sc lattice, (54)

IV. SERIES ANALYSIS

The analysis of the series has been carried out along
the same lines as in our previous papers®? and we will
not repeat the details here. First, we have endeavored,
by use of Dlog Padé approximants, to test whether the
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TABLE VI. Estimates of singularity parameters for the series given in Tables I — IV. Both unbiased estimates and estimates

biased by setting z2 = 1 are listed. The index values predicted by spin wave theory are also given for comparison.

Singular point Singularity index Spin-wave
Function z2 unbiased biased prediction
Spin—% X X Z model on the sc lattice
m 1.0(2) 0.6(3) 0.52(3) 0.5
o 1.0(4) ~1.2(10) ~1.2(2) ~1.0
%‘,‘{, — — —~1.1(5) -1.0
L8, _ — — -1.0
Lxu z. = 0.7(5) 0.2(3)® —0.8(6) -1.0
x5 z. = 1.002(1) —1.03(5) -1.01(3) -1.0
Spin-1 X X Z model on the sc lattice
m 1.005(8) 0.52(5) 0.51(2) 0.5
i—’:l,sL 1.06(10) —1.4(4) -1.2(3) -1.0
e s 1.1(3) —1.4(6) -1.2(3) -1.0
25 1.1(4) ~1.5(10) —1.4(5) -1.0
Cxp z. = 0.8(5) — —2.6(2.0) -1.0
X3 z. = 1.001(2) —1.02(4) —-1.01(2) -1.0
Spin-3 XX Z model on the bcc lattice
m 1.01(5) 0.53(6) 0.51(3) 0.5
o 1.02(10) —1.4(5) ~1.2(3) ~1.0
£y 1.08(10) —1.5(6) -1.2(3) -1.0
5 1.0(3) ~1.5(10) ~1.4(6) -1.0
Cxe e = 0.7(5) 0.2(4)* -0.5(7) -1.0
x5 z. = 1.001(2) —-1.02(3) -1.01(2) -1.0
Spin-1 X X Z model on the bcc lattice
m 1.001(8) 0.51(4) 0.505(10) 0.5
d—":}i—) 1.05(8) —1.4(6) ~1.1(4) -1.0
e 1.04(6) —1.4(5) -1.1(3) -1.0
ﬁ%’%’; series too short — — -1.0
Lxu z. = 0.7(5) 0.03(10)® —0.9(5) -1.0
i z. = 1.001(6) —-1.01(4) —1.007(10) -1.0
Spin—% XY model on the sc lattice
L 1.03(6) ~1.3(5) -1.2(3) ~1.0
L 1.1(4) ~1.7(6) ~1.4(4) -1.0
qxar 1.02(4) -1.3(5) -1.2(3) -1.0
m (z > 0) z. = 1.001(4) 0.52(4) 0.51(2) 0.5
Xyy (T >0) z. = 1.001(2) ~1.01(3) —1.007(10) -1.0
Lxp (2 <0) z. = —0.9(3) ~0.06(10)* —0.9(5) -1.0
£X= (z>0) e = 1.0(8) ~1.2(8) ~1.4(10) ~1.0
Lxg: (2 <0) z. = —1.0(6) —0.8(8) —0.9(4) -1.0
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TABLE VI. (Continued).
Singular point Singularity index Spin-wave
Function z? unbiased biased prediction
Spin-% XY model on the bcc lattice
£y 1.04(5) ~1.3(4) -1.1(3) ~1.0
e 1.1(3) ~1.6(5) ~1.3(4) ~1.0
Eea) 1.04(4) —1.3(4) -1.1(3) -1.0
m (z >0) z. = 1.001(3) 0.51(2) 0.505(10) 0.5
Xyy (z >0) . = 1.003(5) ~1.03(4) —1.008(10) ~1.0
Lxp (2 <0) z. = —0.9(4) ~0.04(10)* ~0.9(5) ~1.0
Lx2 (z>0) T = 1.0(4) —1.4(10) ~1.4(2) ~1.0
L2 (2 < 0) z. = —0.8(4) ~1.2(10) ~1.0(2) ~1.0
Spin-% XY model on the fcc lattice
M z. = 1.01(8) ~1.2(6) ~1.2(3) ~1.0
L5 z. = 1.02(6) ~1.3(5) ~1.2(3) ~1.0
IXea z. = 1.004(7) —1.08(10) —1.06(5) -1.0
m (z >0) z. = 1.001(8) 0.51(6) 0.507(10) 0.5
Xyy (z >0) . = 1.0006(10) ~1.01(2) —1.008(10) ~1.0
L2 (2> 0) T, =1.1(4) ~1.4(4) ~1.4(2) ~1.0

