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Heisenberg antiferromagnet and the XY model at T = 0 in three dimensions
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The spin-- and spin-1 Heisenberg antiferromagnet and XY model are studied at zero tempera-2
ture on the simple cubic, body-centered-cubic, and (for the XY case only) face-centered cubic lat-
tices. Series expansions around the Ising limit are calculated, for the ground-state energy, staggered
magnetization, transverse susceptibility, staggered parallel susceptibility, energy gap and dispersion
relation, using a linked-cluster technique. The results are compared with spin-wave perturbation
theory, which has been extended to third order for the Heisenberg antiferromagnet, and the agree-
ment is excellent. The finite-size scaling corrections which are calculated from the spin-wave theory
are also entirely consistent with the predictions of effective-Langrangian theory.

I. INTRODUCTION

The Heisenberg antiferromagnet on a square lattice
has recently attracted much attention, ~ due to its possi-
ble connection with high-T, superconductors. Following
work of Singh, we were able to show that results of high
accuracy can be obtained for the zero-temperature limit
of the model using series expansions about the Ising limit.
Their accuracy has only recently been matched, in fact,
by the quantum Monte Carlo calculations of Runge. 4

Furthermore, it was shown that spin-wave theory agrees
very well with the series results, when carried to higher
orders, '5 and that the spin-wave theory also gives de-
tailed predictions for the finite-size scaling corrections in
the model, which are consistent with universal formu-
las derived &om the effective-Langrangian approach. ~

Similar results were also obtained for the quantum XY
model at zero temperature on the square lattice. ~o

In view of these results, our purpose in this paper is
to apply the same techniques to the three-dimensional
versions of these models. There are many real magnetic
systems which may be described by these models in three
dimensions: See for example the reviews by de Jongh and
Miedema and Betts. 2 The lattice coordination number
is generally larger in three dimensions than in two, and so
the quantum Buctuations are less efFective in reducing the
long-range order. As a result, spin-wave theory and the
series expansions should be even more accurate. These
expectations are borne out by our results.

The study of quantum spin systems in three dimen-
sions has a long history. The existence of long-range
order in these models on the cubic lattice at low tem-
peratures has been rigorously proven by Dyson, Lieb,
and Simon, Kennedy, Lieb, and Shastry, and Kubo
and Kishi. The development of spin-wave theory for
the Heisenberg antiferromagnet goes back to early work
by Anderson, Kubo, Oguchi, and Stinchcombe,
among others. Nishimori and Miyake have given a self-
consistent spin-wave treatment to second order. Spin-
wave theory was previously thought to be unsatisfactory

in the case of the XY model, but recently Gomez-
Santos and Joannopoulos have shown that, by a dif-
ference choice of quantization axis, an accurate the-
ory can be developed. Variational approximations have
been used in early work by Marshall and Taketa and
Nakamura 24 P.erturbation expansions about the Ising
limit have been used by Davis2s and Parinello and Araizs
for the Heisenberg model. A related approach, us-
ing projection operator techniques, has been developed
by Becker, Won, and Fulde and applied to three-
dimensional lattices by Kim a,nd Hong. However, long
expansions, comparable to those in two dimensions, have
not previously been obtained for three-dimensional lat-
tices. A fi.nite-cell calculation has been presented by
Oitmaa and Betts, for both the Heisenberg and XY
models. Quantum Monte Carlo simulations have been
confined to the two-dimensional models, as far as we are
aware.

The remainder of the paper is set out as follows. In
Sec. II we brieQy describe the method of derivation of the
series, discuss some technical details, and present results.
Series are obtained for the ground-state energy, staggered
magnetization, parallel staggered susceptibility, uniform
perpendicular susceptibility, and energy gap. In Sec.
III we develop spin wave theory to third order for the
Heisenberg antiferromagnet on the simple-cubic (sc) and
body-centred-cubic (bcc) lattices. Results are obtained
for all above quantities as well as for the spin-wave veloc-
ity. Finite-size scaling corrections are discussed and com-
pared with the predictions of effective-Lagrangian theory.
We have previously given a second-order spin-wave analy-
sis for the XY model on the three dimensional lattices.
In Sec. IV we present an analysis of the series and a com-
parison of the results of both approaches. The agreement
is extremely good. Finally in Sec. V we give a summary
and conclusions.

II. DERIVATION OF SERIES

We consider the anisotropic Heisenberg antiferromag-
net (XXZ model) with Hamiltonian:
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H = ) [Sf S' + z(SPS* + S,"S")j, TABLE I. The number of clusters generated for each lat-
tice.

where (lm) denotes a sum over all nearest-neighbor pairs.
The limits x = 0 and x = 1 correspond to the antifer-
romagnetic Ising model, and isotropic Heisenberg model
respectively. We also consider the anisotropic quantum
XY model

sc lattice
bcc lattice
fcc lattice

Ground-state energy
Order No. of Clusters

12 12280
12 49021
9 7215

Energy gap
Order No. of clusters

11 5510
11 15295
9 9431

H= —) (S;S +zSsSs)
(bn)

(2)

EN ) CN

where CON is the embedding constant for cluster o. and c
is the "cumulant energy" of cluster o;, as defined below.
The ground-state energy for cluster P can also be written

E~~ = ) C~s

and this results in an iterative method for obtaining the
cumulant energies e via the ground-state energies of a
set of clusters of increasing size. The ground-state ener-

gies Ez~ are obtained as power series in z through an ef-
ficient computerized Rayleigh-Schrodinger perturbation
algorithm. The calculation of the energy gap is a lit-
tle more involved and we refer the reader to Ref. 32 for
further details.

What is needed then is the following information.
(i) A list of all clusters up to the order required. For

the expansions considered here the clusters are grouped

In each case the Hamiltonian has the form H = Hp + zV
and we seek to derive long perturbation expansions in
the anisotropy parameter z, i.e., about the Ising limit.

Our approach uses a cluster expansion method due to
Nickel, which has been explained in some detail in one
of our earlier papers. s2 We present here a brief summary
of the essential ideas.

To obtain the ground-state energy Ez+ for a lattice of
K sites one considers a set of clusters (nj and writes

according to the number of sites or vertices. An eKcient
computer algorithm is used to generate all connected
clusters.

(ii) The embedding constants C+. These are the
"strong" or low-temperature lattice constants, in stan-
dard terminology, and are enumerated by direct counting
or algebraic reduction methods.

(iii) For each cluster n, a list of subclusters and cor-
responding embedding constants. For the ground state
only connected clusters are needed while for the energy
gap disconnected clusters, including those with one iso-
lated vertex, are also needed. Table I gives the number
of clusters generated for each lattice. Not all of these in
fact contribute to the order of the series obtained, the
acceptance ratio being of order 50%%uo.

