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%'e study the behavior of the random-bond Ising model at zero temperature by numerical simulations

for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-

order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the

martensitic phase transition appearing in a number of metallic alloys. %'e focus on the study of the hys-

teresis cycles appearing when the external field is swept from positive to negative values. By using a
finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhib-

iting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical

exponents characterizing the transition are obtained. We also analyze the size and duration distributions

of the magnetization jumps (avalanches).

I. INTRODUtmrON

Among the wide variety of first-order phase transi-
tions, there is a class for which thermal fiuctuations are
secondary. Prototypical examples are the solid-solid
difFusionless martensitic transitions called athermal, ' and
some field-induced first-order transitions in ferromagnetic
systems. i In the first case, when decreasing the tempera-
ture ( T) the martensitic transition starts at a certain tem-
perature but the system needs to be continuously cooled
down to make the fraction (x) of the new phase increase.
In the second case, the field (B) must be continuously
changed in order to obtain a variation of the magnetiza-
tion (m). In these two examples, in the two-phase coex-
istence range, the transition takes place instantaneously
on macroscopic time scales, and then m (or x) do not de-
pend on time (t) if B (or T) are kept constant. The two
external parameters T and B play a similar role: they
determine the free-energy difference between the two
phases, which provides the driving force for the transi-
tion.

Hysteresis in the (B,m) or (T,x) plane is inherent to all
such processes. It is worth noting that this hysteresis is
persisting even though the changes of B or T are carried
out exceedingly slow, showing that this hysteresis is not
of kinetic nature but associated to the existence of intrin-
sic disorder in the system. Usually the hysteresis cycles
show the interesting return-point-inemory (RPM) proper-
ty: when driving the system by changing the external
field [B(t)], the magnetization [m(t)] depends on the
previous history only through the memory of the points
where B (t) has been reversed. It is necessary, but by no
means enough, that thermal fluctuations do not play a
role for this RPM property to be satisfied. '

Accurate observations reveal that, for this kind of pro-
cesses, when changing the external field, the transition
proceeds through fast avalanches. These avalanches con-
nect metastable states separated by very-high-energy bar-
riers ( »kT). They have been experimentally studied in
the case of martensitic transitions and in the case of

field-induced change of magnetization in ferromagnetic
systems (Barkhausen efFect). s The striking result is that
size and lifetime distributions of such avalanches follow

power laws. It has been suggested, in both cases, that the
theory of self-organized criticality (SOC) applies to such
systems. This theory, recently introduced by Bak, Tang,
and Wiesenfeld, proposes that externally driven systems
with spatial and temporal degrees of freedom, evolve un-

til a critical state is reached, in which the avalanches
show no characteristic temporal and spatial scales. In
the case of magnetic systems, the abrupt and stochastic
response of the magnetization to an external field arises
from the intricate character of interactions, internal
stresses and defects in the system. A similar situation
occurs during the growth of the low-temperature phase in

systems undergoing martensitic transitions. A detailed
study of this behavior appears to be very complicated. A
simple way of considering the effect of the competing in-

teractions and defects is to introduce some kind of ran-
dom disorder on simple models. With this idea in mind,
Sethna et a/. have recently considered a randoin-field Is-
ing model (RFIM) at zero temperature to study the hys-
teretic behavior in athermal first-order phase transitions.
Changing the external field, the obtained hysteresis loops
show the RPM property. Moreover, changing the
amount of disorder they detect a phase transition from a
situation in which the hysteresis cycle shows an "infinite"
(or percolating) avalanche to a situation where all
avalanches are "small. " The transition takes place at a
critical value of disorder for which the avalanches have
no characteristic length scale.

