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The polaron path integral introduced by Feynman is generalized to the case of an electron moving
in d space dimensions. A scheme of systematic calculations of the obtained path integral is developed
to estimate the ground-state energy of the polaron in the same way for different values of the electron-
phonon coupling constant a. The leading-order term in this approach yields an upper bound to the
polaron self-energy and improves Feynman's variational estimates for d = 2 and d = 3. A scaling
relation between polaron self-energies for different space dimensions is obtained for this term. The
next correction to this estimation is calculated by numerical integration for d = 2 and d = 3.

I. INTRODUCTION

The polaron problem embraces a wide range of ques-
tions concerning the behavior of the electron for conduc-
tance in polar crystals. A field-theoretical formulation
of polaron theory was proposed by Frohlich to describe
the interaction of a single band electron with phonons,
quanta associated with the longitudinal-optical branch
of lattice vibrations. Since that time, the Frohlich po-
laron model has attracted interest as a testing ground of
various nonperturbative methods in quantum physics.

The main quasiparticle characteristics of the polaron
are its ground-state energy (GSE) E(a), efFective mass
m, tr, r's and lifetime. The problem of finding the GSE
of the Frohlich Hamiltonian is of considerable signifi-
cance because one can suppose that in comparing two
approximate methods the one giving the better E(a)
will likely give the better m, tr, which can be measured
directly Secon.d, experiments on the ionization energy
of bound polarons~s require theoretical estimation of the
free-polaron GSE. Therefore, it is important to have good
values for the free-polaron GSE.

Historically, the GSE of the polaron is investigated
in the weak-, s ~~ ~2 intermediate-, and strong-coupling
regimes~4'~s by using difFerent methods. An attempt to
build a polaron theory, valid for arbitrary values of a, was
made by Feynman~ within the path-integral (PI) formal-
lsxIl.

The Feynman approach for the polaron has an ad-
vantage because the phonon coordinates are adequately
eliminated and, as a consequence, the polaron problem
is reduced to an effective one-particle problem with re-
tarded interaction. Besides, the PI formalism allows one
to build a class of exactly solvable models correspond-
ing to quadratic functionals. Then one can use these
functionals as bases for variational estimations. As a re-
sult, Fey~~an's PI approach gives good upper bounds
on Eo(a) in the entire range of a in a unified way.

There arises the question whether Feynman's estima-
tions of the polaron GSE can be improved by introducing
some trial actions, more general than the quadratic ac-
tion with two variational parameters used in Ref. 1. This
question, in particular, has been studied within different
variational approaches, ~s ~r but given variational answers
it could not estimate the next corrections to the values
obtained.

Traditionally, the polaron problem has been investi-
gated in three-dimensional (d = 3) space. s' In re-
cent years, however, polaron efFects have been observed
in low-dimensional systems, zo and certain physical prob-
lems have been mapped into a two-dimensional (d = 2)
polaron theory. z~ The possibility that an electron may
be trapped on the surface of a dielectric material has
attracted much interest. zs The GSE of the polaron for
d = 2 is discussed in Refs. 23—25.

In the present paper, we investigate the GSE of the
polaron in the case of arbitrary space dimensions (d ) 1)
and try not only to improve Feynman's result, but also
to estimate the next corrections, which allow one to test
the accuracy and reliability of the obtained values. The
paper is organized as follows. In Sec. II we formulate a
generalization of the Feynman PI of the polaron to arbi-
trary spatial dimension (d ) 1) and obtain a Gaussian-
equivalent representation (GER) for this path integral.
We transform the initial PI to the representation built
so that all the quadratic part of the polaron action is
concentrated entirely in the Gaussian measure of the PI
which is deined &om certain equations. Therefore the
polaron interaction functional is purely non-Gaussian in
this representation. The necessary equations defining the
explicit polaron correlation function and the measure of
PI in this representation are obtained here. In Sec. III
the leading-order term of the polaron GSE, which re~
resents an improvement of Feynman's upper bound, is
obtained in d dimensions for arbitrary o. & 0. In Sec.
IV, we obtain the next correction to the leading term
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of the polaron self-energy. In Sec. V, we derive scaling
relations between our key equations for two and three
dimensions. The numerical results obtained within our
method in the entire range of a = 0—oo for d = 2 and
d = 3 are given in Sec. VI and compared with the known
data in each case.

II. POLARON PATH INTEGRAL IN
(4 DIMENSIONS

The Frohlich longitudinal-optical (LO) polaron model
for d = 3 is determined by the Hamiltonian

H = p +hid) aiag
2m

k

+ ) gi, (a~e '""—ai, e'""),
0

[ai„a„,] = &i,g,
which describes the interaction of an electron (position
and momentum vectors x and p, band mass m) with the
phonon field (creation and annihilation operators a&,ai„
quantization volniiie 0, Plank constant h) associated
with a LO branch of lattice vibrations (wave vector k
and frequency ~) in a polar crystal. The electron-phonon
interaction coefficient for coupling with the wave vector
k in (1) is defined as follows:

ih(d(h/2nulp) ~ (47m) ~

The dimensionless Frohlich coupling constant reads

e ( 1 lq 1 (2m~
Ck

E6~ 60) ALP E

where e is the electron charge, and e and E'p are the high
frequency and static dielectric constants of the crystal. In
most real ionic crystals it takes the value n 1—20 (e.g. ,
n 5 for sodium chloride). In the following, units will
be chosen such that h = m = ur = 1.