A number of checks with previous work have been
made. The list of connected clusters and their embedding
constants may be used to de6ne a generating function

F(z, b) = ) A„(b)z",

where A„(b) is a polynomial whose coefficients give the
number of connected r-site clusters with various numbers
of bonds (edges). Sykes and Wilkinson and Sykes
have given the A, 's to order 13 for the sc and bcc lat-
tices, respectively. Our data agree completely with these
results. The data for connected and disconnected clusters
can be used to compute the low-temperature polynomials
L„(u) for the Ising model. ss The polynomials obtained in
this way agree completely with published results for the
sc lattice, the bcc lattice, ' and fcc lattice to order
8.3 ' The polynomial Lg, which is obtained &om our
data as

Lg ——80u + 438u + 1776u + 6976u + 23898u + 46567u + 126346u
1 45+53220u —179270u —1353313u —6743976u4 —4449786u —37125033-u
3

+192574385u + 452391180u " —1018385574u —4958299828u + 18998141497u

—27672861980u + 20978781848u —8269648148u + 1346898697-u
9

is, to the best of our knowledge, new.
For the XXZ model, series have been calculated for

the ground-state energy per site Ep/N, the energy gap m,
the staggered magnetization M+, the parallel staggered
susceptibility y, and the uniform perpendicular suscep-

II
'

tibility y~. The staggered perpendicular susceptibility
y& is related to y~ by the relation y&(z) = y~( —z).
The resulting series for the spin-2 and spin-1 Heisenberg
antiferromagnets on the sc and bcc lattices are listed in
Tables II and III.

For the XY model on bipartite lattices, such as the sc
and bcc lattices, the isotropic antiferromagnetic model

H" = ) (s,*s* + s,"s"),
(&~)

is related to the ferromagnetic one by a simple spin trans-
formation. Hence, there exist the following relations be-
tween the isotropic AY ferromagnet (F), antiferromag-
net (A), and the model described by Eq. (2):



50 HEISENBERG ANTIFERROMAGNET AND THE XYMODEL AT. . . 3879

TABLE II. Series coefficients for the ground-state energy per site Eo/N, the staggered magnetization M, staggered parallel

susceptibility y~~, and the energy gap m. Coefficients of x" are listed for both the spin-- and spin-1 Heisenberg antiferromagnets.

Ep/N M+

1Span-
&

0
2
4
6
8

10
12
Spin-1
0
2
4
6
8

10
12

XXZ model on the sc lattice
-3/4

—1.500000000000 x 10
5.000000000000 x 10

—1.565320944488 x 10
—4.704476286333 x 10
—2.617515568853x 10 4

—1.500007148263x 10 4

XXZ model on the sc lattice
—3

—2.727272727273 x 10
—1.656649135988x10-
—4.402238091215x 10
—1.834625905661x 10
—9.267889233149x10-'
—5.334684310134x 10

1/2
—6.000000000000 x 10
—4.011111111111x 10
—3.724431496528 x 10
—1.921150493841x 10
—1.282583243920 x 10
—9.023859053626 x 10

1
—4.958677685950x 10
—1.072887293023 x 10 ~

—4.729751792196x 10
—2.741948288721x 10
—1.779143740889x 10
—1.249464211646x 10

0
4.800000000000 x 10
1.437209876543 x 10
1.172820560775 x 10
8.712598733252x 10
7 077235096534x 10—s

5.955040359990x 10

0
1.803155522164x 10
9.078996187332x 10
6.071618928288x 10
4.682294372222x10 s

3.797492779253x 10
3.196605888446x 10 s

—1.95
—7.480952380952 x 10
—2.386949857024 x 10
—3.884790029204 x 10
—1.028725932747 x 10

e
—3.327272727273
—6.352818729770x 10
—3.345548334284 x 10 '
—2.098357436338x 10 '
—1.472428300104 x 10 '

Span-
&
1

0
2

6
8

10
12

XXZ model on the bcc lattice
—1

—1.428571428571x10 '
—4.877775285939x 10
—1.649668357885 x 10
—6.929303903362x 10 4

—3.520035082119x 10
—2.037541131770x 10

1/2
—4.081632653061x10
—6.429355947185x 10
—3.035412156556x 10
—1.773699786862x 10 3

—1.154245309679x 10
—8.129275009943x 10

0
2.332361516035x 10
1.006610968929x10 ~

6.737938708739x 10 3

5.198354403799x 10
4.216698493871x 10
3.550840789723 x 10

4
—2.380952380952
—3.196285196285x 10 '
—2.252299684735 x 10
—1.264167954066x 10
—9.455214371223x 10 ~

Spin-1
0
2
4
6
8

10

XXZ model on the bcc lattice
—4

—2.666666666667 x 10
—1.991315453384x 10
—5.314050576463x 10
—2.168020096514x 10
—1.093837681014x 10

1
—3.555555555556 x 10
—8.848010368105x 10
—3.986869676812x 10
—2.281649098940x 10
—1.480212403691x 10

0
9.481481481481x 10
5.202442595704 x 10
3.579041013496x10-'
2.742143507967x 10
2.225922465809 x 10

8
—4.304761904762
—9.097495817418x 10 '
—4.596687578938x 10 '
—2.877155097259x 10
—2.018710900252x 10

Ep(x= 1) = Ep(x = —1) = Eo = Eo
M (x= 1) = M (x = -1) = M = M '

x..(*=1)=x..( =-I) =x.'. =x.".',
x„(*=1) =x„"„'=x„„,
x„(*=-1) = x„"„=x„„',
X.*(x = 1) = X.".= X...
x-(*= -1) = x..' = x..',A, S E,S

(8a)

(Sb)

(Sc)

(Sd)

(Se)

(8f)

(Sg)

the case of bipartite lattices. The resulting series for the
spin-z XY xnodel on sc, bcc, and fcc lattices are listed
in Tables IV and V.

III. THIRD-ORDER SPIN-WAVE RESULTS
FOR THE XXZ MODEL

where the superscript 8 denotes the staggered magnetiza-
tion and susceptibility. The fcc lattice is not a bipartite
lattice, and the ground-state energy Eo and its deriva-
tives are functions of x, rather than functions of xz as in

The general third-order spin-wave theory and its ap-
plication to the square lattice has been discussed in Refs.
5, 6, where the physical quantities are mainly functions
of t (x) defined by

TABLE III. Series coefficients for the perpendicular susceptibility yz. CoefBcients of x" are listed for both the spin-2 and
spin-1 Heisenberg antiferromagnets on the sc and bcc lattices.

0
1
2
3
4
5
6
7
8
9

10
11

Spm-& sc
1/6

—1/5
0.2047619047619

—0.2089841269841
0.2093120630912

—0.2110707085205
C.2113749749681

—0.2122818126498
0.2124299805549

—0.2130062125841
0.2131115958540

—0.2135065810254

Spin-1 sc

1/6
—2/11

0.182'F651515152
—0.1855011895818

0.1857250599719
—0.1867456123021

0.1868243559399
—0.1873888712210

0.1874341182247
—0.1877882149073

0.1878171707705
—0.1880607495981

Spin- 1 bcc2

1/8
—1/7

0.1446428571429
—0.1475695223144

0.1478680866468
—0.1489148208821

0.1490393875942
—0.1496187218766

0.1496933120095
—0.1500571373779

0.1501053807278
—0.1503559053134

Spin-1 bcc
1/8

—2/15
0.1337121212121

—0.1353154533844
0.1354155330063

—0.1360495759429
0.1360873635876

—0.1364307482710
0.1364510018592

—0.1366669886154
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&-(~) = y) .((1 —&'~a)"" —1]

and the structure factor pA, is de6ned by

= 2~j
k, (j)=, j = 1, 2, . . . , I/2, finite lattice system.

aL

(2) bcc lattice:

iIc pyi = —) e''.
P

(10)
pq

——cos(k a/2) cos(k„a/2) cos(k, a/2),

momentum k:

