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Singlet pairing in the double-chain t-J model
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Applying the bosonization procedure to constrained fermions in the framework of the one-
dimensional t-J model, we discuss a scenario of singlet superconductivity in a lightly doped double
chain where all spin excitations remain gapful.
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where f = u, d is the chain index. The Hamiltonian
(1) has to be complemented by the no-double occupancy
constraint

n f —~j c. fc; (2)

In past years the problem of non-Landau Fermi liq-
uid behavior in quasi-one-dimensional systems again at-
tracted a strong interest. This time it was stimulated
by Anderson's idea about an effectively one-dimensional

(1D) dynamics of excitations in the normal state of lay-
ered high-T~ cuprates.

The basic problem here is a complete description of a
"dimensional crossover" which may occur as a result of
varying coupling between 1D systems (chains) forming
a two- or three-dimensional array. In particular, one of
the main issues is whether a coherent transport between
chains establishes at arbitrary small interchain coupling
or whether there is a finite threshold resulting from the
"confinement" phenomenon. i

Various weak coupling studies of the infinite array
problem do not seem to con6rm Anderson's picture, al-
though one might think that the situation becomes dif-
ferent at strong coupling. On the other hand systems
of a finite number of chains provide interesting examples
of a peculiar behavior in an "intermediate dimension. "
In analogy with a purely 10 case one might expect that
these also allow a consistent strong coupling treatment.

Moreover these models can also describe properties of
such real materials as (VO)2P20~ or Sr2Cu40s which
contain weakly coupled metal-oxide-metal double-chain
ladders. It was also pointed out in Ref. 2 that higher sto-
ichiometric compounds Sr„ icu„+i02„provide a phys-
ical realization of weakly coupled n-chain ladders.

A proper Harniltonian of a strongly correlated double
chain is that of the t Jmodel wit-h antiferromagnetic spin
exchanges:2

Accordingly, a weak coupling regime can be studied in
the framework of the Hubbard model.

At half filling the Hamiltonian (1) describes S = 1/2
double-chain Heisenberg model. Available numerical
resultss 4 as well as a mean field analysis using the
Gutzwiller projection5 indicate that in contrast to the
case of a single chain there are no gapless spin excita-
tions in a double chain. Moreover the spin gap appears
to be robust against doping and survives in some range
around half filling. These observations are in agreement
with the conjecture that a lightly doped double-chain
system becomes a singlet superconductor of a modified
d-wave type.

Recent weak coupling renormalization group (RG)
studies of the double-chain Hubbard model did reveal
some spin gapful 6xed points characterized by an en-
hanced singlet pairing in both cases U ( i ti (Ref. 6)
and t~ & U ( t.~ Some enhancement of power-law de-

caying pairing correlations was also shown numerically.
To clarify the essence of the double-chain physics it is

worthwhile to review properties of the single chain t-J
model. In the region of ratios J/t ( 1 the model can
be only found in the so-called Tomonaga-Luttinger (TL)
regime which corresponds to both gapless spin and charge
excitations. ' It is customary to describe the TI behav-
ior in terms of spin and charge correlation exponents K,
and K, .

The spin exponent K, equals to unity everywhere in
the TL regime while K, gradually increases from the
value 1/2 which it reaches at J = 0 and any density

p as well as at p ~ 1 and arbitrary J/t as J/t increases
or p gets smaller. The TL regime persists up to J/t = 2.5
where a spin gap with strong pairing correlations occurs
at small enough ferrnion density (p ( 1/3). In fact, one
can understand the occurrence of the region of attrac-
tion at small p as resulting from the existence of a two-

particle bound state at zero density. A finite threshold
in the attraction strength follows from vanishing of the
bound state wave function at zero separation due to the
no-double-occupancy constraint. On the other hand in
the regime of strong correlation at p close to unity one
can argue that gapless spin Huctuations drive couplings
of the charge sector to the repulsive region and to get
an efFective attraction (K, ) 1) one has to exceed some
threshold value of J/t.

However if both p and the critical value of J/t are
large then the attraction of charges actually leads to the
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phase separation rather than to the real superconducting
pairing. Even the inclusion of the short-range repulsion
which is supposed to postpone the onset of phase sepa-
ration to higher J/t does not extend the region of singlet
pairing.

If, on the contrary, spin Buctuations are gapful then
these may not renormalize charge couplings significantly.
Therefore the charge correlation exponent may not re-
ceive its basic contribution leading to K ( 1 at small
J/t and the mechanism of attraction may work without
any threshold in J/t. Various possibilities to get such a
behavior by means of the frustrating spin exchange in-
teractions in a single chain were considered in Refs. 11
and 12.

Coupling between Luttinger chains provides an alter-
native way to produce a spin gap favoring attraction be-
tween charges.