Until now, no nontrivial solution of H%„=E„@„was
known. Various methodsi i z 'i 2 have been used to
calculate approximately the spectrum of H, and espe-
cially to obtain its GSE Ep for selected (weak, interme-
diate, or strong) regions of n.

To extend the Frohlich Hamiltonian (1) written for
d = 3 to arbitrary spatial dimensions d ) 1, we fol-
low a physical approach2 inspired by the formulation
of a lower-dimensional polaron problem as obtained from
the Frohlich Hamiltonian of a higher-dimensional system
by integrating out one or more dimensions. In this ap-
proach, the basic interaction characterizing the electron
motion in d dimensions remains Coulomb-like ( 1/r),
i.e., the same as for d = 3. In the particular cases of
d = 2 and d = 3, this definition of a d-dimensional po-
laron Hamiltonian reduces to the standard expressions
for the Frohlich Hamiltonian.

Following Ref. 29 we suppose that the form of the
Frohlich Hamiltonian in d dimensions is the same as in
(1) except that now all vectors and operators are d di-

mensional and the electron-phonon interaction coefticient

gk is redefined as follows:

Ad2

In particular,

P2 P 2d —3/2 (d —1)/2d —1

2

(4)

exp( —PF) = Tr,~Trop [exp( —PH)], (6)

where the Hamiltonian H in (1) should be written in
terms of the coordinates and momenta. The "Trace" is
here supposed to be taken over the whole space of states
of the "electron + phonon" system.

It is well known &om the original paper by Feynman
that the phonon trace Tr~h in (6) can be evaluated if one
makes use of the PI technique. The result reads

exp( —PF) = bx exp (S[x]},
x(0)=x(P)

where the action S[x] is

1 ~ . A' ~ ~ G(t —8)
S[x] = —— dt x'(t) + —~ dt ds

2 o 8ir o o lx(t) —x(s) l

(7)

In (8), G(t) is the temperature-dependent Green function
of a harmonic oscillator,

G(t) = exp(-ltl) + exp(ltl P)—
1 —exp(P)

The free energy F(P) tends to the GSE as P ~ oo
(zero temperature case)

Ep ——lim F(P).
p-+oo

(10)

The path integral in (7) is not explicitly solvable due to
the non-Gaussian character of S in (8). For its estimation
(for d = 3) Feynman has proposedi a quadratic two-body
trial action S~ instead of S:

PS[x];S~[x] = —— dtx'(t) + — dt
0 2 0

x ds xt —as exp —mt —s

Here t and m are variational parameters. With the
quadratic trial action S~ in (7) one gets an exact solution
for F~(n, P). A variation over parameters C and io for
finding the absolute minimum of E~+(n) = F~(n, P -+
oo) leads to a rigorous upper bound on the polaron GSE

' i/2~n
for d=2)

~Sxn
lkl'

Accordingly, we write the PI representation of the &ee
energy F(P) of a polaron with a given temperature 0 =
1/P as follows:
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at arbitrary a, the known Feynman result. M

We consider the polaron GSE given by Eqs. (7)—(10).
For further convenience, we choose the symmetrical re-

gion —p/2 & t & p/2 and change the variable of the PI
in (7),

1
E(a) = — lim lnZz(a),T~oo

(13)

Accordingly, the GSE [further it will be denoted by E(a)]
of the Frohlich polaron can be defined as follows:

; r(t —T), T = P/2. (12) where

(14)

The standard normalization E(0) = 0 in (13) is satisfied
under the condition

III. THE LEADING-ORDER TERM OF
THE POLARON GROUND-STATE ENERGY IN

d DIMENSIONS
Zz (0) = 1, or (15)

Dp'(t, a) = — h(t —a).

The Green function Dp corresponding to the differential
operator Dp and satisfying the periodic boundary con-
ditions is

1 ta
Dp(t, a) = it —ai ——-

2 2T' (17)

As we consider the GSE given in (13), the parameter T
is supposed to be asymptotically large. In this limit one
gets the Green function

Dp(t, a):D, (t —a) = ——,'it —ai

and its Fourier transform is

De(p) =f dte's'De(t)

1 1 1

(p + iO)z (p —io)2

The normalization condition (15) leads to

1
Co ——

vt'det Dp
(2o)

The Coulomb-like interaction part, the electron self-
interaction, is given by the retarded potential

V[R;t —a] = e ' '
q exp(ikR),

r(d/2 —1/2)
4 27r& +'l~'

The free-electron system is described by the kinetic
term

T
(r, Dp r) = dtdar(t)Dp (t, a) r(a),

—T

For a not too large, the PI in the initial presenta-
tion (14) may be estimated by using a perturbation ex-
pansion in a. The problem is to estimate Z2 (a) beyond
the weak-coupling regime.

Our idea is the following. As a grows, d(rp with the ini-
tial kinetic part transforms to the new measure do that
also has a Gaussian character. The potential part is also
changed into another interaction functional. The system
goes to a new representation under strong enough inter-
action. Certain restrictions may be imposed on the rep-
resentation. First, it is known that in quantum theory
the main divergences given by "tadpole"-type vacuum
diagrams may be efficiently eliminated out of considera-
tion if the normal-ordered product of operators is intro-
duced into the interaction Hamiltonian. We suppose that
in the case of finite polaron theory without divergences,
the main contribution to the finite background energy
can also be taken into account if we require the normal-
ordered form for the polaron interaction functional in the
strong-coupling regime. Second, the system under con-
sideration should be near its equilibrium state. Then any
linear terms r are absent here and quadratic configu-
rations r2 concentrated only in the Gaussian measure
d(r determine the Gaussian oscillator character of this
equilibrium point. Therefore they should not appear in
the interaction functional. Then the polaron action in
the new representation of the PI consists of a new ki-
netic part (r, D ~r) and a new non-Gaussian interaction
functional which should be proportional to r as iri ~ 0.