(12)

z is the coordination number, and the sum over k denotes
a sum over the first Brillouin zone of the sublattice l. For
a bulk system, the momentum k is continuous over the
first Brillouin zone, but for a finite-lattice system, the
momentum k is discrete. For the sc and bcc lattices, the
structure factor pi„ the first Brillouin zone for the bulk
system, and the discrete momenta k for a finite-lattice
system are the following:

(1) sc lattice:

ps = [cos(k a) + cos(k„a) + cos(k, a)]/3,

momentum k:

—z'/a & k, k„& vr/a, ~k,
~

& m/(2a), bulk system,

k (i), k„(i)=, i = 1, 2, . . . , L,aL'

—7r/a & k, k„,k, & z'/a, bulk system,

k (i), k„(i),k, (i) =

i = 1,2, . . . , L, 6nite-lattice system,

where L and a are the lattice size and the lattice spacing,
respectively. For convenience, we set the lattice spacing
a = 1 from now on. For a bulk system, the asymptotic
behavior near z = 1 of C„ is given in Ref. 30. We must
note that the singularity here is different &om that on the
square lattice, where the singular terms are of the form

(1 —zz)"/2, whereas here the singular terms are of the
form (1 —z2)" ln(1 —z2) (n is a integer). The finite-size
corrections to t, can be calculated in the same way as
for the square lattice. The results are the following:

(1) sc lattice:

TABLE IV. Series coefiicients for the ground-state energy per site Ep/N, the magnetization M, and the parallel suscepti-
bility g of the spin-2 XY model. CoefBcients of z" are listed.

Ep/N

1Spm-—2
0
2

4
6
8

10
12

XY model on the sc lattice
-3/4

—3.750000000000 x 10
—2.781250000000x 10
—7.641105083510x 10
—3.116037629649x 10
—1.56987261918?x10
—9.016114952890x 10

1/2
—1.500000000000 x 10
—3.438194444444 x 10
—1.575367408278 x 10
—9.011185812862x 10
—5.840152277071 x 10
—4.099185424317x 10

0
1.200000000000 x 10
5.723256172840 x 10
3.932928543228 x 10
3.001822149165x 10
2.431110482685x 10
2.046130221965x 10

~ 1Spsn--2
0
2

4
6
8

10
12

XY model on the bcc lattice
—1

—3.571428571429x 10
—3.334197690065x 10
—9.009318847504x 10
—3.672948080736 x 10
—1.852091587882x 10
—1.064041460129x 10

1/2
—1.020408163265 x 10
—2.890218493055x 10
—1.316221737101x 10
—7.540401362783x 10
—4.895?97329177x 10
—3.439572927014x 10

0
5.830903790087x 10
3.357080496772 x 10
2.317905365556x 10
1.776563284100x 10
1.443527472221 x 10
1.217306755892x 10

1Spzn-—2
0
1
2
3
4
5
6
7
8
9

XY model on the fcc lattice
—3/2

0
—3.409090909091x 10
—6.198347107438x 10
—2.475737616016x 10
—1.184?35853462x 10
—6.643312716138x 10
—4.094622435794 x 10
—2.706300376371x 10
—1.883309173349x 10

1/2
0

—6.198347107438x 10
—2.253944402705 x 10
—1.388229359974x 10
—8.912659135055x 10
—6.283570849856 x 10
—4.661098853272x 10
—3.60127538003?x 10
—2.867757000281 x 10

0
0

2.253944402705 x 10
1.229424219657 x 10
1.039956403788x 10
8.397087738470x 10
?.148069660409x 10
6.204928498120 x 10
5.490230234957 x 10
4.924784303546 x 10
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Cs(1) = —0.220369512500+ 3.932/L + O(L ),
(i3a)

Cy (1) = —0.0971580039513—1.934209/L + O(L ),
(13b)

C g(1) = 0.156715415334—1.5642841/L + 0(L ) .
(13c)

A. Ground-state energy

As discussed in Ref. 5, there are two perturbation

terms LE and LE& contributing to the third-
order spin-wave results for the ground-state energy, and
at the isotropic limit x = 1,

(2) bcc lattice: aE~-'& = 0, (i5)
Cs(1) = —0.164974389703+ 1.2769393/L + O(L 7),

(14a)

Cy(1) = —0.0730376707635 —0.83753691/L + O(L s),
(14b)

C g(1) = 0.118636387164—0.903139838/L + O(L s) .
(14c)

while EE&~ l is a nine-dimensional integral over the first
Brillouin zone of the sublattice /. It can be computed
numerically in the follow way: We first evaluate its
value for finite lattices, and then extrapolate the results
to the infinite lattice:

TABLE V. Series coefficients for the transverse susceptibility y», y „and the energy gap m of the spin-- XY model.
CoeRcients of z" are listed.

Spin--
0
1
2

3
4
5
6
7
8
9

10
11

X»
XY model on the sc lattice

1/6
1.833333333333x 10
1.845238095238 x10 '
1.873815192744x 10
1.876285109968x 10
1.888562013916x 10
1.889751210970x 10
1.896483343876x10 '
1.897187379037x10 '
1.901446928063x 10
1.901917971750x10 '
1.904864449354 x 10 '

1 6
—1.666666666667 x 10

1.190476190476x 10
—6.978458049887x 10

5.022852635523 x 10
—1.320188413512x 10

9.887227440714 x 10
—4.469817979089x 10 '
—3.315611370521x 10
—2.000372946766 x 10
—2.979158322603x 10
—1.060246590636 x 10

—1.5
—4.875000000000 x 10
—1.359375000000x 10 '
—1.249490327381x10 '
—6.784615593850x 10
—6.115068171845x10 2

—4.146406000229 x 10
—3.804881048189x 10
—2.8592527Q3493 x ]0
—2.658763363254x10 2

Spsn- 2
0
1
2
3
4
5
6
7
8
9

10
11

XY model on the bcc lattice
1/8

15/112
1.343750000000 x 10 '
1.362220193709x10 '
1.363488832957x10 '
1.371121252412x10 '
1.371688102888x 10
1.375882716948x10 '
1.376213752550x 10
1.378873939349x 10 '
1.379094065898x 10
1.380935429306x 10 '

1/8
-1/112

4.464285714286 x 10
—3.993152893025x 10 4

2.436475105581x 10
—8.208795576602 x 10

1.363244106281x 10
—2.857220803419x10
—1.859653069981x 10
—1.308177910311x 10
—1.618780389665x 10
—7.047955217065 x 10

4
—2

—5.952380952381x10 '
—2.182539682540x10 '
—1.617946207232x10 '
—9.604697554830x10 2

—8.165041651170x 1Q
—5.764716973423x 10
—5.108953815332x 10
—3.951012871692x 10
—3.578620551813x 10

Spin--2
0
1
2
3
4
5
6
7
8

XY model on the fcc lattice
1/12

23/264
8.836733815427x10
8.900716098023x 10
8.939819341080x 10
8.966174682517x10
8.985190255424x 10
8.999599726482x 10
9.010912739846x 10

1/12
—1/264

—1.312844352617x 10
—1.073920486615x 10
—4.207313931352x 10
—2.396277185827x 10
—1.440419034214x 10
—9.435544252908 x 10
—6.512212791619x 10

6
—3

—8.681818181818x 10
—3.550000000000 x 10
—2.265922408057x10 '
—1.553594338314x 10
—1.164133745557x10 '
—9.120044923369x 10
—7.763085907377x 10
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{—x) N 0.0001596(4)/S,
O.QOQQ8796(6)/S,

sc lattice,
bcc lattice.