In this paper we consider a different model: the
random-bond Ising model (RBIM) (or Edwards-
Anderson spin-glass model). ' The disorder is not intro-
duced as a static random Geld but on the spin-spin in-
teractions, mimicking the complex (magnetic or elastic)
interactions between the transformed and non-
transformed domains. We study the evolution of the sys-
tem at zero temperature when the externa1 field is
changed. Contrarily to the RFIM case, the return-
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point-memory property is not satisfied. As in the RFIM,
the model also shows a disorder-induced phase transition.
We concentrate in the study of such phase transition be-
tween the situation with infinite avalanche to the finite
avalanche behavior. The universal characteristics of this
transition are studied by finite-size scaling analysis. The
size distribution of avalanches is also studied as a func-
tion of the degree of disorder in the system. The results
are finally discussed in the context of the SOC theory, the
percolation theory, and recent experimental results in
magnetic and martensitic systems.

where J," are the coupling constants, B is an homogene-
ous external field and the first summation extends over all
the nearest-neighbors pairs. The J; are chosen randomly
according to a Gaussian distribution with fixed mean
value J=g; J; /2N = —1 and standard deviation o, i.e.:

P (J) ( 2~o.2
)
—i /2 —(I+ 1 ) /2e (2)

Such models with intrinsic quenched disorder show in-
teresting fundamental problems. Most of the studies in
the literature correspond to the RBIM model with
infinite range interaction, also known as the Sherrington-
Kirpatrick model. "' For this, the mean-field solution
ought to be exact, and the results are, in fact, indepen-
dent of the exact distribution of J; (they depend only on
J and o ). The presumed exact phase diagram for the
Sherrington-Kirpatrick model with zero external field
shows a phase transition at T=O from a spin-glass fer-
romagnetic phase for o /J & 1 to a pure spin-glass phase
for higher cr/J. Much less is known for short-range
models. For this case, most of the studies correspond to
symmetrical models with J=0. The only nonsymmetri-
cal model, which has been studied is the kJmodel, which
has random bonds with values +1.' On a square lattice,
when the concentration p of antiferromagnetic bonds
exceeds a critical value p, one expects a transition from a
ferromagnetic phase to a spin-glass phase (although there
is some discussion on the nature of this spin-glass
phase). ' The critical value p, is associated to the per-
colation of nonfrustrated "plaquettes. "' Estimations
based on different approaches give values around

11,16

To study the evolution of the system defined by (1)
when the external field B is changed, dynamic rules must
be specified. We have chosen deterministic rules corre-
sponding to an energy relaxation process. For very high
fields B»0 the ground state has all the spins s;=1.
When decreasing the field the system relaxes by flipping
spins, until the state with all the spins down s,. = —1 is

II. MODEL

We consider the standard RBIM model' for a spin
glass. The system is defined on a two-dimensional L XL
square lattice. On each site we define a spin variable s,
(i =1, . . . , N=L ) taking values kl. The Hamiltonian
1S

N

H=g J„ss,—B g s, ,

B,=g Jjs
J

(4)

The spin s;0 with highest internal field B;0 will become
unstable and will flip when B reaches the value B 0 from
above. After this flip the internal fields on the neighbor-
ing spins are updated. Then it may happen that some of
them become unstable and an avalanche starts. Two
difl'erent mechanisms can be adopted. (a) Synchronous
dynamics: all the unstable spins are flipped simultane-
ously and, afterwards, all the B; are updated again. (b)
Sequential dynamics: the most unstable spin is flipped
first and the neighboring B; are updated afterwards.

In both cases the algorithm is repeated until an equilib-
rium situation is reached, i.e., all the spins with B; )B
are negative and all the spins with B; &B are positive.
This is the end of the avalanche. The external field may
then be decreased until a new spin becomes unstable. In
the present work we have chosen the first mechanism,
which is more similar to the simultaneous updating algo-
rithms used for the study of cellular automata. ' One of
the advantages of the simultaneous dynamics is that it en-
ables to distinguish between the avalanche size (number
of spins flipped during the avalanche) and the avalanche
duration (number of times that the algorithm is repeated
until equilibrium is reached), which gives information on
the propagation "speed" of the avalanche. Nevertheless,
we have compared both dynamics (sequential and paral-
lel) and obtained that they give qualitatively the same re-
sults in connection to the avalanche sizes.