Following this idea, we introduce the Gaussian
measure

der—:Chr exp( —
2 (r, D r) ),

with the normalization condition f der x 1 = 1 satisfied
by choosing the constant

R = r(t) —r(a) .
C = V'detD (23)

with the electron position vector r(t) embedded into d
dimensions. The new correlation function D(x —y) determined by
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is supposed to be translationally invariant:

D(t, s) = D(t —3).

(24)
Then, we rewrite the functional integral in (14) in the
following form:

&0
Zr(er) = —exp

I
—

4 ([De' —D ']D) + erfdB x tI
First, we introduce the concept of the normal product

with respect to the Gaussian measure der in the
following way:

exp(ikR) =:exp(ikR): exp (—k F(t —3)), (26)

with the notation where

+o; dO:e2 . —— dO: k
2

(32)

F(t —3) = D(0) —D(t —3) .

In particular, the relations

der: e'":= 1,~ ~

*(t)'( ) =: '(t)'( ):+ b' D(t — )

(27)

(2s)

2
z = z z

e =e —1 —z ——
2

— 1
2

In (32) we have used the identity

: exp(ikR):=: ezra
. +:1+ i(kR) —2(kR)

and relations

(33)

(34)

i,j = 1, . . . , d, (29)

are satisfied. Then, we perform an identity transforma-
tion in (14)

(r Do r) = (r D r)+ : (r [D() —D ]r):
+([D()

' —D '], D)

For further convenience we introduce the notation
T

dk
x exp( —k F(t —3)}

]kf~—'

(iQ (kR)2 — dQ k2R2

Second, we include all quadratic terms ( r2) only into
the Gaussian measure do so that they should not arise
in the remaining part of S in curly brackets in the right-
hand side of (32). This goal is achieved by introducing
the equation

: —4 (r, [De —D )r) ——Jd)) k R:=O. (24)

For T —+ oo it becomes

dt ds: r(t) [Ds (t, 3) —D (t, s)]r(s): + exp( —~t
—s~)

x „kexp —kFt —s:r t +r 8 —2rtra: =0, 37

Due to the symmetry t d,—~ s we make the following substitutions in (37):

r (t) + r'(3) : 2r (t) = or(t)f dd d(t' —t)r(e . (3s)

Then, using the relation

~-k'F t— (39)

we rewrite (37) as follows:

dt ds: r(t) Do '(t —a) —D (t —3) + o.f I'(d/2 —1/2)
4v 2 d I'(d/2)

d(t — )
ddexo( I' dI) —e» ( I' *I)

l
(.):=o. (4o)F3/2 (t $) F3/2 (t &)
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This condition is satisfied if one sets

Dp '(t —a) —D '(t —a) + agZ(t —a) = 0. (41)

We can easily find the asymptotical behavior of F(t):
F(t) t as t m 0, F(t) Fo

Ag = 0!Bg ~

and the function

3~m I'(d/2 —1/2)
2 d I'(d/2)

Here we have introduced the "effective coupling con-
stant" and Z(k):

Z(k) k as km0,

(s1)

Z(k) Zp as k m oo,

(s2)

Z(t —a) = exp(-I(!I)(t —a) d(

exp( —(t —a() 1

Fs/z(t —a)
(43)

Multiplying both sides of (41) by D(a —z) and introduc-
ing integration over f da, we arrive at the equation

—o,D(t —z) —b(t —x)

where Fo and Zo are constants. These dependencies will
be useful for correct numerical iterations to solve (47)—
(50).

Note that, in the particular case of d = 3, equations
similar to (47) were obtained in other approachesss'zs
from variational conditions. Our equations (47)—(50)
may be used for a self-consistent estimation of E(a) for
the d-dimensional optical polaron in the entire range of
the electron-phonon coupling constant o..

Finally we get the new representation (GER) of the
GSE of the optical polaron in the form

+a~ dsZC —s Ds —x =0. 44
1

E(a) = Ep(a) — lim ln JT (a),T~oo 2T (53)

It is convenient to use Fourier transforms defined as fol-
lows:

where the function Ep(a), being the "leading-order en-

ergy,
" or the GSE in the zeroth approximation, is

D(te) = J dec'4'D(e),

Dp(k) = 1/ks,

(4s)

(46)

/'D)
Eo(a) = — lim —lndet

~T~oo 2T 2 I Do)

——([De —D e), D) + eefdtt x t . (44)
1

Z(tt) =f dte 'eeD(t)

1 —cos(kt)
Fs/2( )

(47)

It is easy to show that

1 det D 1 D
n = —Tr ln

2 detDp 2 Dp

dk= 2 Td —ln[kzD(k)],
Q 2x

(ss)

Accordingly, (44) becomes

k D(k) —1 + o.gZ(k) D(k) = 0,

which leads to

(4s)
——([D()

' —D '], D) = —2Td —[ksD(k) —1],Q
Q 2x

(s6)

(k) =
k + ag Z(k)

(49) dn 1=2Td F1/2 (t)
(s7)

Subsequently,

F(t) = D(0) —D(t) = —D(k) (1 —e*"
)2'

50
1 1 —cos(kt)
s'

p k +o.aZ(k)

Due to Eqs. (47) and (50), in the new representation all
the quadratic terms in the polaron action functional are
concentrated only in the near Gaussian measure do.