Preceding analytical studies of the problem in the
framework of the bosonized "g-ology" Refs. 6, 13, and
7 were restricted on the case of weak coupling.

In the present paper we find additional arguments in
favor of the above scenario by using a bosonic representa-
tion of the t Jmod-el which is an adequate tool to study
a strong coupling behavior.

Although the method of bosonization is convention-
ally applied to 1D weakly interacting fermions it might
be possible to formulate a consistent procedure for the
opposite limit when the interaction is extremely strong,
that is for the case of constrained fermions. Various ver-
sions of the bosonization procedure in the framework of
the t Jmodel -were discussed in the literature. i4 is Re-
cently a modification of the approach proposed in Ref.
15 was shown to give correct exponents for the one- and
two-particle correlation functions as well as a good ap-
proximation for the energy spectrum of the single-chain
t-J model"

where the projection operator P; reduces the space of four
on-site states ([hole) (spin) = (l, f), ~l, g), (0, $), (0, $))
to the physical Hilbert space formed by the set ~0),

In turn, the spin-one-half operator S,+ can be expressed
in terms of a spinless Jordan-Wigner fermion

S+ = g, exp

8, = g;exp (4)

x xgs

The authors of Ref. 16 also argued that the local con-
straint (2) and the sum rule for the constrained fermions

jo z Im((ct (u), c; (—ru))) = 1+ b (where b' is

doping) are obeyed even in the approximation which dis-
cards the projector P;. Therefore this approximation
which reportedly yields correct exponents of correlation
functions and moment»m distribution was supposed to
provide a better account of fermion correlations than
other approaches which do not treat the hard-core con-
dition properly.

With the neglect of projectors P; representation (3)
allows one to rewrite (1) in the form

According to the method of Ref. 16 the constrained
fermion operator c; can be represented as a product of
a spinless fermion 4'; and a spin-one-half operator (hard-
core boson) S,+. :

H = —) t) @t&,+i,y(S+&S,+i &+ S, &S++i &) + ti4t„4;,q(S+„S,~+ S, „S+z.) + H.c.
i,a f

+) (Jn; fS fS +i fn+i y+ J'~n;, „S;„S;gn;g)—p) @,f@ f
i,f

with a local charge density defined as n; y = @,&4; y and a local spin S; y given in terms of y; y according to (4).
To get a bosonic form of the Hamiltonian (5) one can use the representation (8f, are dual to P~, )

~'& ~~ —~~ +'&&'&*~+'8-'&*~ . ~ ~'& *+'&4'~ ~+e'&*~
~,f Xi,f

p=R, L p,=R,L
(6)

Keeping the most relevant operators in the continuous limit we obtain the bosonized Hamiltonian density

II = —) v+ [(88,+) + (8$+) + 8/+8/.+ —88,+88.+]

+v, [(88.+) + (8$+. ) ]+J
~

1 —b+ (8$+ +8/, ) ~

cos2(P. kg+)
1

2'
+t~ [cos P~ + cos(P+ + 2hz) cos P+] cos 8, cos 8,

1 + l 6 1+J~
~

1 —h — (8$+ + 8$, ) ~ ~

1 —8 — (8$+ —8$, ) ~

(cos24+ + cos2$, + cos8, ),2~ i E 2~ i (7)
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where PP, = ~((g, + P",) and 8,+, = ~(8,",6 8, .).
As usual, the values of correlation exponents E+, can be
affected by short-wavelength renormalizations. The bare
velocities of charge and spin excitations are given by the
formulas v, = 2tsinmh and v, = 2J[(1—0) —(" ) ]+
4vrt sinmb, although these can be altered too.

We note that expression (7) can be also obtained by
using the CP coherent state representation Grst in-
troduced in Ref. 17 and applying a somewhat different
bosonization scheme discussed in Ref. 14. We believe
that it verifies a neglect of the projecting operators when
deriving a relevant part of the continuous bosonic Hamil-
tonian.

The first three terms in (7) can be recognized as
the Hamiltonian of the charge carrying spinless fermion
coupled to the Abelian gauge field A„= e„„B„Q,
(cjoy„88,) which describes a surrounding spin back-
ground. Notice that once the constraint was explicitly
resolved one obtains only two independent fields instead
of three (spinon, holon, and a gauge field) appearing in
mean Beld studies of the t-J model.

In the case of a single chain the basic TL phase of the
t Jmodel -corresponds to both P, and P, being gapless.
Scaling dimensions of operators of the form cos PP cos P'8
can be estimated by means of the formula

/2

1
(Sj(x)Sy(0)) —

~ + (—1) e

*1
(~y (~)~y (0)) ( 1) „+e

(4) P, is locked —another gapless phase having different
spin correlations:

1 . 1
(~j(~)~j(0))- —,+ (-1)* „„

(S~+(x)S~ (0)) e (10)

All these states besides the last one were argued in Ref.