We have performed computer simulations at zero tem-
perature on finite systems with sizes ranging between
L =10 and 100. The interaction bonds J;J are initially
generated with a standard Gaussian random number gen-
erator. For each size, ensemble averages over a large
number of equivalent systems (up to 5000), generated
with different seeds for the random number generator,
have been taken.

III. HYSTERESIS CYCLES

Figure 1 shows three typical hysteresis cycles of the to-
tal magnetization I=gN=, S; corresponding to a L =40
system for difFerent values of the amount of disorder u.
For low disorder values the cycle shows big jumps
(avalanches), while for high disorder values the cycle is
smoother and extends up to higher B values. For the
nondisordered system with all J;-=—1 the cycle would
be perfectly rectangular with avalanches at B =+4 Qip-

ping all the spins. For any small amount of disorder the
behavior is rather different. The first small avalanche
starts at the spin with smallest B; (which depends very
much on the particular realization of the random number
generator). For a field value close to B——2 an
avalanche with size proportional to L2 (we will cal] it

reached when 8 &(0. The energy change associated to
an individual spin-flip is

bH; = —2s; IB; B—),
where B, is the internal field acting on spin s,.
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of the metastable states necessary for the RPM property
to be fulfilled ' although, for the values studied (tr (2)
the amount of such reverse fiips is a very small fraction
compared to the total number of fiips. Such reversal
spin-Hips can never happen in the RFIM at zero tempera-
ture in which the RPM property is satisfied. Scanning
electron microscopy of real systems undergoing martensi-
tic transitions (e.g., Cu-Zn-Al) has revealed sometimes
the reversal of transformed domains, ' providing a
justification for the use of the RBIM rather than the
RFIM for the modeling of such systems. '

It is interesting to note that a first look to the cycles of
Fig. 1 and the similar ones corresponding to other system
sizes already suggests the existence of a transition be-
tween a phase with low disorder exhibiting an infinite
avalanche when cycled and a phase with high disorder
exhibiting no such infinite avalanche.

IV. CRITICAL BEHAVIOR

-0.6-
12

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
B

FIG. 1. Examples of hysteresis cycles for a system of size
L =40 and cr =0.45 (a), 0.55 (b), and 1.5 (c).

infinite avalanche) starts and lasts for a number of steps
proportional to L.

The hysteresis cycles are always symmetric, since the
Hamiltonian is invariant under changes +s;~—s; and
8~—8. We have also studied the behavior of the sys-
tem when the external field evolution is reversed at a
stable point with M/L Akl (partial cycling). Figure 2
shows an example of a partial cycle, evidencing that the
RPM property is not satisfied in our model. This is due
to the fact that reverse spin fiip may occur during an
avalanche, since antiferromagnetic bonds are present on
the system. This destroys the dynamical partial ordering

In order to study such a disorder induced transition,
for each full hysteresis cycle, we have measured the size

mo of the biggest avalanche and the duration to of the
longest avalanche for systems of difFerent sizes and for
difFerent values of the parameter o. Figures 3 and 4 show
the behavior of the average values of mo and to, respec-
tively. The error bars correspond to the measure of the
statistical deviations. The sharp change in ( rno ) and the
pronounced peak in (to ) reveal the existence of such a
transition between a behavior with infinite avalanche and
a behavior with only small avalanches.

The behavior of the curves (mo) and (to) as a func-
tion of the amount of disorder o for different system sizes
(L) resembles the behavior of the long-range order pa-
rameter and relaxation time in a second-order phase tran-
sition. We then assume that standard scaling arguments
are suitable in order to study the transition. Such an as-
sumption will be supported afterwards by the good agree-
ment found with the simulation data.
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FIG. 2. Full hysteresis cycle and partial cycle for a system of
size L =40 and sr=1.2. After the partial cycle, the different
evolution reveals that the return point memory effect does not
hold in our system.