The problexn is to solve the nonlinear integral equa-
tions (47) and (50) for the two-point correlation function
D(x). Unfortunately, we are not able to solve them ex-
actly in analytic form except the asymptotic cases a -+ 0
and a m oo. In the intermediate range of n = 1—40 ere
solve them by developing an iteration numerical schexne.

Inserting these relations into (54) we obtain for d & 1
the leading term of the d-dimensional polaron GSE as
follows:

Ep(o.) = —d ] — dk(ln[k D(k)] —k D(k)+1j[2z' p

dt
aa exp( —t) )

ee'ex e 4"'te(t) J
(ss)

Our leading term (the zero-order approximation)
Eo(a) gives an upper bound to the exact GSE of a po-
laron E(a). Really, applying Jensen's inequality to (53)
one gets

exp( —2TE(o.)) & exp {—2TEp(a))
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because of

do: exp(ikR) —1+ 2(kR):= 0.II

I ~ ~I2
2

II ~~
~ (60)

l
oexp n:expi —1

+—{lrR)e:). (62)

Consequently,

E.( ))E( )

The high-order corrections AE(a) in (53) can be ob-
tained by evaluating the PI

2Tr—).E(a) g ( )

We stress that the extremal conditions on parameters

p, ( in (66) are equivalent to a particular choice of the
functions Z+(k) and F+(t) in (63)—(64). However, the
functions in (63)—(64) are not exact solutions of (47) and

(50). It means that the Feynman trial quadratic action
does not at all represent the Gaussian part of the polaron
action for d = 3. Exact numerical solution of Eqs. (47)
and (50) by the iteration procedure (shown below in Sec.
VI) allows us to obtain Ep(a), more exactly, which im-

proves the Feynman result E+(a) in the entire range of
a. The obtained numerical results Ep(a) for d = 2 and
d = 3 as compared with Feynman's variational estima-
tion are displayed in Tables I—VI below.

IV. THE CALCULATION OF THE
SECOND-ORDER CORRECTION

where p and ( are parameters. Then, (50) becomes

1 1 —cos(kt) p,

k2 Az+ k2
ee

2 2

2As ( pz)

A = Qy2+P.

(64)

These approximate solutions of (47)—(50) determine the
leading term of the polaron self-energy in the following
form:

d p' a A'/"d
Ep (a) = —— 5 —A+-

2A 3y,~n.

x . (65)
dt exp( —t)

p gl —exp( —At) + At@/p&

Minimizing the obtained energy over the parameters p
and (, one easily finds the Feynman variational upper
bound in d dimensions. For d = 3 (as ——a) it explicitly
reproduces the well-known Feynman variational upper
bound to the polaron GSE:

E (a) = min„mingEp (a, d = 3) . (66)

It should be stressed that the representation (53) is
completely equivalent to the initial representation (13)
for asymptotically large T -+ oo. The Gaussian equiv-
alent representation (53) gives the origin of various ap-
proximations difFering from each other in the accuracy of
deriving equations (47)—(50).

As a simple approximation of Z(k) obeying the asymp-
totics in (52), one can take the function

p k2 2

Z (k) =—

According to (62) higher-order corrections AE(a)
to the polaron GSE are de6ned by the expression

exp {—2TAE{ee)) = f dtrexp{W]r]) . {6T)

Here, the interaction functional written in the new rep-
resentation is

W[r) = ag dtdser(d/2) d

6 2zdi2+1 T

x d—1exP k Et 8 'e2

(68)

It was shown in Ref. 32 that the main contribution to
E(a) comes from Ep(a) as a ~ oo. In the weak-coupling
limit a -+ 0 the contribution of Ep(a) proportional to a
is also dominant because the corrections generated by
the functional integral in (68) vanish, being proportional
to a . Then we can suppose that in the intermediate
range of a, Ep(a) also gives the main contribution to the
polaron self-energy. Corrections b,E(a) should be eval-

uated from the functional integral in (68) by expanding
e in (67) in a series

AE(a) = ) b,E„(a)
&=1

We stress that (69) is not a standard perturbation se-
ries in the coupling constant nd as Q.d enters into S' not
only explicitly as a factor, but also implicitly through the
function E(t). The first term in (69) with n = 1 equals
zero due to relations (28)—(29). Nontrivial corrections
are given by terms with n & 2. For the second-order
correction to Ep(a) we get

- 2

b ,E2(a) = — lim
1 a2 I'(d 2 d

dt ds dx dye I
—

I
—I*—

wl

6~2'+'+' —T

x ex f k2F ~t — i 2F r~ (70)
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We calculate

do: exp {ik[r(t) —r(s)]j::exp (ip[r(z) —r(y)]):= exp (—kp=),

where the four-point correlation function = is introduced as follows:

:-(t,s, x, y) = D(t —x) + D(s —y) —D(s —z) —D(t —y) .