Via MATHEMATiCA, we can compute a series expansion

of AE& in x up to order x for the sc lattice, and
up to order x for the bcc lattice. Extrapolating this
series using integrated Dlog Pade approximants, one
can obtain an estimate near the isotropic limit z = 1:

~E{—z) N 0.00016(4)/S + 0.0009(3)(1 —x2)/S + .
0.0000888(10)/S + 0.00059(4)(1 —x2)/S + . -

The extrapolation of the full series for Eo/N gives

sc lattice,
bcc lattice.

—0.90246(5) + 0.162(l) (1 —x') +
—3.2983{2)+ 0.350(2)(1 —xs) +
—1.15121(3)+ 0.1695(10)(1—x ) +
—4.29739(2) + 0.359(2)(1 —x ) + .

S=-,
S= 1,
s=-,',
S= 1,

sc lattice,
sc lattice,
bcc lattice,
bcc lattice.

(18)

By comparing the above results, we can conclude that the asymptotic behavior of the bulk ground-state energy per
site for the sc and bcc lattices is

e = lim Eo/N = —3S —0.291474011829S—0.00707975829764 + 0 0001.596(4)/S
N moo

+(1 —x )[0.380811S—0.0298393606 + 0.0009(3)/S] + . , sc lattice,

e~ = hm Eo/N = —4S —0.292151S —0.0053345 + 0.00008796(6)/S
N-+oo

+[0.38335S —0.022739+ 0.00059(4)/S](1 —x ) +, bcc lattice.

The finite-lattice corrections to the isotropic system are

(19a)

(19b)

Eo/N —e = —(5.802627S + 0.2818858)/L4 +
Es/N —e = —(3.3501476S + 0.12234349)/I, 4 +

sc lattice,

bcc lattice.
(20a)

(20b)

B. Staggered magnetization and parallel staggered susceptibility

Referring again to Ref. 5, near the isotropic limit x = 1, we have (we take this opportunity to correct a typographical
error in Eq. (2.29) of Ref. 5: the correct formula should be AM = —(16x S ) ~(1 —z2)(C q

—Cq){(1—
x )[3C—5(C—g C$) + 4C y 9C—gC 3 + 2C s + 3C sCg] + 2Cy(C —3 C—g) j)

—0.00081162972(1 —x ) ln(1 —x )/S2 +
—0.00035460962{1—x2) ln(l —x2) /S2 +

{—3)
—0.0000517687968 ln(l —x2) + 0.000131881344+
—0.0000168905622 ln(1 —x2) + 0.000029372845 +

sc lattice,
bcc lattice,

sc lattice,
bcc lattice.

(21)

(22)

LM& is again a nine-dimensional integral, which upon numerical integration is

0.000270(2) /S2,
a

=
0 0001147(15)/S2,

sc lattice,
bcc lattice.

Series expansions were also carried out for AM& and Ay& to order x on the sc lattice and order ~ on the

bcc lattice for AM&, and to order x 2 on the sc lattice and x on the bcc lattice for Ey& . Extrapolation to the
isotropic limit gives

{—2) 0.00031(8) —0.0013(3)(1—x ) ln(l —x ) +
0.000119(4) —0.00048(5) (1 —x ) ln(1 —x ) +-

sc lattice,
bcc lattice, (24)

3 {—3) 0.00025(8) ln(1 —x ) +
0.00008(3) ln(1 —x ) —0 00019(6) + .

sc lattice,
bcc lattice. (25)

The extrapolation of the full series for M+ and g gives
II



50 HEISENBERG ANTIFERROMAGNET AND THE XYMODEL AT. . . 3883

0.4232(5) —0.0398(4)(1 —z ) ln(l —z ) +
0.923(1) —0.0507(4) (1 —z2) ln(1 —z2) +
0.4416(6) —O.O345(4) (1 —z')»(1 —z') + ". ,
0.9413(4) —0.0418(4)(1 —z2) ln(1 —z2) +

S=-',
S=1,

1
2)

S=1,

sc lattice,
sc lattice,
bcc lattice,
bcc lattice,

(26)

—0.0381(l) ln(1 —z2) —0.008(2) +.. . ,

s —0.019(l) ln(l —z2) —0.011(2) + .
—0.0226(10) ln(l —z') —0.008(2) +
—0.011(1)ln(1 —z2) —0.007(2) +

So we conclude that for the bulk sc and bcc lattices near z = 1,

S=-',2'S= 1,
S=2,
S=1,

sc lattice,
sc lattice,
bcc lattice,
bcc lattice.

(27)

M+ = S —0.078357708+ 0.000270(2)/S'

+[—0.065810+ 0.016707/S —0.0018(3)/S ](1—z ) ln(l —z ) +, sc lattice,
M+ = S —0.059318194+ 0.0001147(15)/S

+[—0.0506606+ 0.00971032/S —0.00083(5)/S )(1 —z ) ln(1 —z ) +, bcc lattice,

y~~
——[—0.0219367/S+ 0.00106566/S + 0.00019(4)/S ] ln(1 —z )

—0.0143905/S + 0.00626822/S —0.0005(3)/S +, sc lattice,

[ 0.012665148/S + 0.000462516/S + 0.00006(3)/S ] ln(1 —z )
—0.0086209/S + 0.0027424/S —0.00016(6)/S +, bcc lattice.

The finite-lattice correction to the staggered magnetization of the isotropic model is

(28a)

(28b)

(28c)

(28d)

M~+ —M+ = (0.782142+0 x S )/L +
M~+ —M+ = (0.45156992+ 0 x S )/L +

sc lattice,

bcc lattice.
(29a)

(29b)

C. Energy gap

Here there are five perturbation terms contributing to the energy gap at third order, and three of them can be
calculated analytically:

S(1 2g y/2~~ ( y) ~ (—1) ~ ( y), —0.048338779 + 0.05012226(1 —z ) ln(1 —z ),
—Q.036738944+ O.Q3884128(1 —z ) ln(1 —z )

sc lattice,
bcc lattice.

The remaining two can be evaluated by series expansion, the extrapolation to the limit z = 1 being

( 2) yy2( (—1) ( y)) 0.046(3) + 0.070(1)(1—z ) ln(1 —z ) +™0.0350(8) + 0.055(2)(1 —z2) ln(1 —z2) +

The extrapolation of the full series for the energy gap m gives

sc lattice,
bcc lattice.

2.530(2) —0.11(2)(1 —z2) ln(l —z2) +.. . ,
5.534(6) —0.25(2) (1 —z ) ln(1 —z ) +

(1 —z) m=q 3.525(4) —0.215(5)(l —z ) ln(1 —z ) +2 2

7.526(2) —0.312(6)(1 —z2) ln(l —z2) +

The results of numerical integration are

S=-'
27

S=1,
1

S=1,

sc lattice
sc lattice,
bcc lattice,
bcc lattice.

(32)

( S/ )( 2) gg2(~ (—y) ~ ( g))
—0.0156788(2), sc lattice,
—0.0089964(5), bcc lattice.