0.0
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FICx. 3. Behavior of the mean size (mo) of the largest
avalanche for difFerent values of the amount of disorder o and
difFerent system sizes indicated on the legend. Error bars corre-
spond to the standard deviations from the mean values. Dashed
lines are guides to the eye.
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for the finite system:

o t—r, (L)

o, (L)
(10)

B. Scaling results for (tp & and (mp)

Substituting (9) in (6) one gets the general behavior of any

quantity A close to the pseudocritical temperature for a
finite system:

A -L F„(L' "oL ),
where F~ is the scaling function and L' 'ur is the scal-

ing variable.

FIG. 4. Behavior of the mean duration (tp) of the largest
avalanche for different values of the amount of disorder 0 and
different system sizes indicated on the legend. Error bars corre-
spond to the standard deviations from the mean values. Dashed
lines are guides to the eye.

According to Eq. (11},(tp ) should behave with system

size as

(t())-L'F(, )(L' 'oL )

and the behavior of the peak height and the peak curva-
ture (in Fig. 4} will be given by

A. Scaling hypotheses
(to &.=,(L,

)-L' (13)

oc

The scaling hypothesis consists in assuming that any oth-
er quantity A exhibiting a nonanalytical behavior at o.,
will behave as

—va
o o'

(6)
+c

In particular, the mean duration of the largest avalanche
diverges with an exponent z as

vz

(t )-p-
oc

We suppose the existence of a correlation length in the
system g, which for the infinite system diverges at a criti-
cal value o, as

v

d'(t, )
L z+2/v

d(r2 a a, (L)=
(14)

Using parabolic fits to estimate the peak position, peak
height and curvature one can calculate z and v. Figures 5

and 6 show in log-log plots the behavior of (tp)
and (d (tp) ado )l (L) as a function of L, respective-

C

ly. Linear fits give z =1.2+0. 1 and v=1.4+0. 1. With
such estimations for the critical exponents we can test the
scaling assumption (12) by plotting ( to ) /L* as a function

of the scaling variable. The resulting scaling function

F~, &
is displayed in Fig. 7 and shows a very good overlap

0

of the different curves corresponding to the different sys-

tem sizes.
A similar treatment can be done with (mo ). Accord-

ing to Eq. (11), the finite-size scaling behavior for its
singular part is

For a finite system with size L standard finite-size scal-
ing corrections should be applied. The transition will
take place at a pseudocritical disorder o, (L) at which the
correlation length equals a fraction of the size of the sys-
tem, (=1(:L. This pseudocritical temperature can be es-

timated from the position of the inQections or peaks in
the different variables which, for the infinite system, will
show a nonanalytical behavior. From Eq. (5} one im-

mediately gets

(r, (L)=(r, +SpL

where So is a constant, which depends on the particular
way used for the estimation of o, (L). As o ~o, (L),the.
correlation length for the finite system behaves as

3.0

2.0

0.0 '

0.0 1.0
log(L)

I

2.0 3.0

g=Lle, L""+xpl ", (9)

where X0 is a constant, and o.
L is the reduced disorder

FIG. 5. Log-log plot of the peak position of the functions

( tp ) ((r ) as a function of L. The line is a least-squares fit.
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FIG. 6. Log-log plot of the curvature at the peak position of
the functions (tp ) as a function of L The .line is a least-squares
St.

FIG. 8. Log-log plot of the slope at the in8ection point of the
functions (mp ) as a function of L. The line is a least-squares

6t.

(mp)/L -L~F( }(L' "o ) . (15)

By polynomial fits we obtain estimations of the posi-
tion of the inflexion point, the value of (mp ) /L and the
first derivative at that inflection point. The statistical er-
rors of the data do not allow to obtain a good estimation
of the P exponent. From the log-log plots of the first
derivatives (shown in Fig. 8) one gets P=0.065+0. 1.
Such result (P=O) is also consistent with the fact that
(mp ) /L has a constant value (independent of L) at the
pseudocritical point ((mp) /L =0.604+0.01). Figure 9
shows the scaling of the different (mp)/L curves ac-
cording to Eq. (15).