2All estimates defective.

TABLE VII. Series estimates for the leading-order amplitudes A, of the spin-% and spin-1 Heisenberg antiferromagnets at
z =1 [as defined by Eq. (55) or Eq. (56) as the case may be]. Also listed are the spin-wave predictions at first, second, and

third order.
Amplitudes A,
Spin-wave predictions Series
Function n First order Second order Third order estimate
Spin-% X X Z model on the sc lattice
Eo/N 0 —0.895737 —0.9028168 —0.902498(1) —0.9021(2)
2 0.190405 0.160566 0.1624(7) 0.1605(10)
M+ 0 0.421642 0.4216423 0.42272(1) 0.424(2)
1 —0.065810 —0.032395 —0.040(1) —0.0374(6)
XL 0 1/12 0.0621772 0.0643772(1) 0.0653(5)
1 —0.0219367 —0.0081(2) —0.0100(2)
m 1 3 2.529854 2.527249(1) 2.56(4)
2 —0.394860 —0.13(4) —0.20(4)
xﬁ -1 —0.0438734 —0.0396107 —0.0381(3) —0.03824(10)
0 —0.028781 —0.0037081 —0.008(3) —0.011(5)
1-=z)x5 0 1/6 0.208979 0.2155(2) 0.2144(10)
1 0.0438734 0.0331(4) 0.0314(4)
Spin-1 X X Z model on the sc lattice
Eo/N 0 —3.29147 —3.2985538 —3.2983942(4) —3.2977(8)
2 0.380811 0.3509716 0.3519(3) 0.345(6)
M* 0 0.921642 0.9216423 0.921912(2) 0.924(2)
1 —0.065810 —0.049103 —0.0509(3) —0.050(4)
XL 0 1/12 0.0727553 0.07330528(2) 0.0737(5)
1 —0.0109683 —0.00752(5) —0.0072(10)
m 1 6 5.529854 5.5285514(6) 5.55(2)
2 —0.394860 —0.26(2) —0.26(4)
xj -1 —0.0219367 —0.0208710 —0.02068(4) —0.019(1)
0 —0.0143905 —0.0081223 —0.0086(3) —0.009(4)
1 -z 0 1/6 0.187823 0.18946(5) 0.1887(4)
1 0.02193668 0.0192(1) 0.017(2)
Spin-% X X Z model on the bcc lattice
Eo/N 0 —1.146075 —1.151410 —1.1512341(2) —1.1510(5)
2 0.191674 0.168935 0.1701(1) 0.167(3)
M+ 0 0.4406818 0.4406818 0.441159(5) 0.442(4)
1 —0.05066 —0.0312399 —0.0346(2) —0.0333(10)
XL 0 1/16 0.05052037 0.05144241(4) 0.0519(3)
1 —0.012665148 —0.0069(2) —0.012(2)
m 1 4 3.52545445 3.523949(4) 3.55(10)
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TABLE VII. (Continued).
Amplitudes 4,
Spin-wave predictions Series

Function n First order Second order Third order estimate

2 —0.405284735 —0.217(8) —0.24(4)
x5 -1 —0.0253303 —0.02348023 —0.0230(2) —0.0224(6)

0 —0.0172419 —0.00627227 —0.0076(5) —0.006(2)
1-=z)xS 0 1/8 0.148959257 0.15184(8) 0.15109(8)

