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The magnetocrystalline anisotropy (MA) of ferromagnetic fcc Ni, fcc Co, and bcc Fe (001) slabs is cal-
culated to second order in the spin-orbit coupling constant using realistic tight-binding models with pa-
rameters Stted to available Srst-principles electronic-structure calculations. Results for slabs with 1-17
atomic layers show that MA favors magnetization perpendicular to the slab for Fe but in-plane for Ni

and Co, in agreement with experiment. Fluctuations in the MA as the thickness is varied indicate that
surface MA is not purely of local origin in the surface atomic layer.

I. INTRODUCTION II. THEORY

The dependence of the energy of a ferromagnetic metal
on the direction of the magnetic moment, known as the
magnetocrystalline anisotropy (MA), becomes especially
pronounced at the surface or in thin films as was predict-
ed by Neel' in 1954. Due to potential applications in
magnetic perpendicular recording, this effect has recently
received much attention from experimentalists. ' On
the other hand, there are still only a few theoretical cal-
culations of the surface MA (SMA). As proposed by Van
Vleck in 1937,'3 the source of MA is spin-orbit coupling,
so it is a relativistic effect. So far two different theoretical
approaches have been applied to the problem of SMA.
One method involves ab initio calculations with spin-
orbit interaction included and determination of total en-
ergies for different spin orientations. ' These calcula-
tions are however associated with very extensive numeri-
cal computations. The other method uses the fact that
the spin-orbit interaction is small compared to charac-
teristic energies of the system (e.g. , the bandwidth) which
makes a perturbation treatment possible. This approach
implemented in the tight-binding framework was adopted
in the two earliest papers on SMA. ' These papers,
however, oversimplify the band structure and give only a
reasonable order of the magnitude of the effect. On the
other hand, a recent paper by Bruno, following similar
lines (but using a more realistic band structure), supplied
predictions of SMA which agree qualitatively with the ab
initio results. However, his work was restricted to unsup-
ported monolayers.

The perturbation-theory tight-binding approach has
also been applied in the present paper. In the first part of
our work (Sec. III A) we study the inhuence of the surface
crystal-field splitting between the in-plane and out-of-
plane d orbitals and of the sp-d hybridization on MA in
the (001) fcc nickel monolayer. The main part of the pa-
per (Sec. III 8) focuses on examining MA in ferromagnet-
ic slabs of fcc nickel, fcc cobalt, and bcc iron. We study
the dependence of MA on the slab thickness (up to 17
layers) with the objective of determining how many layers
contribute to the MA of a ferromagnetic surface.

Ferromagnetic films are described in the slab geometry
by implementing the standard Slater-Koster tight-binding
formalism. The basis functions are orthonormalized
atomic orbitals ~jlpo ) where j and l label the jth atom in
the 1th layer, }tt denotes an atomic orbital (i.e., one of the
3d orbitals: xy, yz, zx, x —y, 3r z2, and also—, when
used, the 4s orbital or one of the 4p orbitals: x, y, z,' the z
axis being chosen perpendicular to the slab), o is the spin
( = 1, 1). Then we introduce the in-plane functions

~klpo ) =N '~ g exp(ik R,'")~jlpo ), (1)
J

where R'." is the position of an atom in the xy plane of
the 1th layer, k is a two-dimensional wave vector, N is the
number of atoms in each layer. The eigenstates

g Hi„, i „(k)a„i „(k}=e„(k}a„»(k).
l'v

(3)

We assume here that, in the absence of spin-orbit cou-
pling, the matrix of the Hamiltonian H, defined as

Ht„ i (k) =g (0!po ~H j~I'vo )exp[ik. (R" ' —Ro")] (4)
J

depends on the spin 0. only through the exchange term
ere p(1)= —1,p( l )=1. The clem

(Olpo ~H ~j l'vtr ) are calculated in the two-center approx-
imation.

Now we introduce the spin-orbit coupling gL S as-
sumed to be present only on the same site:

H„=g g g g (po ~L S(vo')c,t„c~t„,
jl pv oo'

=gg g g g (po ~L.S~vo')ct+„(k)c,„.(k),
k I pv oa'

(5)

~nko ) =pa„»(k)~klpo )
lp

and the corresponding eigenenergies e„(k}can be found
for each spin cr by solving the matrix eigenequation
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where c+ and c are creation and annihilation operators,
respectively. When the direction of the spin S is along an
arbitrary F axis characterized by the standard angles 8
and P (i.e., S ~o ) =—

—,'Ap(o )~cr ) ), the matrix elements

&jt4o. ~L S~vo') depend on these angles. For d orbitals
these dependencies are given in Ref. 26; for a general case
they can be found with the expressions given in the Ap-
pendix of Ref. 16.