Therefore, the results are summarized as

(33)

(1 —z ) ~ m = 6S —0.4701462 —0.0013024(6)/S+ [—0.3948602+ 0.13(2)/S](l —z ) ln(l —z ) +, sc lattice,

(34a)
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(1 —z ) ~ m = 8S —0.474545 —0.000753(2)/S+ [
—0.405285+ 0.094(4)/S](l —z ) ln(l —z ) + . . bcc lattice.

(34b)

D. Perpendicular susceptibility

Using the Dyson-Maleev formalism, the third-order uniform perpendicular susceptibility is found to be [note that
we take this opportunity to correct an error in Ref. 5; the contribution &om Fig. 3(a) there should only involve
the unperturbed energy of the intermediate state, so that the term m( ~) should be dropped from Eq. (2.60), and
the correct results for the uniform perpendicular susceptibility X~ and staggered perpendicular susceptibility X&
for the square lattice are y~ = 0.125 —0.03444695942S ~ + 0.00204006(7)S 2 + O(S s), (1 —z)ps& ——0.25 +
0.06889391884S + 0.013546(10)S + O(S )]

+y~ +y~ +O(S ),
(o) (-~) (-2) —3

with

(o)
XJ

(-~)
XQ

(—2)
XJ

(36a)

(36b)

)

(36c)

1

z(1+ z)
'

Cg —C g

2zSz(1+ x)
'

= [(1—x)(1+2z)C ~
—(1—x )(C g

—Cg)C s —(1+2z—2x )C gCg + Cqx][4S zz (1+z)] +)(g + y,

where X~ + X, is a six-dimensional integral, which can be carried out by series expansion in x via MATHEMATICA

up to order z24 for the sc lattice, and up to order xM for the bcc lattice. The extrapolation of this series gives

' 0.00088(2) —0.0008(3)(1 —z) ln(1 —z) + .

{ 2) (
—2) —0.0315(5) —0.0858(5) (1 —z) ln(1 —x) +

0.00038(1) —0.00050(5) (1 — ) l (1 —*)+
, —0.01813(10)—0.050(4)(1 —x) ln(1 —x) +

x = 1, sc lattice,
x = —1, sc lattice,
x = 1, bcc lattice,
x = —1, bcc lattice.

(37)

Analysis of the full series gives

0.06445(10) —0.075(5) (1 —z) ln(1 —x) +
0.073305(5) —0.0075085(5) (1 —z) ln(1 —x) +
0.051448(5) —0.0066(2) (1 —x) ln(1 —x) +
0.056744(1) —0.004842(5) (1 —x) ln(1 —z) +

S=-',2'
S=1,
S= -'',

2)
S=1,

sc lattice,
sc lattice,
bcc lattice,
bcc lattice,

(38)

0.2155(1) + 0.032(3)(1 —x) ln(1 —x) +
0.18944(10) + 0.01912(10)(1 —x) ln(1 —z) + .

(1 —x)Xi = & 0.15175(1)+ 0.0218(10)(1 —z) ln(l —z) + - . -,
0.13767(1)+ 0.0116(4)(1 —x) ln(l —x) +-

S=2,
S=1,
8= —,
S=1,

sc lattice,
sc lattice,
bcc lattice,
bcc lattice.

(39)

The results of numerical integration are

2 ( 2) ( 2) 0.001736(8),
0 0007533(3)

x = 1, sc lattice,
x = 1, bcc lattice. (40)

Therefore, the conclusions for the uniform perpendicular susceptibility X~ and staggered perpendicular susceptibility

X& near the limit x ~ 1 are
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' 1/12 —0.0105780585/S + 0.0005500Q5(20)/S'
+[—0.0109683399/S+ 0.00345(5)/S ](1—z) ln(1 —z) + . , sc lattice,

(41)
1/16 0 005989814/S + 0.00023051(1)/S

+[—0.00633257/S + 0.00145(5)/S2](1 —z) ln(1 —z) + bcc lattice,

1/8 + 0.0119796/S + O.Q0072(2) /S~
+[0.01266514/S —0.0011(3)/S2] (1 —z) ln(1 —z) + bcc lattice.

' 1/6 + 0.021156117/S + 0.00164(5)/S'
+[0.02193667974/S —0.0027(1)/S2](1 —z) ln(1 —z) +.. . , sc lattice,

(1 —*) (42)

E. Spin-+rave velocity

The spin-wave velocity can be calculated as usual from the dispersion relation involving the spin-wave energy m(k)
of a single-boson state with momentum k. Here we only consider the isotropic case (z = 1):

where

m(k) = i'l(k) + mi'&(k) + m' '&(k) + O(S '),

(1)(k) S(1 2) 1/2

"'(k)= --( — ')"'O
2

m& l(k)= — (1 —pl, )
~ ms, (k),2S

(43)

(44a)

(44b)

(44c)

and m& (k) is a six-dimensional integral defined in Ref. 6, which can be carried out in the same way as for the square
lattice. Figure 1 shows the dispersion relation along the line k = k„= k, for the sc and bcc lattices. In the limit
k~0, we get

—0.00253(4), sc lattice,
—0.00154(2), bcc lattice.

Therefore, the energy gap of the isotropic Heisenberg antiferromagnet at the small k limit is

m(k) = q

2~3S 1+ ' + ' ~ l +O(S ) k sc lattice

(46)

and the spin-wave velocity is

4S 1+ + +O~S 3)~k2S (2S)~ j bcc lattice.

2~3S 1+ s + ' +O(S ), sc lattice,

(47)
y + 0.073037671 + - o + OgS —3g

2S (2S)2 j ) bcc lattice.

F. Finite-size scaling

The 6nite-size scaling behavior of the isotropic Heisen-
berg antiferromagnet has been predicted by Neuberger
and Ziman7 and Fisher, s and has been formulated as
a systematic large volume expansion by Hasen&atz and
Niedermayer. These predictions are based on general ar-
guments that the large distance behavior will be domi-
nated by massless Goldstone bosons, which are precisely

I

the spin waves or magnons, and result &om spontaneous
breakdown of the 0(3) symmetry of the system. A sim-
ple effective Lagrangian can be written down for the
Goldstone modes, which at leading order involves just
three unknown parameters, which can be taken as the
spin-wave velocity e, the helicity modulus or spin-wave
stiffness p„and the staggered magnetization Z = M+.
On this basis, »~reversal formulas can be derived for the
6nite-size scaling corrections, which are compared with
our spin-wave results below.
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I I I
]

I I I
]

I I I
[

I I I
[

I I I one site (here we take the size of the primitive unit cell
to be one lattice unit).

2. Energy gap

The predicted finite-lattice energy gap at zero momen-
tum is

m)v(k =1) = +O(L ) .
1

xiLD (50)

The leading-order spin-wave result for this quantity was

obtained in a previous paper:

2z
mg(k=1) = +I,D (51)

7r 2
k„=kr=k,

FIG. 1. The spin-wave energy m(k) as a function of mo-

mentum k along a line A: = k„= k for the sc and
bcc lattices. The three curves shown are the first-, sec-
ond-, and third-order spin-wave predictions corresponding to
short-dashed and solid lines, respectively.