1 0.025330296 0.021(1) 0.018(4)
Spin-1 X X Z model on the bcc lattice
Eq/N 0 —4.2921507 —4.297485 —4.2973975(2) —4.2961(8)

2 0.383348 0.360609 0.3612(1) 0.35(2)
Mt 0 0.9406818 0.9406818 0.940800(1) 0.942(3)

1 —0.05066 —0.04095 —0.04178(5) —0.042(2)
XL 0 1/16 0.056510186 0.05674070(1) 0.0570(3)

1 —0.006332574 —0.00488(5) —0.056(8)
m 1 8 7.525454451 7.524702(2) 7.55(4)

2 —0.405284735 —0.311(4) —0.31(3)
x; -1 —0.01266515 —0.01220263 —0.01214(3) —0.0109(4)

0 —0.00862095 —0.00587854 —0.00604(6) —0.007(3)
1-z)xs 0 1/8 0.136979629 0.13770(2) 0.1372(6)

1 0.012665148 0.0116(3) 0.01004(4)

TABLE VIII. Series estimates for the leading-order amplitudes A, in an asymptotic expansion at £ = +1 [defined by Eq.
(55) or Eq. (56) as the case may be] of the spin-1 XY model on the simple cubic lattice. Also listed are the spin-wave
predictions at first and second order (Ref. 30).

Amplitudes A,

Spin-wave predictions

Series
estimate

Function z n First order Second order
Spin-% XY model on the sc lattice
Eo/N +1 0 —0.787898 —0.791402

2 0.052735 0.050532
M. +1 0 0.477476 0.476125

1 —0.0232674 —0.0161322
Xzz +1 -1 —0.0155116 —0.0136349

0 —0.014898 —0.007157
(1—=2)"%m 1 0 3 2.78864

1 —0.558416
1-=z)"3m -1 0 3 2.94107

2 0.172831
(1 = 2)xyy 1 0 1/6 0.190104

1 0.0310232
Xyy -1 0 1/12 0.0716145

1 —0.0155116
Xz 1 0 1/6 0.151697

2 0.0192034
Xz -1 0 1/6 0.181636

2 —0.0192034
Spin-1 XY model on the bcc lattice
Eo/N +1 0 —1.03801 —1.04064

2 0.0531571 0.0514454
M, +1 0 0.4829234 0.48216512

1 —0.01791122 —0.01375463
Xzz +1 -1 —0.0089556 —0.0081353

] —0.00877273 —0.00539716
1-z)"3m 1 0 4 3.7856355

1 —0.57315917
1-=2)"%m -1 0 4 3.94113886

2 0.17375268
(1= 2)xyy 1 0 1/8 0.13828928

1 0.01791122
Xyy -1 0 1/16 0.05585536

1 —0.00895562
Xzz 1 0 1/8 0.1165702

2 0.01085954
Xzz -1 0 1/8 0.1334298

2 —0.01085954
Spin-% XY model on the fcc lattice
Eo/N +1 0 —1.5440401 —1.54614316

2 0.1321351 0.12743321
M., +1 0 0.4853175 0.48496947

1 —0.032905 —0.02645997
Xzaz +1 -1 —0.0054842 —0.00505414

0 —0.0094250 —0.00747821
1-2z)""*m 1 (] 6 5.70568

1 —0.78972047
(1 — 2)xyy 1 0 1/12 0.09067417

1 0.01096834
Xzz 1 0 1/12 0.07927384

2 0.00570016

—0.79177(16)
0.0495(8)
0.4765(5)

—0.0166(4)

—0.0128(3)

—0.007(2)
2.81(2)

—0.48(4)
2.860(6)
0.40(2)
0.1912(10)
0.022(4)
0.0728(5)

—0.0084(12)
0.15031(6)
0.0180(3)
0.18548(4)

—0.0227(2)

—1.0408(2)
0.0505(8)
0.4824(5)

—0.0139(1)

—0.0074(4)

—0.0055(5)
3.808(10)

—0.36(2)
3.888(4)
0.32(2)
0.13872(10)
0.0152(6)
0.0563(2)