Treating H as a perturbation, we find that the first-
order correction &@O~H ~40) to the energy Eo of the
groundstate ~40) =gz„g[ez —e„(k)]c„+(k)~0) van-
ishes due to symmetry; here eF is the Fermi energy and
g(x) is the unit step function. This is quite obvious if one
notices that the matrix elements &pn~L. S~vo ) contain
only terms proportional to cos8, sin8cosg, sin8sing.
The second-order correction

Eo E—

P 1P2P3P4 0' 0'

X g g g[e„-~-(k) ep]g—[e» e„.~—.(k)]
1

Epg~~a'~ k spg~0J k

X g a„.&.„ (k)[a„.» (k)]'an", » (k)[an", i'„ (k)]'
Il'

(6)

is obtained with the excited states ~4) =c„+- -(k)c„. .(k)~4o) having the energy E=EO+e„- -(k) —e„.~(k), where
e„.(k) (ez (e„- -(k};no other excited states contribute to E' '. This energy correction is nonzero and, unlike in the
bulk cubic case 2 it exhibits an angular dependence. For (001}fcc and (001) bcc slabs considered in our paper, this
dependence takes the usual form:

E(2)
=ED+K;,cos~8 .

Other terms arising from & p,o'(L S~p2cr" ) & p3cr" ~L S~p4o') are ruled out by symmetry considerations. The coefficient
K,„;„called the anisotropy constant, determines the anisotropic part of the energy E' '/N per unit two-dimensional sur-
face cell. Its explicit form, as well as that of Eo, can be easily found from Eq. (6) by extracting cos 8 terms from the
products & p, o'~L S)p2o'") & p3o"~L S)t44o') (e.g., with a simple numerical algorithm). The anisotropy constant E,„;,
obtained can be expressed as

(8)

where
~I~It ~I~II ~t II I It

e[JI I u3t

and

J =—g g ri[e„„„(k) es]rt[e—~ e„. .(k)—] pan', t'q (k)[an', » (k}] an"', » (")[an-, rq (k)]' .
k n'n"

(10)

The values of the indices p„pz, p3, p4 that correspond to
the tth coemcient b„„„andthe coefficients themselves&&2&P4
are given for o'=n"= f and o'= f, tr"= j in Table I.
To find b„„ for o'=o"= J, and o'= l, o"= 1' we ap-

ply the relations

tion

pter

—

hfdf

&1&2&&4 &PPP4 '

which can be immediately deducted from Table I. This,
combined with relations (11)and (12), allows us to rewrite
Eq. (8) as follows:

&PPN4»&PN4 '

bit
~1~2~&4 l 1~2~&4 (12)

tl
&Pa&3I'4 & P2&3I'4

t

which are a direct consequence of the general symmetry
properties of the matrix elements &t4cr'~L S~vcr" ). The
coefBcients b„„„ fu1611 also an additional simple rela-

&1&&&4

Lt
& i~a&3I'4 4&2&3&4 ] ' (14)

An expression similar to (8}can be derived also for Ko:
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TABLE I. The coefficients b„„„„for cr'=o."='t and

cr'=1', cr"=1 entering Eq. (S) for K,„;,. The values 1,2, . . . , 9
of indices p1, p2, p3, p4 correspond to the orbitals xy, yz, zx,
x —y, 3p —z, s, x, y, z jn the listed order.

TABLE II. The coefficients d„„» for cr'=o."='t and
cr'= t, 0"=1entering Eq. (15) for Ko. The values 1,2, . . . , 9 of
indices p„p2, p„p4 correspond to the orbitals xy, yz, zx,
x 2 —y, 3r —z, s, x, y, z in the listed order.