Ground-state energy

The predicted finite-size correction to the ground-state
energy per site is

(48)

in D space dimensions, where P is a calculable shape fac-
tor appropriate to the particular lattice. According to
the notation of Hasenfratz and Leutwylerss for a hyper-
cubic lattice

where z in the lattice coordination number. Equations
(50) and (51) are consistent to leading order.

8. Staggered magnetization

Neuberger and Ziman have discussed the finite-lattice
corrections to the staggered magnetization predicted by
the efFective Lagrangian theory for the square lattice. A
generalization which includes their result is

Zvp
M~ —M

Pe
(52)

where p is another calculable shape factor. This result
must be interpreted with some care. Strictly speaking,
there is no spontaneous symmetry breaking on a finite
lattice at zero field, and the staggered magnetization is
zero. Equation (52) describes the value obtained either at
a finite but very small field, or else perhaps by a measure
of the mean-square magnetization. In the notation of
Hasenfratz and Leutwyler, ss for a hypercubic lattice

P ( )(1)+2 D+1
= 1.675074, sc lattice. (49)

2 + —o. , (1)
1 2 (Q)

4~ D —1 +-'

0.3103732, square lattice,
0.2257849, sc lattice.~

~~

~~

(53)

Equations (20) and (47) are in precise agreement with
the prediction (48) up to the order calculated, with the
shape factor P given by (49) for the sc lattice, and P =
0.83753690 for the bcc lattice. Note that P for the bcc
lattice is half that for the sc lattice, probably because the
primitive unit cell for the bcc lattice contains two sites
but the primitive unit cell for the sc lattice contains only

Equations (29) and (47) agree precisely with (52) to the
order calculated, with the shape factor p given by (53) for
the sc lattice, and p = 0.1128924797 for the bcc lattice
(note that again p for the bcc lattice is half that for the
sc lattice), and with Z = M+ given in Eq. (28) and the
spin-stiH'ness constant p, given by

S [1 —0 02977869.8/S —0.00084(4)/S2], sc lattice,
S [1 —0.0227993582/S —0.00044(2)/S ], bcc lattice. (54)

as may be verified by a direct calculation.
Thus the spin-wave results are consistent in every de-

tail with the predictions of effective-Lagrangian theory,
as one should expect, and in addition they give explicit
expressions for the parameters v, p„and E of the eKec-

tive Lagrangian.

IV. SERIES ANALY'SIS

The analysis of the series has been carried out along
the same lines as in our previous papers ' and we will

not repeat the details here. First, we have endeavored,
by use of Dlog Pade approximants, to test whether the
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TABLE VI. Estimates of singularity parameters for the series given in Tables I —IV. Both unbiased estimates and estimates
biased by setting x = 1 are listed. The index values predicted by spin wave theory are also given for comparison.

Function

Singular point Singularity index

unbiased biased

Spin-wave

prediction

Spin-2 XXZ model on the sc lattice

m

dxII
dam

d M+
d(~2)2
ds Zg

d(~2)$
d x L
des
S

XJ

1.o(2)

1.0(4)

z. = O.7(S)

z, = 1.002(1)

0.6(3)

—1.2(10)

o.2(3)
—1.03(5)

o.s2(3)

-1.2(2)

-1.1(5)

-0.8(6)
—1.01(3)

0.5

—1.0
—1.0
—1.0
—1.0
—1.0

Spin-1 XXZ model on the sc lattice

m

de~

d M+
d(+')'
ds Ep

d(+Q)s
d xJ
de~

S
XJ

1.005(8)

1.06(10)

1.1(3)

1.1(4)

z. = O.8(S)

z, = 1.001(2)

0.52(5)

—1.4(4)

-1.4(6)

-1.5(10)

—1.02(4)

0.51(2)

-1.2(3)

-1.2(3)

-1.4(5)

-2.6(2.0)

—1.01(2)

0.5

—1.0
—1.0
—1.0
—1.0
—1.0

Spin- ~ XXZ model on the bcc lattice

m
dx

II

d(~~)
d~ M+
d(~Q)2
d Eg

d(+3)$
d xi
de~

S
XJ

1.01(5)

1.02(10)

1.08(10)

1.0(3)

z, = 0.7(5)

z, = 1.001(2)

0.53(6)

-1.4(s)
—1.5(6)

-1.5(10)

0.2(4)

—1.02(3)

0.51(3)

-1.2(3)

-1.2(3)
—1.4(6)

-0.5(7)
—1.01(2)

0.5

—1.0
—1.0
—1.0
—1.0
—1.0

Spin-1 XXZ model on the bcc lattice

m
dx

II

d(~~)
d M+
d(~Q)2
dsE

d(+Q)$
d x
de~

S
XJ

1.001(8)

1.05(8)

1.04(6)

series too short

z. = 0.7(5)

z, = 1.001(6)

0.51(4)

—1.4(6)

-1.4(5)

0.03(10)
—1.01(4)

0.505(10)

—1.1(4)

-1.1(3)

-o.9(s)
—1.007(10)

0.5

—1.0
—1.0
—1.0
—1.0
—1.0

1.03(6)

1.1(4)

1.O2(4)

z, = 1.001(4)

xsv (»o)
(z ( 0)

~xxs (z)0)
ds xsx (z ( 0)

z = 1.001(2)

z, = —0.9(3)

z, = 1.0(8)

z, = —1.0(6)

Spin- ~ XY model on the sc lattice
MR

d(~2)2
dsR

d(~2)$
dxaa
d(*')
m (z ) 0)

-1.3(s)
—1.7(6)
—1.3(s)

0.52(4)
—1.01(3)
—0.06(10)

—1.2(8)
—0.8(8)

-1.2(3)

-1.4(4)
—1.2(3)

0.51(2)
—1.007(10)
—0.9(5)

—1.4(10)
—0.9(4)

—1.0
—1.0
—1.0

0.5
—1.0
—1.0

—1.0
—1.0
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TABLE VI. (Continued)

Function
Singular point

X.' unbiased
Singularity index

biased
Spin-wave
prediction

1.04(5)

1.1(3)

1.04(4)

z, = 1.001(3)

x (z & o)
xIlv (z ( Q)

xxx (x & p)
d3 xxx (x ( p)

Spin-2 XY model on the fcc lattice
d M~

de~

d Ep

dxaa
dz

z, = 1.003(5)

x, = -0.9(4)

z, = 1.0(4)

z, = —0.8(4)

z, = 1.01(8)

x, = 1.02(6)

z, = 1.004(7)

m (z&O)

Xvv (x & o)
xsz (x & p)

x, = 1.001(8)

z, = 1.0006(10)

z, = 1.1(4)

Spin-2 XY model on the bcc lattice
d MR
d(~2)2
dsE

d(~2)s
dxaa
d(~~)

m (z &0)

—1.3(4)
—1.6(5)

-1.3(4)

0.51(2)
—1.03(4)
—0.04(10)
—1.4(10)
—1.2(10)

—1.2(6)

-1.3(5)
—1.08(10)

Q.51(6)
—1.01(2)
—1.4(4)

—1.1(3)

-1.3(4)
—1.1(3)

0.505(10)

-1.008(10)
—0.9(5)

-1.4(2)
—1.0(2)

-1.2(3)

-1.2(3)
—1.06(5)

0.507(10)

—1.008(10)

-1.4(2)

—1.0
—1.0
—1.0

0.5

—1.0
—1.0
—1.0
—1.0

—1.0
—1.0
—1.0

0.5

—1.0
—1.0

All estimates defective.

