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Effects of solitons in the critical behavior of an anisotropic Heisenberg model in two dimensions
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Monte Carlo calculations for the classical ferromagnetic Ising-like Heisenberg model suggest that soli-
tons may play an important role in driving the phase transition in that model.

There is a large class of classical spin models that has
the interesting feature of supporting topological excita-
tions. For instance, for the classical XY model in d =2
dimensions it has been shown by Kosterlitz and Thou-
less! that a phase transition takes place due to a mecha-
nism of vortex-antivortex pair dissociation as the temper-
ature T increases through Tyxy. Recently, Kohring,
Shrok, and Wills,? using Monte Carlo (MC) techniques,
have shown that vortex strings are responsible for the
phase transition in three-dimensional planar models. For
the pure ideal two dimensional (2D) Heisenberg system
[O0(3) symmetry] it is accepted that there is no phase tran-
sition at all;® topological excitations are responsible for
the long-range-order destruction for all temperatures. If
we add an easy-axis anisotropy (Ising-like) to the isotro-
pic Heisenberg model, the spin-wave spectrum acquires a
gap and the system becomes metastable.* The decay of
such a state cannot occur uniformly. Inhomogeneous
fluctuations, such as kinks, which are not sharply bound-
ed domains open the path to the true ground state. In
fact, as pointed out by Einhorn, Savit, and Rabinovici,’ it
is possible to understand the phase transition of the 2D
Ising model in terms of topological excitations, which are
the domain boundaries between islands of aligned spins.
For the weakly coupled magnetic chains constituting 3D
classical ferromagnets with easy-axis anisotropy, Holyst
and Sukiennicki® have shown that the phase transition
connected with the disappearance of the 3D magnetic or-
dering is induced by static solitons obtained for 1D sys-
tems. The above findings have motivated us to investi-
gate the effect of topological excitations in connection to
phase transitions in a two-dimensional easy-axis classical
Heisenberg model. As far as we know, there is no critical
theory for the 2D easy-axis classical Heisenberg model
that takes into account topological excitations. Series ex-
pansions and renormalization-group techniques predict
critical exponents,’ but they make no direct reference to
the effect of solitons in its critical behavior.

Nonlinear topological excitations in a 2D system may
be divided between two types;® namely, (i) small topologi-
cal excitations (droplets) and (ii) large domain walls that
are nearly straight on a small scale, but meander on a
large scale and may eventually cross the entire system.
The stability of round droplets in a 2D ferromagnet with
uniaxial anisotropy was investigated by Kosevich,
Ivanov, and Kovalev.” They defined a topological charge
v, which takes integer values, and corresponds to the
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amount of vorticity of the droplet. It measures the de-
gree of mapping of the magnetic plane onto a unit sphere.
The v=0 droplet differs from the v >0 one in that it is to-
pologically equivalent to the ground state and does not
contain vorticity.

Since droplets with v=1 are believed to play an impor-
tant role in the physics behind the order-disorder phase
transition in the 2D Ising system,® we have calculated the
density of droplets in the model here studied. From now
on we will refer to a droplet with v=1 as a soliton.

To determine the topological charge v within a curve
of length ! we have followed a procedure similar to the
one used by Tobochnik and Chester'® in their study of
vortices and computed the change in angle from one spin
to the next, being sure to define the angle difference be-
tween neighboring spins to lie within —7 and 7. To
compute the soliton density we calculate the number of
solitons in the system by computing the vorticity around
every square in the lattice with side length equal to one
lattice spacing. The soliton density d is defined as the
sum of solitons divided by the lattice volume. We have
also checked, starting in the center of a soliton and fol-
lowing a radial direction, if the spins have changed by 7
alonlg1 that direction. This completely characterizes a soli-
ton.

In this paper we report MC results for the 2D easy-axis
classical ferromagnet which explicitly show that soliton
excitations are consistent with the transition being driven
by them. The Hamiltonian describing our model is
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FIG. 1. Logarithm of soliton density as a function of the in-
verse of temperature (in reduced units) for some values of the
anisotropy. Solid lines are fits as defined in the text.
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FIG. 2. Inverse of temperatures T, (circles) and T* (squares)
as a function of the anisotropy. The dashed line is the function
defined by Eq. (3).

H=— 3 J[S]S;+S}S}+ AS[S]], (1)
(ij)

where J is the exchange constant and A characterizes a
uniaxial anisotropy (J, 4 >0). We will calculate the criti-
cal temperature T, and the soliton density d as a function
of the anisotropy 4. The simulations were performed us-
ing standard Metropolis techniques for L XL Ilattices
with periodic boundary conditions, with L up to 40. For
each simulated point we used between 1X 10* and 2 X 10°
MC steps, depending on L and 7, in order to thermalize
the system. Averages were taken over 2000 initial
configurations for all temperatures. To estimate the criti-
cal temperature T,, we determined the position of the
maxima of the specific heat and susceptibility for four lat-
tices sizes (L =10, 20, 30,40) and then used finite-size scal-
ing'? to obtain T,. The soliton density d was determined
for each of the four lattices: we found that the result did
not change substantially with L. In Fig. 1 we plot the
logarithm of d as a function of the inverse of T for several
values of 4. We found out that our simulated results are
well fitted by the function (represented by solid lines)

d=ce—B/T , (2)

C and B being constants which assume different values
below and above a certain temperature T*. From our
data we calculated T* as a function of 4 and the results
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FIG. 3. Soliton energy as a function of the anisotropy. Solid
line is the curve E,;=44 —1.

are shown in Fig. 2 (represented as squares) together with
the results for T, (represented by circles). As we can see,
the agreement between these two calculations is very
good, suggesting that soliton excitations should play an
important role in driving the phase transition. In Fig. 2
we show as a dashed line a fit of the function
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with @ =6.00 and b=5.88. We remark that this func-
tional form agrees with early results for T, performed by
Binder and Landau®® for a similar model.

The coefficient of the exponential in Eq. (2) can be in-
terpreted as the soliton energy E, at least in the low-
temperature region. In Fig. 3 we show E, =B as a func-
tion of A (circles). The solid line is a best fit given by

E,~474-2.0. @)

Our results suggest that topological excitations might
play an important role in driving the phase transition in
the model described by Eq. (1) and by extension of the
universality argument in those which have the same
order-parameter symmetry. Thus more theoretical work
is necessary in order to get more understanding of the
effects of soliton excitations in the phase transition of the
2D classical Ising-like model.
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