btt
P1P2P3P4

b ll
P1P2P3P4

CT —CT

P1 P P P P1P21 3@4

a'=7, e"=4
j 1 P2 I 3 P4 P1P2P3P4

d"
P3

1

4
1

4
1

2
v'3

2
1

2

1

1

4
1 1 2 1 2

2 1 2 3 4

1 1 3 1 3

2 1 3 2 4
4
1v'3

2
v'3

2
1

2
1

v'3

3 1 3 2 5
2
1

2—1

2
1

2—1

3 1 2 3 54

5

6
7

9
10

4 1 2 7 9
5 3 4 3 4

4 1 3 8 9
5 1 4 1 4

1
1

4
1

2
1

4
v'3

—1
1

4
1

2
1

6 3 4 3 5 6 1 4 2 3

1

2—3

7 3 4 7 9
8 3 5 3 5

7 1 4 7 8

8 2 3 2 3 1

4

9 3 5 7 9
2

9 2 3 7 8

10 2 4 2 4
2
1

2
3
4

v'3

2
1

2—3
4

v'3

1

410 7 9 7 912

13 11 2 4 2 5
2
1

2—3
4

v'3

14 12 2 4 8 9
13 2 5 2 51

4
1

4

1

4
1

4

15

16 14 2 5 8 9
1

4
1

4

15 7 8 7 8

16 8 9 8 9

(15)

does the sin Hcos(2$) term], both the expressions for
K,„;, provide the same value, though, obviously, of
difFerent sign. Let us also note that Bruno's expression
for E' ' fails to reproduce the correct Ko, e.g., it improp-
erly predicts ED=0 for the paramagnetic case. This is
due to the neglect of some angular-independent terms in
the course of the derivation of E' ' which is presented in
detail in Appendix 3 of Ref. 28.

Due to the energy denominator in Eq. (10), K,„;, is
very slowly converging with the number of the k vectors.
To achieve the convergence we apply the triangular
method and the variant appropriate to our case is briefly
presented in the Appendix.

III. RESULTS

A. (001) fcc nickel unsupported monolayer

In this case we calculate anisotropy constants with and
without the sp-d hybridization. The full spd tight-binding
scheme for the unsupported nickel monolayer is based on
the bulk (orthogonal) fit by Papaeonstantopoulos. We
take into account the first- and second-nearest neighbors
and use the bulk values of the ofF-diagonal two-center in-
tegrals. The bulk diagonal parameters are changed to fit
to the ab initio energy bands for the nickel mono-
layer: ' ' the s level is shifted downwards by 0.35 Ry (no
shift is needed for p levels) and the exchange splitting is
increased by 0.017 Ry; this St was previously used in Ref.

where the indices p„p2, p3, p4 and the coeScients

d„„„+for o''=cr"=1 and o'= 1', cr" = 1 are in Table

II. For o'=o"= 1 and o'= 1, o"= 1' the sets of indices

oui pp p3 iLc4 appearing in Eq. ( 15) are the same as for
o'=o"=1 and o'= 1, cr"=1, respectively, while the
coefficients d i i„„and d i"„„„canbe found from theI'1I'2I'&4 I'P2I'3I'4

general symmetry relations analogous to Eqs. (11) and
(12). However, there is no analog of the relation (13),
and, in consequence, of relation (14). For Ko the number
of the coefficients d„„„given in Table II is different

for cr'=o"=1' and cr'=1, o"=l. Also, the sets of in-
dices p, , pz, p3, p4 do not coincide for o'=cr"= t' and
o' = 1, cr" = 1 as is the case for K,„;, (cf. Table I).

Let us note that E' ' given in Eq. (6) is not identical
with that given by Bruno. In his expression
(p,o'~L S~p~cr")(p3o "~L.S)p4o') is replaced by
p(&')p(cT")(pit'IL'Slp2t )(p3t IL.S/p4t ). Neverthe-
less, Bruno's expression leads to the same value of E,„;,
since both products have the same cos 0 terms; this is
also true for the additional anisotropy constant present in
the term proportional to sin 8 eos P appearing in (110)
fcc slabs. The explicit expression for E,„;, given in Ref.
23 does not coincide exactly with the one derived here,
not only due to neglect ofp orbitals in Ref. 23, but main-
ly because its author uses sin 8 and sin 8 eos(2$), instead
of cos 8 and sin 8 cos P used here, as independent angu-
lar functions. However, for the (001) fee and (001) bce
slabs, where the sin 8 cos P term of E' ' vanishes [and so
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32 in the calculations of exchange stiffness. We follow
the fit of Ref. 32 by noting further that due to the re-
duced symmetry in the monolayer the d orbitals are sub-

ject to a significant crystal-field splitting, much greater
than in the bulk. We characterize this crystal-field split-
ting with one parameter h„which is the difference be-
tween the energy of the out-of-plane orbitals
(yz, zx, 3z r) —and that of the in-plane orbitals
(xy, x —y }. The value of b,„was fitted to the energy
bands of Refs. 30 and 31 to be around 0.01 Ry, which
agrees with the estimate of Jepsen, Madsen, and Ander-
sen who found that the crystal splitting of the d orbitals
is less than 0.015 Ry in the considered (001) fcc nickel
monolayer. These values are several times smaller than
those assumed in the calculations of anisotropy constants
presented in Refs. 22 and 23. The final tight-binding fit
to Refs. 30 and 31 for the energy bands of the nickel
monolayer is, surprisingly, almost as accurate as in the
original bulk fit. On the other hand, if we start from the
Papaconstantopoulos's bulk parameters in the non-
orthogonal scheme, which leads to the more accurate en-

ergy bands in the bulk, we arrive at a rather poor approx-
imation of the energy bands in the monolayer, although
the required s-level shift is much smaller.