TABLE VII. Series estimates for the leading-order amplitudes A„of the spin-~ and spin-1 Heisenberg antiferromagnets at
z = 1 [as defined by Eq. (55) or Eq. (56) as the case may be]. Also listed are the spin-wave predictions at first, second, and
third order.

Function First order

Amplitudes A„
Spin-wave predictions

Second order Third order
Series

estimate

Spin-& XXZ model on the sc lattice
Ep/N 0

2
M+ 0

1
XJ 0

1
rn 1

2
—1

0
{1—z)y 0

1
Spin-1 XXZ model on the sc lattice
Ep/N 0

2
M+ 0

1
XJ 0

1
m 1

2
—1

0
(1-*)X' 0

1
Spin-& XXZ model on the bcc lattice
Ep/N 0

2
M+ 0

1
XJ 0

1
rrL 1

—0.895737
0.190405
0.421642

—0.065810
1/12

—0.0438?34
—0.028781

1/6

—3.29147
0.380811
0.921642

—0.065810
1/12

—0.0219367
—O.0143905

1/6

—1.146075
0.191674
0.4406818

—0.05066
1/16

—0.9028168
0.160566
0,4216423

—0.032395
0.0621772

—0.0219367
2.529854

-0.394860
—0.0396107
—0.0037081

O.2O8979
0.0438734

—3.2985538
0.3509716
0.9216423

—0.049103
0.0727553

—0.0109683
5.529854

—0.394860
—0.0208710
—0.0081223

0.187823
0.02193668

—1.151410
0.168935
0.4406818

—0.0312399
0.05052037

—0.012665148
3.52545445

—0.902498(1)
0.1624(7)
0.42272(1)

—0.040(1)
0.0643772 (1)

—0.0081(2)
2.527249(1)

—0.13(4)
—0.0381(3)
—0.008(3)

0.2155(2)
0.0331(4)

—3.2983942 (4)
0.3519(3)
0.921912(2)—0.0509(3)
0.07330528(2)

—0.00752(5}
5.5285514(6)

—0.26(2)
—0.02068(4)
—0.0086(3}

0.18946(5)
0.0192(1)

—1.1512341(2)
O.1701(1)
0.441159(5)

—0.0346(2)
0.05144241(4)

—o.oo69(2)
3.523949(4)

—0.9021(2)
0.1605(10)
0.424{2)

—0.0374(6)
0.0653(5)

—0.0100(2)
2.56(4)

—0.20(4)
—0.03824(10)
—0.011(5)

G.2144(10)
0.0314(4)

—3.2977(S)
0.345(6)
0.924(2)

—o.oso(4)
0.0737(5)

—o.0072(10}
5.55(2)

-O.26(4}
—0.019(1)
—o.oo9(4)

o.1ss7(4)
0.017(2)

—1.1510(5)
O. 167(3)
0.442(4)

—0.0333(10)
0.0519{3)—o.012(2)
3.55(10)
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TABLE VII. (Continued).

Function First order

Amplitudes A
Spin-wave predictions

Second order Third order
Series

estimate
2

—1
0

{1—a)g~ 0
1

Spin-1 XXZ model on the bcc lattice
Ep/N 0

2I+ 0
1

Xl, 0
1
1
2

—1
0

(1 —~)X& 0
1

—0.0253303
—0.0172419

1/8

—4.2921507
0.383348
0.9406818

—0.05066
1/16

—0.01266515
—0.00862095

1/8

—0.405284735
—0.02348023
—0.00627227

0.148959257
0.025330296

—4.297485
0.360609
0.9406818

—0.04095
0.056510186

—0.006332574
7.525454451

—0.405284735
—0.01220263
—0.00587854

0.136979629
0.012665148

—0.217(8)
—0.0230(2)
—0.0076{5)

0.15184(8)
0.021(1}

—4.2973975(2)
0.3612(1)
0.940800(1)

—0.04178(5)
0.05674070(1)

—0.00488(5)
7.524702(2}

—0.311(4)
—0.01214(3)
—0.00604(6)

0.13770(2)
0.0116(3)

—0.24(4)
—0.0224(6}
—0.006(2)

0.15109(8)
0.018(4)

—4.2961(8)
0.35(2)
0.942(3)

—0.042(2)
0.0570(3)

—0.056(8)
7.55(4)

—0.31(3)
—0.0109(4)
—0.007(3)

0.1372(6)
0.01004(4)

TABLE VIII. Series estimates for the leading-order amplitudes A in an asymptotic expansion at z = +I [defined by Eq.
(55) or Eq. (56) as the case may be] of the spin- — XY model on the simple cubic lattice. Also listed are the spin-wave
predictions at first and second order (Ref. 30).

Function

Amplitudes A
Spin-wave predictions

First order Second order
Series

estimate

Spin-
&

XY model on the sc lattice
Ep/N +1

ggZ

Spin-& XY model on the bcc lattice
Ep/N

Xxz

Spin-& XY model on the fcc lattice
Ep/N

xgg

(1 —~}-'~'m

(1 —+)&vs

gZS

0
2
0
1

—1
0
0
1
0
2
0
1
0
1
0
2
0
2

0
2
0
1

—1
0
0
1
0
2
0
1
0
1
0
2
0
2

0
2
0
1

—1
0
0
1
0
1
0
2

-0.787898
0.052735
0.477476

—0.0232674
—0.0155116
—0.014898

3

1/6

1/12

1/6

1/6

—1.03801
0.0531571
0.4829234

—0.01791122
—0.0089556
—0.00877273

4

1/16

1/8

1/8

—1.5440401
0.1321351
0.4853175

—0.032905
—0.0054842
—0.0094250

6

1/12

1/12

—0.791402
0.050532
0.476125

—0.0161322
—0.0136349
—0.007157

2.78864
—0.558416

2.94107
0.172831
0.190104
0.0310232
0.0716145

—0.0155116
0.151697
0.0192034
0.181636

—0.0192034

—1.04064
0.0514454
0.48216512

—0.01375463
—0.0081353
—0.00539716

3.7856355
—0.57315917

3.94113886
0.17375268
0.13828928
0.01791122
0.05585536

—0.00895562
0.1165702
0.01085954
0.1334298

—0.01085954

—1.54614316
0.12743321
0.48496947

—0.02645997
—0.00505414
—0.00747821

5.70568
—0.78972047

0.09067417
0.01096834
0.07927384
0.00570016

—0.79177(16)
0.0495(8)
0.4765 (5)—0.0166(4)

—0.0128(3)
—0.007(2}

2.81(2)
—0.48(4)

2.860{6)
0.40(2)
0.1912(10)
0.022(4)
0.0728(5)

—0.0084(12)
0.15031(6)
0.0180(3)
0.18548(4)

—0.0227(2)

—1.0408(2)
0.0505(8)
0.4824(5)

—0.0139(1)
—0.0074(4)
-0.0055(5)

3.808(10)
—0.36(2)

3.888(4)
0.32(2)
0.13872(10)
0.0152(6)
0.0563(2)

—0.006(1)
0.11600(6)
0.0103(4)
0.13493(2)

—0.0120(4)

—1.5462(2)
0.125(3)
0.4856(4}—0.0256(10)