From the estimations of rr, (L) obtained from the posi-
tions of the peak height of (tp) and the inflection points
of (mp)/L it is possible to verify Eq. (8). Figure 10
shows the behavior of o,(L) versus L '~" (v=1.4)
displaying the expected linear behavior for L & 20.
Least-squares fits give, in the limit L~~, cr, =0.436
and 0.446, respectively, from the two different estima-
tions. These two values, together with a third way of

measuring o, (L), which will be presented in Sec. V, give

data compatible with a critical value o, =0.44+0.01.
Besides the mean value of mp, we have also measured

the full distribution p (mp } by doing statistics over a very

large number of equivalent runs. Figure 11 shows the
distributions corresponding to a system of size L =40 at
o =0.5 &o,(L}, 0 =0.58=o,(L), and rr=0. 75&rr, (L).
The behavior corresponds to the one found in a second-
order phase transition with a very broad and flat distribu-
tion at the phase transition, and no coexisting peaks.

V. AVALANCHE DISTRIBUTIONS

In the preceding section we have studied the behavior
of the biggest avalanche mp. Now we concentrate in the

study of the size and duration distribution of all the
avalanches appearing in the hysteresis cycle.

Figure 12 shows examples of the full avalanche size
distribution p I (m), in log-log scales, for a system with
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FIG. 7. Scaling of the functions (tp) from Fig. 4. The
legend indicates the different system sizes.
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FIG. 9. Scaling of the functions (mp) from Fig. 3. The
legend indicates the different system sizes. The horizontal
dashed line indicates the value mo/L =0.5928, which is the
size of the percolating cluster.
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to the values for which the exponential contribution to the
avalanche size distribution vanishes, giving a pure power-law
behavior. The lines are guides to the eye, indicating the compa-
tibility with a linear behavior with a common limiting value.
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FIG. 11. Semilogarithmic plot of the distribution of the big-
gest avalanche p (mo) for a system with L =40 and at
o =0.5 & o,{L) (circles), o =0.58-o, (L) (squares), and
o =0.75& o.,(L) (diamonds}. The two upper curves are shifted
two and four decades, respectively.

L =40 at three diferent values of 0, below, approximate-
ly at, and above the critical value o, (L)-0.55. The dis-
tributions have been normalized by the total number of
avalanches. The statistical errors increase enormously
with decreasing rr because of the decrease of the total
number of avalanches. The histogram at o =1.5 has
been obtained after averaging over —100 runs, while the
histograms at o =0.55 and 0.45 correspond to averages
over -5000 runs. A first sight reveals that for o )o, (L)
the distribution decays faster than a power law (subcriti-
cal behavior), at cr-o, (L) the behavior is compatible
with a power law (critical behavior), and for o & tr, (L) a
peak appears at high values of m, corresponding to the
infinite avalanche distribution [p(mo), see Fig. 11] and
the distribution at low m values seems to decay slower

10:—(b) o=o,(L)

10

10

10 0
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10 410
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FIG. 12. Log-log plots of the avalanche size distributions for
a system with L =40 at o =0.45 (o, (L) (circles),
o =0.55-o.,(L) (squares), and o.=1.5 & o, (L) (diamonds).

than a power law (supercritical behavior).
To analyze such behavior we extend the above finite-

size scaling considerations, assuming for p (m):

p (m)-e ' ~'m (16)

where E is a constant that changes its sign at the transi-
tion point. Such a function reproduces the behavior of
Fig. 12, except for the presence of the peak at great
values of m/L when o &o,. We will restrict ourselves
to the study of the distributions at low values of m/L .
At the critical point gazoo, the distribution (16) is a
power law, while out of criticality we have a positive or
negative exponential prefactor. The dependence of the
exponential factor with m/g comes from the fact that
we found P-0 in Eq. (15). Perhaps a dependence with
m /g +~ would be more suitable, but our statistical errors
do not enable a reliable fit to such a behavior. Using Eq.
(5) one gets for the infinite system:

—K[m{0—a, 0, ]"
p (m)-m 'e

This phenomenological assumption is similar to the
one known as "Fisher droplet" for the cluster distribu-
tion in the percolation problem. It reduces to it when
x =1/2v.