In the calculations with the d orbitals only, we assume
the canonical two-center parameters

5

&a+i s

(meV}

-5 I I I I I I I I

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0 02 0 03 0 04 0.05

b,,„(Ry}

FIG. 1. The anisotropy constant K;, (per atom) vs the crys-
tal splitting b,„for the (001}fcc nickel monolayer in the spd (C'}
and the d-only canonical (0}tight-binding schemes.

ponents of the corresponding eigenstates; the s and p or-
bitals present in the sum in Eq. (14) give a negligible con-
tribution (less than 1.5%%uo) to K, , in the full spd scheme.
The value of K,„;, for the actual 6„=0.01 Ry is positive
(equal to 0.37 meV in the spd scheme). This means that
the energy (7) of the (001) fcc nickel monolayer has its
minimum for 8=m. /2, i.e., the magnetic moment lies in
the plane of the monolayer.

dd(o rr 5)=( —6 4 —1)
W s

2.5 R
(16) B. Ferromagnetic slabs

where

W=25(pds )
' [Ry] (17)

sets the energy scale ( W is close to the bulk band width),
s is the Wigner-Seitz radius, R the interatomic distance,
and p,z the efFective d-band mass. The values of pd for
various metals are given in Ref. 33; taking pd =13 for
nickel, we obtain W=3.9 eV. The position of the I er-
mi energy e~ in the d-orbitals-only case is chosen to give
the correct magnitude of the magnetic moment M in the
monolayer; for our nickel monolayer we take M =0.95@~
found in the ab initio calculations by Jepsen, Madsen, and

' Andersen. From those calculations we also deduce that
the exchange splitting 5,„is 1 eV. However, its accurate
value is not important since for a strong ferromagnet,
which is the case for nickel, K,„,, is very insensitive to

This is quite obvious since according to formulas
(14), (9), and (10), the largest contribution to K,„;, should
come from the vicinity of the Fermi level ez which does
not cross the majority band in a strong ferromagnet.

The anisotropy constants K, calculated for various
values of h„within both tight-binding schemes discussed
above are presented in Fig. 1; we assume /=0. 105 eV
(Ref. 36) in these calculations. As already established by
Bruno the crystal-Seld splitting has a large effect on the
anisotropy constant K, The general trend is similar
for both the curves presented in Fig. 1, which suggests
that the sp-d hybridization does not play the crucial role
in determining K~, . The differences arise from the
different tight-binding energies and the different d com-

Encouraged by the results for the inonolayer, in the
slabs we neglect the sp-d hybridization and use the canon-
ical parameters [(16) and (17)). While for nickel we take,
as previously, W=3.9 eV, for the two other ferromagnet-
ic metals, cobalt and iron, we find %=4.4 eV and
W=4. 9 eV, respectively, from the values of p& given in
Ref. 33. The magnetic moment M,„z of an atom in each
of the two surface layers of the slab is enhanced with
respect to that in the interior, M;„,. We adopt the values
of M,„,f and M;„, found in the ab initio calculations for
the seven- and nine-layer slabs: M„&=0.68pz,
M;„,=0.56ps for nickel, M,„~=1.86p,s, M;„,=1.65ps
for cobalt, and M,„&=2.98@~,M;„,=2.25@~ for iron;
as M;„, we take the magnetic moment of an atom in the
central layer. Here, we assume that the magnetic mo-
ment deviates from its bulk value only in the surface lay-
er. This assumption is quite accurate. c 3' 7 ~ More-
over the ab initio values of the layer-projected magnetic
moments are known only for slabs with a few layers,
while our objective is to study slabs of arbitrary thickness
and the effect of thickness on the magnetic anisotropy.
To find the exchange splitting 5,"„' in the 1th layer we as-
sume that 6,"„' is proportional to the magnetic moment
M in this layer. This well-known property is a good ap-
proximation as it can be observed, for example, by com-
paring the ratio U„=h,„/M=1.05 eV for the (001)
nickel monolayer with the corresponding value
U,„=1.09 eV obtained for bulk nickel [5,„=0.63 eV,
M =0.58ps (Ref. 41)]. Thus in the case of nickel we take
U,„=0.275$'. From the ab initio calculations for bulk
cobalt and iron we find correspondingly
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U,„=0.26K [5,„=1.8 eV, M=1.56@,s (Ref. 42)], and
U,„=0.2051K [b,,„=2.18 eV, M=2. 16ps (Ref. 43)]. To
make the layer-projected magnetic moments 0.8-