Expanding exp( —kp=) into a series and taking into account the relation

(71)

(72)

(74)

f dkdp f (k2 2) (k )2ra ( I j dQ dp (k )1—1+2mf ($2 2) (73)
I'(d/2)F(n+ d/2)

for arbitrary function f (k2, p2), one finally gets

1 os F(d/2) ds T
&Ez(~) = — Hm ~ dt ds dz dye2Z' &44~»2

:-2"F(n + 1/2) [(2n —1)!!]2
(2n)!4"I'(n+ d/2) [F(t —s)F(z —y)]"+ &s

'

Remember that the function F(t) is a solution of Eqs. (47)—(50). Using the symmetry behaviors of the functions

F(t s)F(z—y) and—:-(t, s, z, y) we can reduce the four-dimensional integration voln~e in (74) into a three-dimensional
volu~e. We obtain

EE2(a) = —o.~s ] ) Q„R„(a),F(d/2) d

n=2
(75)

(2n)!F(n + 1/2)
16"(n!)2F(n+ d /2)

'

f ( [F(a+5)+F(b+c) —F(a+5+c) —P(b))"
[g(a)P(c)]~+ /

, . .. .[~(.)+~()-~(.+b+ ) -~(b)]", . .. .[~(.+b)+~(b+ ) -~( ) -~()]"'
[+(a+b)+(b+ c)]"+"' [F(a+ b+ c)F(b)]~+~&s

We stress that expression (75) can further be simplified,
but we keep this form for clarity.

Finally, we get the following expression for the GSE of
the polaron:

E!!(o.) = Ep(a) + EE2(a), (76)

which can be evaluated numerically for arbitrary a and
different space dimensions d.

Notice that E()(a) in (58) is of the order of a* (i =
0, 1, 2, . . .) while EEs(o() in (75) is only of the order of
a' (j = 2, 3, . . .).

V. SCALING RELATIONS

The theory under consideration has two parameters
o. and d. In general, all our expressions should depend
on both of them. Notice that key expressions in (47),
(49), and (50), completely defining the functions E(t)
and Z(k), depend only on the effective coupling constant
o.g. This means that the relations

E!"!(a, t) =E!-!(a„,t),
&!"!(n , k) = E! !(a„,k), n, m ) 1, (77)

I

hold, where the numbers of space dimensions n and m are
in square brackets [~ ]. In the particular case of d = 2
and d = 3, we found

(79)

ma'
~

(2n)!F(n+ 1/2)
8 16 (n!)s

TL=2

(80)

OO 2n!
11=2

which show that the scaling relation (58) is no longer

+!l(o, t) —gW(E4 ')

(78)
4

Then, considering (58), one easily finds that this scaling
relation is also valid for &Eo(a~). We have

!2!
( ) E!sj

Note that the relation (79) was obtained earlier in Ref's.
29 and 25. But this scaling is not valid beyond Eo be-
cause the interaction functional W[r] depends not only
on o.p, but also on d in a complicated way. In particular,
for d = 2 and d = 3 we can rewrite (75) as
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satisfied above Ep(a).
Let us consider the asymptotic limits of spatial dimen-

sions d at 6xed 6nite e. The lowest value of the param-
eter under consideration is d = 1+2e with e —+ +0. For
this case we easily 6nd that

30!
lim ad —— m oo. (82)
d—+1 d —1

On the other hand, considering large space dimensions,
we 6nd that

get

3 s p
ts&'

1"
F(t) = — dk(1 —cos(kt))D(k)

o

=
2

—~~f(t) + O(~')

(86)

(87)
3a~se

hm ay= -+0. (83)d~~ 2 ds/2

Taking into account (82) and (83) we can conclude that
as d becomes larger, o.d decreases fast and in fact we deal
with the effective weak-coupling regime o.~ && 1 even for
n not too small. For example, the second-order correc-
tion b,E2(o.) behaves as follows (see Eq. (93) in Sec. VI):

AE2(a): ——a~ .
1 2 (84)d-+oo g~

In other words, our leading-order energy term Ep(a)
tends to the exact GSE E(a) as d grows because the
role of AE(n) becomes insignificant.

VI. NUMERICAL RESULTS

where

D(k) = —1 —ag, + O(a'),Z(k) &

1 „1—cos(kt) Z(k)
Q2 Q2

Substituting these expressions into (58), we get

Rgd 2Rq2d ( 8 ~
Ep(a) = —a —a " 1 ——+ O(n )3 36

~ 3m~

(88)

(89)

(90)

In this section, we present numerical values of Ep(a)
and E!sl(n) estimated within the GER method and com-
pare them with known results obtained in various (weak,
strong, and intermediate) ranges of a. The results ob-
tained are given in Tables I—VI and shown in Figs. 1 and
2 below.

In (90) we made use of the following relation:

A. Weak-coupling limit
81

1 ——
9 ( 3') (91)

E(n) = (xC, +a'C 2+O(as). (85)

The coefBcients C q and C 2 are known with good ac-
curacy for d = 2 (Ref. 29) and d = 3.ss 2P In our ap-
proach, the coefficient C q arises only from Ep(a) in (58);
whereas C 2 arises from both Ep(n) and AE2(a) in (75).

Since we are interested only in calculating the coef-
ficients C q and C 2 in (85), it is enough to solve the
functions P(t) and D(k) up to n. From (50) and (47) we

Among the known numerical results concerning the
GSE of the polaron, those obtained for a -+ 0 are more
accurate. In this limit the problem has been investi-
gated by Frohlich in a pioneering work. Lee, Low, and
Pinesss applied to this problem the variational princi-
ple and Tomonaga method. As o. -+ 0, one can apply
either the standard perturbation approach, or canoni-
cal transformations of the Hamiltonian with subsequent
variational estimations. 6' 6' ' ' ' 8 Below, we calcu-
late the exact GSE of the d-dimensional polaron to order
n2 in the weak-coupling limit and compare the accuracy
of the results obtained with exact perturbation estima-
tions presented in Refs. 26, 39, 40, 24, 41, and 29 for
d=2andd=s.