By using Eq. (9) one can deduce the scaling assumption
for the Snite system:

( )
—r f1(rL ")(mll )*-

P~ L f22 Pl e 7

which is of the same kind as proposed by KadanofF ' for
two-dimensional cellular automata. This expression can
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be easily fitted by taking its logarithmic derivative:

d ln[p(m) x—f (oL '~")(m/L )" .
d ln(m}

(19)

From the simulated data one can numerically compute
the logarithmic derivative using

d ln[p(m)] ln[p(am)/p(m)]
d ln(m} ln(a)
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where a is a parameter, which has to be chosen as small
as possible. Taking a=5 we have computed the deriva-
tives of all the distributions for systems of size L =20, 30,
and 40 and different values of o below and above the
transition points. Figure 13 shows, as an example the
behavior of the logarithmic derivatives for L =30 and
o =0.55, 0.60, and 0.65. Although the numerical errors
are important, the behavior can be considered to be linear
up to m/Lz=0. 2, indicating that the value x =1 is a
good approximation, at least for low values of m/L .
The value of the derivative at m ~0 gives an estimation
of the exponent r With. in the scatter of the data it is the
same above and below the transition, confirming the con-
sistency of our finite-size-scaling assumption. The slope

f (O'L' ") changes sign above and below the transition.
In fact, f (oL'~"}=0 gives a new estimation of tr, (L),
which we have already plotted in Fig. 10 using open tri-
angles.

In Fig. 14 we have plotted the fitted values of r versus
tJL '~' for the three different system sizes, using tr, (L) es-
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I I I

-2.5 0.0 2.5
LV '[o —o,(L)[//o, (L}

5.0

FIG. 14. Fitted values of the ~ exponent for different system
sizes (see legend} and different temperatures in front of the scal-
ing variable. For a broad region, the value of w is almost con-
stant around the value —1.45+0. 1 indicated by the arrowed
line.

(m) m
—

we c(i7L ~")(m/L —)
p Lm-m (21)

We have also considered the distribution of durations
of the avalanches p L(t). A detailed finite size scaling
analysis has not been performed in this case, although the
same methodology used for p L(m) can be applied. Fig-
ure 16 summarizes three examples of unnormalized dis-

10.0

5.0

timations as explained in the previous paragraph. The
plot shows that all the data are consistent with a constant
value of v= 1.45+0. 1 inside the critical region, which ex-
tends, at least, from o = —1.5 to cr & 5.0. The change in
the r exponent for low values of disorder could be associ-
ated to the end of the critical region or to the statistical
errors in that zone where the number of avalanches is
very small and the resolution of the histograms is poorer.
Figure 15 shows the behavior of the function f (oL'~"},
which also shows a good scaling behavior for the different
system sizes. Note that its behavior is quite linear, which
means that the avalanche size distribution, for small
values of m, is in fact

-1.0
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-3.0 — (c) a&a,(L)

-4.0 '

0.0
I

0.1

m/L

0.2

FIG. 13. Logarithmic derivatives of the avalanche size distri-
butions for a system of size L =30 at o =0.55 (o,(L) (circles),
cr =0.60-o,(L) (squares), and cr =0.75) cr, (L) (diamonds).
The lines are least-squares fits.
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Fi&. 15. Behavior of the function f in front of the scaling
variable for difFerent system sizes as indicated in the legend.
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FIG. 16. Log-log plots of the avalanche duration distribu-
tions for a system with L =40 at o.=0.45(u, (L) (circles),
o =0.55-o, (L) (squares), and cr = 1.5) o.,(L) (diamonds). The
dashed line on the upper figure indicates the t =L value.