—0.006(1)
0.11600(6)
0.0103(4)
0.13493(2)

—0.0120(4)

—1.5462(2)
0.125(3)
0.4856(4)

—0.0256(10)

—0.0038(6)

—0.006(2)
5.73(6)

—0.51(3)
0.0908(2)
0.0098(8)
0.07919(2)
0.0052(2)
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FIG. 2. Graph of the ground-state energy per site Eo/N
against = for the spin-% Heisenberg antiferromagnet on the
sc lattice. The four curves shown are the series estimate,
and the first-, second-, and third-order spin-wave predictions,
corresponding to solid, dotted, short-dashed, and long-dashed
lines, respectively.

singularities of these functions at z = %1 are of the form
predicted by spin-wave theory.3? The results, given in
Table V, show that the singularities and the indices are
by and large quite consistent with the predictions of spin-
wave theory. For the XX Z and XY models on the sc and
bcec lattices, just as for the square lattice,31° we did not

0.5

0.48

= 0.46 ]

0.44 . . 7
E— series estimate

N —— third—order SW ]

[ ---- : second—order SW Xl
I : first—order SW

0.42 P SN SN ST SR NS SRS W N TS WS NN ST S
0 0.2 0.4 0.6 0.8 1

X

FIG. 3. Graph of the staggered magnetization M* against
z for the spin—% Heisenberg antiferromagnet on the sc lattice.
Notation as Fig. 2.
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0.1

series estimate
I ——-: third—order SW
second—order SW

0.08

0.06 | . first—order SW 2
N S R T B
0 0.2 0.4 0.6 0.8 1
X

FIG. 4. Graph of the perpendicular susceptibility x.
against « for spin-; Heisenberg antiferromagnet on the sc
lattice. Notation as Fig. 2.

get very consistent results between the series estimates
and spin-wave theory for the singularity of the ground-
state energy series, because the series is too short and the
singularity is very weak. But for the XY ferromagnet on
the fcc lattice, we have a longer series, and Table VI does
show that the singularity of the ground-state energy is of
the form predicted by spin-wave theory.

Next, we assume the singularities are those pre-

. —-15

— T T T T
-1.51 | -
-1.52 - —

Z i ]

~N
o = .

= L |
-1.53 |- ]
—-1.54 F—— series estimate .
M——--- second—order SW ¥

Lo first—order SW
__.155 L PSS R | 1 1 1 | 1 1 1 | 1 Il 1 1
0.2 0.4 0.6 0.8 1

X

FIG. 5. Graph of the ground state energy per site Eo/N
against = for the spin-1 XY ferromagnet on the fcc lat-
tice. The three curves shown are the series estimate, and the
first- and second-order spin-wave predictions, corresponding
to solid, dotted and short-dashed lines, respectively.
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FIG. 6. Graph of the magnetization M, against z for the
spin-% XY ferromagnet on the fcc lattice. Notation as Fig. 5.

dicted by spin-wave theory, and estimate, by using in-
tegrated differential approximants,3” the coefficients of
the leading-order terms for each given function f(z) in
the asymptotic expansion near z = *1 defined by

f@) = Y AuFa(o)

(z~1) (55)
n=ng
or
6
E 59
~ L
=
~ i
>|< L
~i -
N—r
5.8
L —— : series estimate _
| ——-- second—order SW
R first—order SW A
[ 3K Z5 S S W T T A N T S SO SR S S S '
0 0.2 0.4 0.6 0.8 1

X

FIG. 7. Graph of the energy gap (1 — z)~'/?m against =z
for the spin-1 XY ferromagnet on the fcc lattice. Notation
as Fig. 5.
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f@®) =Y AnFa(z?)

n=ng

where F_,(z) =In(1—z), Fo =1, Fi(z) = (1 —z)In(1 -
z), and Fy(z) = (1 — z). Our series estimates of these
amplitudes A,, are listed in Tables VII and VIII, together
with the predictions of spin-wave theory at first, second,
and third order in 1/8S.