For cr not too large, the polaron self-energy E(n) has
the form

Equation (90) defines the coefficient C & exactly as

(92)

and also contributes to C s. Concerning the coefficient
C 2, we should also take into account corrections com-
ing from EE2(a). Inserting (87) into (75) and going to
variables z = 1+a/5 and y = 1+ c/5, we get

2 R~2 I'(d/2) d2
bE2a = —a:(2 )'I'(n+1/ ) s

- 4"(n!)2I'(n+ d/2)

1

(~+u)' (»)""'
1+

(& + ~ ] )m+1/2
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0.0

—0.4

,9~' & S l
Ep(a) = —a ——as 1 ——+0(a )2 288 ( 3s)

= ——s —a 0.046626+ 0(as), (95)

M —0.8
S

~ A0
~ H

S0 —1.8

B +0
4 - 16"(n~)4n=2

= —a 0.017348+ 0(a ).

As a result, we obtain

E( &(a) = —a ——a 0.063974+ 0(a )2

(96)

for the exact GSE of the two-dimensional polaron up to
the order as. For comparison, in Table I we give the
known results for d = 2 as a ~ 0. One can see &om Ta-
ble I that our C s obtained only &om Ep(a) improves the
Feynman's estimate about 2%. Adding the next correc-
tion calculated &om b.Eq results in C q ———0.063974,
which is in good agreement with the exact value in Ref.
29. Note, b,E2 contributes about 27%%uo to the total value
ofC s.

In three dimensions, highly accurate results have been
obtained in Ref. 29. Notice that as = a. Then, we get
&om (90) and (93)

—1.6 I I I I I ! I I I I I ! I I I I I

7 13 g 19

The remaining higher-order corrections b,E„~q(a)are
proportional to as, and therefore they do not con-
tribute to C q and C s. We have 81

Ep(a) = —a —a —1 ——+0(a )12 ( 37r)Rsd ( 8 t R~~1'(d/2) ds

36 ( 3m ) 9ms/2

(2n)!I'(n + 1/2)
4"(n!)s I'(n+ d/2)

(98)= —a —a 0.012 598 + 0(a ) .

(94) and

FIG. 1. The behavior of the coefficients C 1 and C q of
the polaron ground-state energy in expansion E(a) = aC +

3
A@1

a C q + O(a ) at weak-coupling limit a m 0 in dependence
on n»mber of space dimensions d. Curves correspond to 1—
C~1 and 2 —100C ~.

The dependence of the coefBcients C~q and Cws on the
space dimension number d is shown in Fig. 1. Note that
C 1 = —gs'/2d as d ~ oo, implying that polaron efFects
decrease in large space dimensions. On the contrary, this
efFect is considerable for d = 2. We stress that our results
in (92) and (94) coincide with those obtained in Ref. 29.

In two dimensions as ——3sa/4 and one rewrites (90)
and (93) as

b,Es(a) = ——) 8„+0(a)
as . (2n)!

;4"(n!)'(2n+ 1)

= —a 0.003321 + 0(a ) .

Suznminm, them, we have

E( )(a -+ 0) = —a —a 0.015919+0(a ) .

(99)

(100)

TABLE I. Comparison of known weak-coupling results for the polaron ground-state energy
E(a) = uC~q + a C~2 + O(a ) in two dimensions.

Authors
Das Sarma and Mason (Ref. 39)
Feynman's theory (Ref. 40)
4th-, 6th-order pert. theory (Ref. 40)
Peeters et ol. (Ref. 29)
Hipolito (Ref. 41)
Present Eo(a)
Present Eo(a) + b,Eq

1
—s/2
-m/2
-s/2
—s/2
—s/2
—s'/2
—m/2

C g
—0.062
—0.04569
—0.06397
—0.0639740
—0.0245
—0.046626
—0.063974

The exact value.
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TABLE II. Comparison of known weak-coupling results
for the polaron ground-state energy E(n) = cxC~q + n C~q
+O(o. ) in three dimensions.

TABLE III. Comparison of obtained estimations of
the coeKcient C, of the polaron ground-state energy
E(n) = n C, + O(1) for d = 2 as n ~ oo.

Authors
Das Sarma and Mason (Ref. 39)
Feynman's theory (Ref. 40)
Roseler (Ref. 35)
Lee et aL (Ref. 26)
Larsen (Ref. 13)
Present Ep(a)
Present Ep(a) + AEz

C~~
—0.016
—0.012347
—0.0159196
—0.014
—0.016
—0.012598
-0.015919

Authors
Das Sarma and Mason (Ref. 39)
Feynman's theory (Ref. 40)
Xiaoguang et al. (Ref. 40)
Hipolito (Ref. 41)
Smondyrev (Ref. 25)
Present Ep(a)
Present Ep(a) + b,Ez

C,
—0.392699
—0.392699
—0.4047
-0.392699
—0.4099
-0.392699
-0.400538

The exact value. Estimated in B.ef. 39.
Adiabatic approximation.

Our results are displayed in Table II together with the
known results of the polaron GSE for d = 3 in the weak-
coupling limit. Our leading term of energy Eo(a) im-
proves the Feynman variational estimation of C z by 2%.
The next correction (99) results in C 2

———0.015919,
which is in good agreement with the exact value in Ref.
29. Note, for d = 3 our b,Eq contributes about 2l%%uo

(smaller than for d = 2) to the total value of C 2. Com-
paring (84), (97), and (100) with the results for d = 2
and d = 3, we conclude that higher-order corrections (the
second-order one in our case) coming from JT (a) are sub-
stantially more important for d = 2 than for d = 3. In
other words, the polaron effect is stronger in low space
dimensions [see Eq. (84)]. This effect was noted earlier
in Refs. 29 and 25.