tributions, corresponding to a system with L =40 and (a)
o.=0.45 & o, (L), (b) o =0.55- cT, (L) and (c)
o =1.5&o,(L) The d.istributions are averaged over
-5000, -5000, and —100 different runs, respectively.
The behavior for both e & a, and o (cr, seem to be ex-
ponentially damped, while at criticality a power law can
be fitted over two decades, rendering an exponent for the
critical time distribution p=1.65+0. 1. The exponential
factor above and below the transition can be handled by
using an expression similar to Eq. (16) but with a con-
stant E not changing sign at the transition. The peak ap-
pearing for o & o, (L) corresponds to the duration of the
percolating avalanche, which is always longer than I.
steps (in this case L =40). This peak shifts to that value
I. =40 as o. decreases.

UI. DISCUSSION

From the above finite-size analysis of the RBIM model
we have characterized the disorder-induced phase transi-
tion appearing at o.,=0.44+0.01 by the set of critical ex-
ponents presented in Table I. We expect these exponents
to be independent of many details of the system but to de-
pend on dimensionality, symmetries, etc.

Some of the results suggest a close relation between the
observed phase transition and the bond percolation
phenomenon: briefiy, this geometrical phenomenon ap-
pears on, for instance, a two-dimensional (2D) square lat-
tice when a fraction x of the bonds is removed. If the
fraction is less than a critical value x, =0.5 one can still
identify a cluster of connected sites, which extends over
all the system (percolating cluster). If x)x„ it is not
possible to find such a percolating cluster. There are two
interesting points linking the phase transition in the
RBIM with the percolation problem. First, the number
of sites of the percolating cluster at x =x, is known to be
0.5928 (indicated by the vertical dashed line in Fig. 9),
very close to the size of the critical avalanche in the
RBIM, (m o)/L =0.60420.01. This means that the
phase transition occurs for the value of o at which the
biggest avalanche percolates. Second, the value of the ex-
ponent v for the percolation problem is v=4/3 also very
close to the value we have found (see Table I). It is
diScult to further extend the comparison: in particular,
it is not evident to establish a relation between the frac-
tion of antiferromagnetic bonds in our problem
(cr, =0.44 corresponds to a 1.16% of antiferromagnetic
bonds) and the fraction of broken bonds in the percola-
tion problem.

The obtained results concerning the avalanche size and
duration distributions also suggest a relation with the
SOC theory. This concept applies to such externally
driven systems that spontaneously organize, without fine

tuning of any parameter, in a persisting marginally stable
state with propagating avalanches of all sizes. In our
model the SOC idea cannot strictly be applied, since the
critical state only stands for a finite range of the external
field driving the transition, as discussed in Ref. 24. In ad-
dition to this criticism, we need the fine tuning of the
amount of disorder o. in order to reach such a critical
state. Despite that, for real systems (magnetic and mar-
tensitic), the SOC theory, has been used, in a less strict
way, to explain the apparition of avalanches showing
power-law distributions. In these systems, the critical

TABLE I. Fitted critical exponents for the RBIM disorder-induced phase transition.

Quantity Definition Value

Correlation length

Mean duration of the largest avalanche
Mean size of the biggest avalanche
Avalanche size distribution at o =ca,
Avalanche duration distribution at o.=a,

c

(m, &-g ~

p(m)-m
p(t)-t I'

v= 1.4+0. 1

z =1.2+0. 1

p=0.065+0. 1

~= 1.45+0. 1

@=1.65+0. 1
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state also appears only for a finite range of the driving
field (or temperature), so the same former criticism
stands. We propose that for such experimental systems
exhibiting fluctuationless first-order transitions, our mod-
el or similar ones, would be more suitable than the SOC
theory, in order to explain the apparition of the power-
law distributions. For such an explanation, the impor-
tant question to be answered is why the experimental sys-
tems appear to self-stay at the critical amount of disor-
der. We guess two possible answers to that question. (i}
The experimental errors make difBcult to distinguish the
existence of an exponential prefactor, especially if the dis-
tributions are measured in a too limited range of
avalanche sizes (as usually happens). Careful reanalysis
of data has, in the problem of rearrangement of magnetic
domains, revealed the existence of a subcritical
behavior. (ii) A more subtle explanation would be that
internal relaxations spontaneously inodify the amount of
disorder present in the system until the critical disorder is
reached. There are experimental basis for this idea in the
particular case of systems undergoing martensitic transi-
tions. It has been observed that the hysteresis cycles are
strongly dependent upon the heat treatment (which con-
trols the quenched-in disorder) of the sample. For sam-