The agreement between the spin-wave predictions and
the series estimates is very good. The leading-order am-
plitudes obtained from the two approaches agree within
errors in 50% of cases, and even where they disagree, the
proportional discrepancy is very small. The confidence
level thus obtained for the ground-state energy is of order
0.05%, and for the other quantities it is mostly of order
0.5%. The agreement is further illustrated in Figs. 2-7
which graph the series estimates and spin-wave predic-
tions as functions of = for Eo/N, M*, and x, for the
spin-% Heisenberg on the sc lattice, and for the XY fer-
romagnet on the fcc lattice. The higher-order spin-wave
results are barely, if at all, distinguished from the series
estimates on these plots.

Making comparison with earlier work, we find
that Nishimori and Miyake?! have previously obtained
second-order spin-wave estimates of the ground-state en-
ergy for both models in precise agreement with ours. The
series approach of Parrinello and Arai?® gave results for
the Heisenberg model which were within 0.2% of ours for
the ground-state energy and 2% for the magnetization.
The finite-cell estimates of Oitmaa and Betts?® give sim-
ilar results for the ground-state energy, within errors of
order 10%, but appear to underestimate the staggered
magnetization. A comparison of these various results is
given in Table IX. Note that we have arbitrarily assigned
an error to our spin-wave estimates equal to one-half the
difference between the second-order and third-order re-
sults.

(x~£1),  (56)

V. SUMMARY AND CONCLUSIONS

A number of properties of the Heisenberg antiferro-
magnet and the XY model have been calculated for
three-dimensional lattices, using both series expansions
about the Ising limit and spin-wave theory. The accu-
racy of the series results at the isotropic point is typi-
cally within 0.05% for the ground-state energy, and about
0.5% for other quantities. The results of the two differ-
ent methods are generally consistent to within this same
level of accuracy, giving us confidence in the power and
accuracy of them both.

It has been known since the early days!”2° that spin-
wave theory gives a good description of the Heisenberg
antiferromagnet. The disordering effect of quantum fluc-
tuations is generally smaller in three dimensions than in
two, and spin-wave theory leads to an expansion in pow-
ers of (25)™!, where z is the coordination number, which
is generally larger in three dimensions than in two. This
conclusion is further reinforced by our results. At the
isotropic point, first-order spin-wave theory differs from
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TABLE IX. A comparison of the present estimates of ground-state energy and magnetization with previous estimates for

the § = % Heisenberg antiferromagnet.

Reference Method sc lattice bcec lattice
—Eo/N M+ —Eo/N M+
Nishimori and Miyake® spin wave 0.9028 - 1.1515 -
Parrinello and Arai® series 0.9010 0.4321 1.1495 0.4494
Oitmaa and Betts® finite cell 0.85(10) 0.30(2) 1.1(1) 0.31(2)
Present work spin wave 0.9025(2) 0.4227(5) 1.1512(1) 0.4412(3)
Present work series 0.9021(2) 0.424(2) 1.1510(5) 0.442(4)

®Reference 21.
PReference 26.
°Reference 29.

the series results by about 1% for the ground-state en-
ergy and magnetization, and by amounts of order 20%
for other quantities. Second-order spin-wave theory is
an order of magnitude more accurate. Third-order spin-
wave theory continues to converge, and is indistinguish-
able from the series results, within errors. In fact, the
small changes between second and third order indicate
that third-order spin-wave theory is more accurate, quan-
titatively, than the series results, although it is hard to
give objective estimates of the errors. This is the reverse
of the situation in two dimensions.>®

The finite-size scaling corrections resulting from spin-
wave theory have also been obtained for the isotropic
Heisenberg antiferromagnet, and compared with the pre-
dictions of effective-Lagrangian theory. The two ap-

proaches turn out to be perfectly consistent, as one
should expect, since they are both based on the effects
of massless spin-wave excitations.

Theoretical estimates of high accuracy have thus been
obtained for various measurable quantities in these mod-
els. We hope to make some numerical comparisons
with experimental work on suitable systems!! such as
CuCl,-2H,0, KNiF3, or RbMnF; in the future.
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