M'"= —g 1&klan& Ink) ) I'ri[e~ —e„&(k)]
N„~

0.6—
&anis

(me V)
0.4—

g I &kilML

Inks'

& I'g[e~ —e„&(k)]
&a~

(18) 0.2-

equal to the assumed values (i.e., M,„z in the surface lay-
er, M&„, elsewhere), one has to shift the d-orbital energies,
by a certain amount 5ed", in each layer (with respect to
those in the central layer); simultaneously one finds e~.
These necessary shifts, found also in the ab initio calcula-
tions, 37' can be understood as associated with the d-
band narrowing at the surface due to the reduced coordi-
nation. In Eq. (18), N is the number of k points in the
two-dimensional zone sum.

As in the case of the nickel monolayer, an important
role in the calculations of the magnetic anisotropy of the
slabs, is played by the additional crystal splitting h„be-
tween the out-of-plane and the in-plane d orbitals. We
assume that this splitting is present only in the outer-
most, surface layer. Since its value is rather uncertain,
though expected to be positive, we take 6„=0.05W, a
value similar to that found for the nickel monolayer.

The plots of X,„;,vs the slab thickness L are presented
in Figs. 2, 3, and 4; the values of K;, were calculated
with (=0.105 eV for nickel, /=0. 085 eV for cobalt, and
(=0.075 eV for iron. 3 The results for the monolayers,
also shown in these figures, were obtained using the fol-
lowing magnetic moments: M =0.95ps for nickel, 3

M=2.20ps for cobalt, ' and M=3.20ps for iron. '4' '46

For each metal, E,„;, has a well-defined sign. However,
its magnitude fluctuates with the slab thickness, and
these fluctuations do not settle down even for slabs as
thick as 17 layers. Calculations for thicker slabs were not
performed because of the very long computation time
needed (e.g., more than 150 h on a fast alpha-processor

0
0

I I I

6 8 10 12

number of layers

I

14
I

16 18

FIG. 3. The anisotropy constant E,„;, (per unit surface cell}
vs the number of layers for the (001) fcc cobalt slab in the d-only
canonical tight-binding scheme. For the Co monolayer
K,„;,=3.38 meV is off scale.

DEC 3000j400 workstation), even if one takes into ac-
count that for thicker slabs the number of k points in the
Brillouin zone required to achieve I —2 /o accuracy of
E,„;, may be lowered to 30X30, from 100X100 needed
for the monolayer.

The observed fluctuations suggest that the contribu-
tions to the anisotropy constant K,„;, come from several
layers, not only from the surface one. This is also well
seen in Table III, where we tried to separate these contri-
butions to a certain extent. On the other hand, E,„;,
should be regarded as a quantity associated with the sur-
face: it does not grow, on average, with the slab thickness
L, as does the isotropic part of energy, Xo, which shows a
near to linear growth with L (cf. Fig. 5). We would also
like to mention that the many-layer contributions to K
are observed even when all the layers except the surface
one are made nonmagnetic (i.e., M'" =0,
1=2, . . . , L —l) unless their layer-projected densities of
states are arbitrarily pushed (almost) entirely below e~ by
a suitable shift of the d-orbital energies for the nonmag-
netic layers.

-1.5—

canis
(meV)

2-

(meV)

0
0

I

6 8 10 12

number of layers

I I

14 16 18

-5.5—

-6
0

I I I I I

6 8 10 12 14

number of layers

I

16 18

FIG. 2. The anisotropy constant K,„;, (per unit surface cell)
vs the number of layers for the (001) fcc nickel slab in the d-only
canonical tight-binding scheme.

FIG. 4. The anisotropy constant K,„;, {per unit surface cell)
vs the number of layers for the (001) bcc iron slab in the d-only
canonical tight-binding scheme.