1 1 1
dk

n p k2+ndB 2P
' (103)

3/2B= dte
As~2 3~+ '

where

4m~P= 9.
'

(104)

1 1 —cos(kt) 1 —exp( —y~t~)
ks + agB 2tt

(106)

Substituting these functions into (47) and (50) we have

B. Strong-coupling regime

The GSE of the polaron in the strong electron-phonon
coupling regime has been considered by Landau and
Pekar4~ in the Born-Oppenheimer approach and by Bo-
goliubov and Tjablikov4s in the adiabatic approximation.
Special perturbative analyses can also be performed as
~ ~ ~ 14,44,38,45,15

It is well known that in this limit

so

D(k) =
k2+ p2

E(k) = B
k2

(107)

We substitute (106) and (107) into (58) and obtain the
leading term of the polaron GSE in the strong-coupling
regime as

d ( 1+k2 ) p2
Epa = —— dk ln~

2vr p (1+k2+ p2) 1+k2+ y2
I+

E(a) = o.'C, +O(1). (101)

At large a, the functions F(t) and Z(k) behave as con-
stants except in the vicinities of the points t = 0 and
k = 0. Starting with the assumed functions

dt
ag~p exp( —t)

p Ql —exp{—p, t)

= -~„—+ O(1)."9x
(108)

F(t) = A, {102)

and substituting these into (47)—(50), one gets the fol-
lowing expressions for the constants A and B:

Concerning b,E2(a) we have found that only the first
term in curly brackets (.. .j in (75) could give a non-
vanishing contribution as p, -+ oo and there we can make
the substitution

[F(a + b) + F(b + c) —F(a + b + c) —F{b)]2"
exp( —a —c)

[F(a)F(c)]""" ; 8p exp( —a —c —2npb) + O(1) (109)
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Authors
Schults (Ref. 49)
Pekar [by Miyake (Ref. 15)]
Miyake (Ref. 15)
Luttinger and Lu (Ref. 46)
Marshall and Mills (Ref. 51)
Sheng and Dow (Ref. 52)
Adamowski et aL (Ref. 33)
Feranchuk and Komarov (Ref. 53)
Efimov and Ganbold (Ref. 32)

C,
—0.1061
—0.108504
-0.108513
—0.1066
-0.1078
—0.1065
—0.1085128
—0.1078
-0.10843

Estimated in Ref. 15.
The exact value.

in (75). Performing integrations over da, db, and dc one
gets

, 2 I'(d/2) d2

X
(2n)! I'(n+ 1/2)

16"( ')' I'( +d/2)
+ (110)

Adding it to (108) we finally obtain

E(2)(a)— d 2 I'(d/2) dh

„)-(2 )'I'( + /2)
- 16"(n!)z nl'(n+ d/2)

In two dimensions az .——3am/4 and (110) becomes

E( ) (a) = —a2 —+ —),'
( + O(1)

[(2n)!]z

= —a 0.400 538 + 0(1) . (112)

For comparison, in Table III we give our result with the
known results of the polaron GSE for d = 2 in the strong-
coupling regime a -+ oo.

In three dimensions as = a and from (110) and (111)
ere get

TABLE IV. Comparison of obtained estimations of
the coefBcient C, of the polaron ground-state energy

E(a) =a C, +O(l) ford=3asa~oo.

T OO

E a = —a 4
—+ —)(z) z 1 2 ~ (2n)! ~+01
3~ ~ ~ - 16"(n!)zn(2n+ 1)14=2

= —a 0.107766+ O(1) . (113)

This value is obtained by developing a specific per-
turbation expansion in (69) up to the order
1/2!f do (W[r])2.

The estimation of the next higher-order corrections for
the coeKcient C, was obtained by the authors earlier in
Ref. 32:

C, & —0.108431. (114)

The exact coefBcient obtained numerically by Miyake~s
1S

C, = —0.108513. (115)
The comparison of the known results for the coefBcient
C, for d = 3 is displayed in Table IV.

C. Intermediate-coupling range

In the intermediate-coupling regime the main tool
for obtaining polaron properties is the variational
approach. m For d = 3, the Feynman variational method
based on a trial oscillator-type action gives an upper
bound on the polaron free energy, valid for arbitrary
a. Generalizations of the Feyuman action for d = 3 to
the arbitrary density functionM and arbitrary quadratic
action~ have improved this upper bound. In our opin-
ion, the resul~r obtained for d = 3 is the best variational
upper bound in the whole range of a. But this variational
method does not give the next corrections to this bound.
Other numerical methods dealing with this problem [ 46,
47] require specific complicated schemes of calculations
which may introduce statistical errors. Estimations of
both the upper and lower bounds for the polaron self-
energy obtained in Refs. 13 and 48 should be improved.

Considering intermediate values of a, we have derived
Eqs. (47) and (50) nuruerically, by the following iteration
scheme:

F„+g(t)= Ct[Z„],
Z„(1) = A&[F„], n & 0, (116)

starting from reasonable assurued functions Fo(t) and

Zs(k) as defined in (106) and (107). Both the series F„(t)
and Z„(k)turned out to be rapidly convergent and the

TABLE V. The obtained estimations of the polaron ground-state energy Es(a) and E (a) for d = 2 in the intermediate
range of a compared with known results obtained in Refs. 41, 54, and 39.