—0.0038(B)
—0.006(2)

5.73(6}—0.51(3)
0.0908(2)
0.0098(8)
0.07919(2)
0.0052 (2)
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0.6 0.8 0.2 0.4
X

0.6 0.8

FIG. 2. Graph of the ground-state energy per site Eo/N
against x for the spin-~ Heisenberg antiferromagnet on the
sc lattice. The four curves shown are the series estimate,
and the 6rst-, second-, and third-order spin-wave predictions,
corresponding to solid, dotted, short-dashed, and long-dashed
lines, respectively.

singularities of these functions at z = +1 are of the form
predicted by spin-wave theory. The results, given in
Table V, show that the singularities and the indices are
by and large quite consistent with the predictions of spin-
wave theory. For the XXZ and XY models on the sc and
bcc lattices, just as for the square lattice, ' we did not

FIG. 4. Graph of the perpendicular susceptibility
against x for spin-~ Heisenberg antiferromagnet on the sc
lattice. Notation as Fig. 2.

get very consistent results between the series estimates
and spin-wave theory for the singularity of the ground-
state energy series, because the series is too short and the
singularity is very weak. But for the XY ferromagnet on
the fcc lattice, we have a longer series, and Table VI does
show that the singularity of the ground-state energy is of
the form predicted by spin-wave theory.

Next, we assume the singularities are those pre-

—1.5

0.5

—1.51—

0.48—
—1.52—

0.46— —1.53—

—1.54—

0 42 I I I I I } I I I I I I I

0 0.2 0.4 0.6 0.8

—1.55
0

I I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8
X

X

FIG. 3. Graph of the staggered magnetization M+ against
x for the spin-2 Heisenberg antiferromagnet on the sc lattice.
Notation as Fig. 2.

FIG. 5. Graph of the ground state energy per site Eo/N
against x for the spin-~ XY ferromagnet on the fcc lat-
tice. The three curves shown are the series estimate, and the
6rst- and second-order spin-wave predictions, corresponding
to solid, dotted and short-dashed lines, respectively.
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0.5
f(x)= ) A„F„(z)

n=np
(x -+1), (56)

0.495—

0.49—

0.485— first —order SV

I & i i I i i i I «& I

0.2 0.4
X

0.6 0.8

FIG. 6. Graph of the magnetization M against z for the
spin- ~ XY ferromagnet on the fcc lattice. Notation as Fig. 5.

f(z) = ) A„F„(x)
A—Ap

(z- 1) (55)

or

I I I
I

I l I
I

I I I
I

I I I
I

I I I

dieted by spin-wave theory, and estimate, by using in-
tegrated differential approximants, the coefBcients of
the leading-order terms for each given function f(z) in
the asymptotic expansion near x = +1 defined by

where F g(x) = ln(l —x), Eo ——1, Eg(x) = (1—x) ln(l-
x), and E2(x) = (1 —x). Our series estimates of these
amplitudes A„are listed in Tables VII and VIII, together
with the predictions of spin-wave theory at first, second,
and third order in 1/S.

The agreement between the spin-wave predictions and
the series estimates is very good. The leading-order am-
plitudes obtained from the two approaches agree within
errors in 50% of cases, and even where they disagree, the
proportional discrepancy is very small. The confidence
level thus obtained for the ground-state energy is of order
0.05%, and for the other quantities it is mostly of order
0.5%. The agreement is further illustrated in Figs. 2—7
which graph the series estimates and spin-wave predic-
tions as functions of x for Eo/N, M+, and y~ for the
spin-z~ Heisenberg on the sc lattice, and for the XY fer-
romagnet on the fcc lattice. The higher-order spin-wave
results are barely, if at all, distinguished &om the series
estimates on these plots.

Making comparison with earlier work, we find
that Nishimori and Miyake have previously obtained
second-order spin-wave estimates of the ground-state en-
ergy for both models in precise agreement with ours. The
series approach of Parrinello and Arai gave results for
the Heisenberg model which were within 0.2% of ours for
the ground-state energy and 2% for the magnetization.
The finite-cell estimates of Oitmaa and Betts 9 give sim-
ilar results for the ground-state energy, within errors of
order 10%, but appear to underestimate the staggered
magnetization. A comparison of these various results is
given in Table IX. Note that we have arbitrarily assigned
an error to our spin-wave estimates equal to one-half the
difFerence between the second-order and third-order re-
sults.

V. SUMMARY AND CONCLUSIONS

5.9—

5.8—

fzrst —order

5 7 I I I I I I I I I i ) I i i i I

0 0.2 0.4 0.6 0.8
X

FIG. 7. Graph of the energy gap (1 —x) ~ m against x
for the spin- ~ XY ferromagnet on the fcc lattice. Notation
as Fig. 5.

A number of properties of the Heisenberg antiferro-
magnet and the XY model have been calculated for
three-dimensional lattices, using both series expansions
about the Ising limit and spin-wave theory. The accu-
racy of the series results at the isotropic point is typi-
cally within 0.05% for the ground-state energy, and about
0.5% for other quantities. The results of the two differ-
ent methods are generally consistent to within this same
level of accuracy, giving us confidence in the power and
accuracy of them both.

It has been known since the early days that spin-
wave theory gives a good description of the Heisenberg
antiferromagnet. The disordering eff'ect of quantum Quc-
tuations is generally smaller in three dimensions than in
two, and spin-wave theory leads to an expansion in pow-
ers of (zS) ~, where z is the coordination number, which
is generally larger in three dimensions than in two. This
conclusion is further reinforced by our results. At the
isotropic point, first-order spin-wave theory difFers from
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TABLE IX. A comparison of the present estimates of ground-state energy and magnetization with previous estimates for
the S = —Heisenberg antiferromagnet.

Reference

Nishimori and Miyake
Parrinello and Arai
Oitmaa and Betts'
Present work
Present work

Method

spin wave
series
finite cell
spin wave
series

E—p /N
0.9028
0.9010
0.85(10)
0.9025 (2)
0.9021(2)

sc lattice

0.4321
0.30(2)
0.4227(5)
0.424(2)

E—p jN
1.1515
1.1495
1.1(1)
1.1512(1)
1.1510(5)

bcc lattice

0.4494
0.31(2)
0.4412(3)
0.442(4)

Reference 21.
Reference 26.

'Reference 29.

the series results by about 1% for the ground-state en-

ergy and magnetization, and by amounts of order 20%
for other quantities. Second-order spin-wave theory is
an order of magnitude more accurate. Third-order spin-
wave theory continues to converge, and is indistinguish-
able from the series results, within errors. In fact, the
small changes between second and third order indicate
that third-order spin-wave theory is more accurate, quan-
titatively, than the series results, although it is hard to
give objective estimates of the errors. This is the reverse
of the situation in two dimensions.

The finite-size scaling corrections resulting from spin-
wave theory have also been obtained for the isotropic
Heisenberg antiferromagnet, and compared with the pre-
dictions of effective-Iagrangian theory. The two ap-

proaches turn out to be perfectly consistent, as one
should expect, since they are both based on the effects
of massless spin-wave excitations.

Theoretical estimates of high accuracy have thus been
obtained for various measurable quantities in these mod-
els. We hope to make some numerical comparisons
with experimental work on suitable systems such as
CuCl2 2H20, KNiF3, or RbMnF3 in the future.
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