50 MAGNETOCRYSTALLINE ANISOTROPY IN FERROMAGNETIC FILMS 3759

(I )

TAM.E 111. The "partial" anisotropy constants K obtained (analogously as K,„;,) from Eqs. (14), (9), and (10) with the summa-

tion layer indices /, l' restricted to range 1 l, I' I for the 17-layer (001) fcc nickel slab in the d-only canonical tight-binding

scheme.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

K (meV) 0.85 0.78 0.62 0.76 0.65 0.51 0.57 0.47 0.43 0.43 0.41 0.36 0.49 0.54 0.33 0.49 1.33

IV. DISCUSSION

The signs of the anisotropy constants obtained for the
Ni, Co, and Fe monolayers agree with those found in the
recent ab initio calculations' ' ' (except Ref. 16
where a very small positiue K, , is predicted for iron),
and also with the results of a different tight-binding
scheme. 3 These signs do not change for the several-layer
slabs; let us note here also that we do not observe the
different behavior of K,„;, for the even and the odd num-
ber of layers which was predicted in an earlier work by
Bennett 2' cf. Fig. 2. Thus we come to the conclusion
that while the Ni and Co slabs are magnetized in-plane,
the Fe slabs may have the magnetization perpendicular to
the slab. These predictions are in agreement with the ex-
perimental data. ' ' In particular, —,'K,», =0.15-0.3
meV calculated for cobalt slabs (with L ~2) agrees
reasonably well with the value 0.41+0.07 meV deter-
mined experimentally for the anisotropy constant of a
single Co/vacuum interface. '

To investigate fully the case of iron, we also calculated
the additional anisotropy term, Kd;, to be added to our
anisotropy constant, arising from the magnetostatic in-
teraction between the magnetic moments (dipole-dipole
interaction):

d'P 4 [(R( I') R(() )2+ (x (I') ( I)
)2]3/2

z(l') z(1) 2

X 1 —3, , (19)(R(l') R(l))2+(z(l') z(l))2j 0

(the shape anisotropy constant per unit surface cell). The
expression (19) is valid for slabs with a fourfold symmetry
axis perpendicular to the slab surface, which is the case
for (001) bcc iron slabs considered. The value of Kd;~ is

positive, so it favors the in-plane magnetization, and it is
roughly proportional to the slab thickness. The total an-
isotropy constant, K~;,+Kd;, for iron slabs is shown in

Fig. 6; as is seen, it is negative for L & 17. In experiment
the perpendicular magnetic moment was observed for
iron slabs with L (7. This means that the values of
K~;, obtained are too large though they have the correct
sign. On the other hand, in an earlier work' the sum

K„;,+Kd; was negative only for the one-layer iron slab,
so the values ofK, were too small.

APPENDIX

The triangular method is the two-dimensional analog
of the well-known tetrahedron method4s used for three-
dimensional k-space integrations. First, the two-
dimensional k space is divided into elementary triangles
and the energies e„(k) are interpolated linearly within
each triangle (on the basis of their values in the corners of
the triangles), while a„(„(k)is assumed to be constant in
the triangle. Then, for each triangle its part where the
factor 2)[e „(k)-ez—]ri[Ep E('„k)] [appearing in Eq.
(10)] is nonzero (equal to 1), is either a triangle or a sum
of triangles. Within each of these resulting triangles the
sum g),[e„- -(k)—e„. .(k)] ' can be performed analyti-
cally in the inSnitely dense k-mesh limit:

K0
(me V)

-10

-20-
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-40-

-60—

-70—

0
Kg;p -1—

Kanis + Kdip

(me V)
-3-

-5-

-90
0

I I I I I I

6 8 10 12 14 16 18

number of layers

-6
0

I I I I I

6 8 10 12 14 16 18

number of layers

FIG. 5. The isotropic part of energy K0 (per unit surface cell)
vs the number of layers for the (001) fcc nickel slab in the d-only
canonical tight-binding scheme.

FICx. 6. The shape anisotropy constant K~ ~ (0) and the total
anisotropy constant K, , +Kd;~ (0) (per unit surface cell) vs the
number of layers for the (001) bcc iron slab in the d-only canoni-
cal tight-binding scheme.
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triangle Ea ~ (k) ea ~ (k)

~,in]~, f

triangle (Q Q )(g g )

+
(lIt2 —b, , )(b,2

—b, 3)

+
(&3—&i )(&3—&2)

(20)

where S„;,„i, is the surface of the triangle (k„kz,k3),
while b, ; =e„. -(k,. ) —e„. .(k;), i =1,2, 3.
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