At b = 0 (7) becomes equivalent to the bosonized
Heisenberg double chain due to the effective &eezing of
the charge degrees of &eedom. The resulting expression
essentially coincides with the relevant part of the one ob-
tained in Ref. 18 where a more general XXZ symmetrical
case was considered.

It was argued in Ref. 18 that at least one of the opera-
tors cos2$, and cos 8, appears to be relevant and drives
the "—"spin sector toward a strong coupling regime
where either P, or 8, gets locked and a corresponding
cosine acquires a nonzero expectation value.

Additionally, at K+ ( 1 the "+"sector gets to a strong
coupling regime where P+ is locked. Therefore in general
there are four possible phases with finite v, which can
be identified as follows (i1 = 2/K+): (1) both P, , P+
are locked —the antiferromagnetically ordered state; (2)
both 8, and P+ are locked —singlet state (all spin exci-
tations are gapful); (3) 8, is locked —the XY-type phase
characterized by correlations:

H. = - ) ~.'
~
Z.'(a8,+)'+, (ay.')' ~

+ti cos P, cos 8

where t~ ——t~(cos8, ). Charge correlation exponents
which can be easily read oK Rom (5) are given by the
formula

K,+ = 1+ —(SySy) + (S„Sg)
~

J
vrt vrt

(12)

Due to the short-range antiferromagnetic order we en-
counter the case of K+ & 1 while K —1 can be, in
principal, of both signs.

The physical origin of attraction between charges in
the paramagnetic spin gap state with a short-range an-
tiferromagnetic order can be understood on very general
grounds. A straightforward manifestation of this phe-
nomenon in the &amework of the t-J model is a negative
sign in &ont of the product of charge densities n y ny
staying in (5) if (SySy~) ( 0.

18 to appear on an extended phase diagram of the double
chain XXZ symmetrical (Heisenberg-Ising) spin model.
The analysis carried out in Ref. 18 leads to the conclusion
that at J~ ) —

4
J' the gapless line J~ ——0 becomes

unstable against arbitrary small J~ of any sign.
It has to be noticed that at J~ & 0 and J~ ) 0 the

nature of the singlet ground state is quite different. In the
former case every pair of spins on one rung of the ladder
tends to form an S = 1 state and the system effectively
behaves similar to S = 1 Heisenberg chain while in the
latter case spin pairs couple preferably into singlets which
then form a "dimer liquid. "

According to the phase diagram proposed in Ref. 18
the spin isotropic point at J~ ) 0 is located deeply in-
side the gapful "dimer liquid" phase with both 8, , $+
being locked. It agrees with numerical ' and mean field
results.

We also note that in a general case of N-chain ladders
one may expect that a spin gap is present at even N only.
To see that one can apply arguments due to Haldane.
In Ref. 19 a topological term governing a long-wavelength
dynamics of the 2D lattice Heisenberg model was found
in the form P (—1)"Q„(z,t), where Q„(z, t) is a topo-
logical 0 term appearing in a purely 1D case and dis-
tinguishing between integer and half-odd integer spins.
In the 2D case with periodic boundary conditions this
sum is equal to zero which means the absence of a 2D
counterpart of the 1D 8 term. However applying this
formula to the finite width strip one can see that for odd
N the above sum does not vanish and therefore an effec-
tively 1D long-wavelength dynamics remains gapless. In
contrast, for even N the gap survives and then scales as
E(N) exp( —N).

On the basis of the results obtained in Refs. 3—5 (and
recently confirmed in Ref. 21) we assume that at small

doping the hopping terms in (7) can be treated as pertur-
bations which do not destroy the gapful spin state. Then
we get the effective Hamiltonian describing a charge dy-

namics in the spin gap state
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=2 1—
I gPP+ -L I K c

dlnK, 1 t' 2 1
h+K (14)

A progressive understanding of the spinless double
chain problem shows that despite the possible van-
ishing of the single-particle hopping the "—"charge sec-
tor of the system always evolves to the strong coupling
regime due to the development of either coherent particle-
particle or particle-hole pair hopping. This phenomenon
was previously discussed by many authors in the context
of quasi-one-dimensional conductors.

For the account of these processes triggered by the
single-particle hopping the charge Hamiltonian (11) has
to be supplemented by the extra terms

bH, =
gpss cos 2P, + g„„cos28, (13)

generated in the course of renormalization. At small t~/t
a conventional RG procedure applied to the extended
Hamiltonian (11) and (13) leads to the system of equa-
tions describing a renormalization Bow in the "—"charge
sector24 r (( is a scaling variable):

dgpg ~ (=2(1 —K, )gpss, +t~1K, K. )

TS+ ——) ocf cf„cos(8++8 ) sin(8++8, ),

TS = ) crcf cf„cos(8++ P, ) sin(8+ + P, ),

(16)

we observe that in contrast to the spinless case, any para-
magnetic spin gapful state has only two relevant types of
orderings which are SS and CDW containing Gelds

8, and P+.~
Examining the divergencies of correspond. ing response

functions with the use of (8) and (12) we obtain that
at J~(S„Sq) ( 0 the interchain singlet pairing SS ap-
pears to be the leading instability while in the opposite
case Ji (S„S~) & 0 the ground state is the "Hux phase"
CDW .