ples slowly cooled from high temperature, the defect con-
centration is very low and the cycle displays very large
avalanches [such as the cycle shown in Fig. 1(a)], while
for samples directly quenched (higher concentration of
defects) the cycle displays only tiny avalanches [such as
Fig. 1(c)]. Moreover, it is also known that after a number
of cycles, the hysteresis loop evolves towards a behavior
quite independent of the initial heat treatment. In fact,
the experimental measurements showing power-law dis-
tributions of avalanche size and duration have been car-
ried out precisely after a large number of cycles, when
presumably the final critical attractor has been reached.

Finally, in relation with the power-law behavior of the
distributions at the critical point (o =0, ), it should be
mentioned that the values of r and v have also been mea-
sured in the RFIM (Ref. 5) giving ~=2.0+0.03 and
v=1.0+0.1. The comparison is questionable, since these
values correspond to a 3D case, while our case is two di-
mensional. In the context of assumption (ii) in the above
paragraph, we can also try to compare with experimental
data corresponding to systems, which will supposedly be
at criticality. The avalanche size distribution and its ex-
ponent v is experimentally diScult to measure, but there
are measurements available for the exponent p of the dis-
tribution of durations, which might be independent of the
dimensionality. For the martensitic transition in Cu-Zn-
Al, it has been found that p=1.6+0.3, and for the rear-
rangement of magnetic domains, p=1.59 is in good
agreement with the present results.

VII. SUMMARY AND CONCLUSIONS

In this paper we have considered a 2D RBIM (spin-
glass model} at zero temperature as a simple model for
the study of those first-order phase transitions on solids
for which thermal fiuctuations are secondary (we call
them fluctuationless first-order phase transitions}. The
spin-spin interaction constants obey a Gaussian distribu-
tion with fixed mean value and standard deviation 0..
The value of 0 is a measure of the amount of disorder in
the system. At zero temperature, when sweeping the
external field from high positive values to high negative
values, the system undergoes a first-order phase transi-
tion. When disorder is present (a%0), the transition
does not take place at a single value of the field but in a
range of values and shows intrinsic hysteresis, depending
on the amount of disorder in the system. This is qualita-
tively similar to what is observed in systems like fer-
romagnetic materials and metallic alloys undergoing mar-
tensitic transitions. Even if thermal fluctuations are ab-
sent in our system, reverse spin lip can occur during the
evolution, which destroys the necessary partial ordering
of metastable states for the return-point-memory proper-
ty to be fulfilled.

When the amount of disorder u is changed the system
exhibits a phase transition between an hysteretic behavior
with a percolating avalanche (o & o, ) to a situation
without percolating avalanches (o &0, ). By using
finite-size scaling we have studied the critical behavior of
the system close to the critical point (o, =0.44). The
quantities exhibiting nonanalytical behavior when o ~0,
have been characterized by a number of critical ex-
ponents summarized in Table I.

Concerning the avalanches, our results show that the
size distributions exhibit a power-law behavior with an
exponential prefactor, which becomes a constant at criti-
cality (0 =cr, ). Away from criticality the system shows
subcritical (when cr & tr, ) or supercritical (when 0 &o, )

behavior depending on the sign of the exponent of the
prefactor. A similar behavior is observed for the dura-
tion distribution of the avalanches. The model provides a
useful basis for the description of experimental systems
exhibiting fluctuationless first-order phase transitions.
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