0.6364
1.909
3.183
4.450

Feyn man

—1.0198
—3.2247
—5.9191
—9.6935

Hipolito (Ref. 41)

—1.0266
—3.2263
—6.0902
—9.8723

Huybrecht (Ref. 54)

—1.0201
—3.2263
—5.9193
—9.7154

Das Sarma
and Mason (Ref. 39)

—1.0405
—3.5690
—6.9688
—11.388

—1.020
—3.231
—5.928
—9.710

—1.028
—3.250
—6.039
—9.871

Present
Eo+ E~

Our estimation by Feynman's variational method.
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TABLE VI. The obtained estimations of the polaron ground-state energy Es(a) and E (a)
for d = 3 in the intermediate range of cx compared with known results obtained in Refs. 33, 49, 48,
and 13. Our Eo(a) coincides exactly with the upper bound obtained in Ref. 33.

a
0.5
1.0
1.5
2.0
2.5
3.0
4.0
5.0
7.0
9.0
11.0
20.0
30.0
40.0

Osc.
(Ref. 33)

upper
—0.5
—1.0
—1.5
—2.0
—2.5
—3.0
—4.0
—5.0

—7.356
—10.72
—14.94
—44.53
—97.58
—171.9

Feynman
(Ref. 49)

upper
—0.5032
—1.0130
—1.5302
—2.0554
—2.5894
—3.1333
—4.2565
—5.4401
—8.1127
—11.486
—15.710
—45.283
—98.328
—172.60

Smondyrev
(Ref. 48)

upper lower
—0.5041 —0.5041
—1.0167 —1.0175

—5.4945
—8.0406
—10.834
—13.905

—5.7767
—8.8832
—12.654
—17.165

—3.1645 —3.2122

Larsen
(Ref. 13)

upper lower
—0.5040 —0.5052
—1.0160 —1.0270
—1.5361 —1.576
—2.0640 —2.172
-2.5995 -2.872
—3.1421
—4.2771

Present

@o
—0.504
-1.014
—1.532
—2.058
—2.593
—3.138
—4.265
—5.452
—8.137
—11.54
—15.83
—45.33
—98.52
—173.4

Qo+ g~
—0.5041
—1.017
—1.539
—2.071
—2.614
-3.167
—4.305
—5.528
—8.255
—11.69
—16.04
—45.99
—99.86
—175.1

value of the leading term Eo(a) is actually not changed
since n & 6. The results for Eo(a) and E( &(a) in two
dimensions are presented in Table V. The values of Eo(a)
and E& ) (a) for d = 3 are given in Table VI and shown in
Fig. 2 in comparison with the known data. ' ' For
clarity, in Fig. 2 we show only the deviation of the quoted
polaron energies from the standard "oscillator-potential"
approximation result. Our Eo(a) for d = 3 coincides with
the upper bound obtained in Ref. 17. We have made
preliminary estimations which indicate that the decreas-

ing series in (69) was alternating. The'n one can expect
that the third-order correction b Es(a) may slightly in-
crease the value of E(2) (a) and inclusion of higher-order
corrections EE„&2(a)might result in insignificant oscil-
lation of E&"~2&(a) between Eo(a) and E&z) (a). In other
words, the obtained E( ) (a) may be accepted as a lower
bouad of the ground-state energy of the polaron. Note
that numerical results obtained in Ref. 50 at three points
(a = 1,3, 5) by the method of "partial averaging" lie
exactly between our curves for Eo(a) and E(z) (a).

S ~ il
II a

-0.15

—O.Z5

FIG. 2. Some known results of the polaron ground-state
energy E (for three dimensions) plotted as function of the
electron-phonon coupling constant cx. For clarity, the ratio
R = (E —Eh«~)/~Eh~, ~~ is shown, where E, are estima-
tions obtained in Refs. 33, 49, 48, and 13 and Eh, is the
"harmonic-oscillator" approximation (Ref. 33). In these units
the curve for Bh, coincides with the abscissa axis. Curves
correspond to estimations (1) Feynman's upper; (2) and (3),
Larsen's upper and lower; (4) and (5), Smondyrev's upper
and lower; (6) our Eo(a); and (7) our E (a).

VII. CONCLUSION

A scheme of systematic calculations has been pro-
posed to estimate the ground-state energy of the po-
laron in the same way for different values of the electron-
phonon coupling constant a. The polaron path inte-
gral by Feynman has been generalized to the case of
an electron moving in d space dimensions. We trans-
form this path integral to a representation built so that
all the quadratic part of the polaron action is concen-
trated entirely in the Gaussian measure, which is defined
from certain equations. The interaction part of the po-
laron actioa is purely non-Gaussiaa ia this representa-
tion. The leading-order term in this approach yields an
upper bound to the polaron self-energy and improves the
Feynman variatioaal estixnates for d = 2 and d = 3. A
scaling relation between polaron self-energies for diH'erent

space dimensions is obtained for this term. The next cor-
rection to this estimation is calculated by m~merical inte-
gration for d = 2 and d = 3. Our results obtained within
the proposed xnethod provide a reasonable description
of both two- and three-dixnensional polarons at arbitrary
coupling cx. The consideration could be extended to com-
puting the other characteristics of the polaron, the eKec-
tive mass, and the average number of phonons, as well as
to estimating the energy of the polaron in the presence
of the xnagnetic Geld due to the validity of the proposed
method for the complex functionals.
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