The latter state is characterized by the commensurate
with density "Hux" C' = 2k' defined as a circulation of
a phase of the on-rung order parameter (u, d; + d, u;)
through a plaquette formed by two adjacent rungs of the
ladder. In the case of spinless fermions this type of or-
dering called the "orbital antiferromagnet" was first dis-
covered in Ref. 26 as a counterpart of 2D Hux states.

It is also instructive to express the above order pa-
rameters in terms of the hybridized states corresponding
to the mean field "bonding" and "antibonding" bands
B,A = ~i, (u+d):

CDW+ cos(p+ + p, ), CDW cos(p,+ + 8, ),
SS+ cos(8++8, ), SS cos(8,++ P, ), (15)

one concludes that at g & 0 the competing types of
ordering are (intrachain) CDW+ and (interchain) SS
while at g ( 0 the relevant orderings are CDW and
SS+. In turn, the result of the competition between them
depends on the sign of g+ —gph, + gpp.

By mapping the Hamiltonian (11) and (13) onto the
spin S = 1/2 chain in an external magnetic field the
authors of Ref. 24 also argued that the above statements
hold at strong coupling too.

Considering difFerent order parameters relevant for
fermions with spin

CDW+

CD@'

SDW+

SDW

SS+

) cft cf„-cos(p+ + p, ) cos(p,+ + p, ),

) cftc „cos(/++8 ) cos(P,++8, ),

) cftc „cos(P,++ P ) cos(8+ + 8, ),

) cftc f cos(P++8, )cos(8,++/, ),

) ocf c cos(8,+ + 8, ) sin(P,+ + P, ),

) ocf c f cos(8,+ + P, ) sin(P+ + 8, ),

The analysis of the solutions of (14) first performed
in Ref. 24 shows that depending on the sign of g
gpss,

—g~ either cos2$, (atg & 0) or cos28, (atg ( 0)
acquires a nonzero expectation value. The asymptotic
behaviors of the correlation exponent in the two cases
are K, (() ~ 0 and K, ((') ~ oo, respectively. By con-
sidering four possible order parameters for the spinless
case

CDW = ) A~ AL, —B~~ Bl, ,

SS = ) AR AL„—B~ BL

Considering the distribution of signs of the order pa-
rameter SS on the "four-point Fermi surface" [k
(kp, 0), (—kp, 0), (k px), ( kp, x)j we—observe that it
corresponds to the "d-wave" type pairing. One might
expect that in a two-dimensional array of weakly cou-
pled double chains with a continuous Fermi surface this
type of ordering does transform into an ordinary d-wave
pairing.

It follows from the preceding discussion that both in-
stabilities develop without a threshold in J/t or J~/t.
Note that this statement is in agreement with the results
of the weak coupling analysis of the double-chain Hub-
bard model.

We also add that in the antiferromagnetically ordered
state where all spin excitations acquire Ising gaps, the
only relevant order parameters could be SS+ and CDW+
containing fields p, and p+. However at all J(SfSf) (
Jz~/t the intrachain pairing SS+ is always favored.

In summary, in the present paper we applied the
method of bosonization to constrained fermions in the
context of the double-chain t-J model. As a result, we
found further arguments supporting the recently pro-
posed scenario of singlet superconductivity in the spin
gap state of the double-chain problem.

Our analysis was based on the assumption that a small
doping does not destroy the spin gap and a spin dynamics
remains essentially the same as in the insulating case.
This conjecture is supported by the results of numerical
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studies, ' the Gutzwiller projected mean field, and
weak coupling "g-ology. " '

In conclusion, we also comment on a recent claim2
about an existence of a strong coupling fixed point where
some spin excitations remain gapless. The authors of
Ref. 27 considered the double-chain t-J model without
an interchain spin exchange (J~ ——0). Then on the bare
level their Hamiltonian can be assigned to the univer-
sality class of the purely forward scattering model con-
sidered in Ref. 13. Indeed, in this special case the only
field becoming massive is 8, . In principle, it cannot be
ruled out that for some specific double-chain models only
one of two spin fields becomes gapful. However an inves-

tigation of the double-chain Hubbard model ' demon-
strates that the presence of the interchain one-particle
hopping is already suKcient to generate the antiferro-

magnetic spin exchange term with J~ ~& which will
eventually make all spin modes gapful. We believe that
it is a general feature of spin isotropic models of strongly
correlated fermions on double chains.
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