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Faraday efFect and multiple scattering of light
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The presence of a magnetic field in an optically active medium produces a rotation of the polarization
of light: it is the well-known Faraday effect, which breaks the time-reversal symmetry. The averaged
light intensity in the multiple scattering of light by disordered systems is described by the weak-
localization theory based on the direct and reverse sequences of scatterings, which are founded on the
time-reversal symmetry. The multiple scattering of electromagnetic (vectorial) waves by spherical parti-
cles is considered in the presence of a magnetic field. We have shown that the electric field of the re-
versed path can be obtained from the direct one by a simple matrix transposition. In systems of reduced
dimensionality (1 and 2), we have shown that for the same polarization channel, the peak of the back-
scattering cone is not affected by the Faraday effect even though the time-reversal symmetry is broken.
The intensity correlation function is obtained for a one-dimensional system. This simple model furnishes
two results: (i) even though the wave vector is randomized, there is no decorrelation of the polarization
for paths of the same length and (ii) the correlation function has an oscillatory behavior as a function of
the magnetic field. In three dimensions, we have calculated analytically the attenuation of the back-
scattering cone as well as the decorrelation length for the multiple Rayleigh scattering. Mie scattering
has been considered by Monte Carlo simulations. In the diffusion regime (thick slabs) our results are in
accord with previous results and with experiments. Nevertheless, for the intermediate regime in
transmission, we have found oscillations of the intensity correlation as a function of the magnetic field.
For reflection and strong magnetic field, we have observed the convergence of the enhancement factor to
nontrivial asymptotic values.

INTRODUCTION

The multiple scattering of waves is a phenomenon
which appears in very distinct physical systems' such as
the propagation of sound waves or light through a sus-
pension of scattering particles, emulsions, and clouds, but
it also appears in the propagation of electron wave func-
tions in impure metals or semiconductors. Several recent
advances have been made in the description of the multi-
ple scattering of waves, such as, for example, the ex-
istence of the reverse scattering sequence accompanying
the direct one in re6ection geometry. The presence of
these two sequences leads to the backscattering cone
which is an enhancement of the intensity of light by a fac-
tor of 2 in the backscattering direction.

The multiple scattering of waves can be analyzed at
several levels. The simplest one is to consider the ap-
proximation of scalar waves which are elastically scat-
tered by pointlike inhomogeneities. Although these ap-
proximations can take into account the weak-localization
phenomenon (the backscattering cone, for example), the
assumption of scalar waves (and pointlike scatterers) is
not realistic for light. Most experiments are indeed per-
formed with polarized light (vectorial nature of the elec-
tromagnetic field) which are scattered by finite-size
spheres. A deeper level of analysis is then necessary. Ac-
tually, the study of polarized light scattered by spherical
particles is possible. The scattering amplitudes are rather
complex mathematical functions, given by the Mie
theory. Nevertheless, numerical simulations (of the

Monte Carlo type for instance) furnish an efficient way to
tackle this difficult problem. s

Although the strong localization of light has not been
unambiguously observed in three dimensions, in the con-
text of weak localization, the destruction of the wave in-
terference phenomenon by the application of a magnetic
field has already been proposed and very recently mea-
sured. The understanding of this essentially vectorial
phenomenon, which breaks the time-reversal symmetry,
may constitute an important step in the comprehension
of the multiple scattering of light, since it is the only
physical eff'ect which affects the intensity of the back-
scattering peak. We notice that absorption or reduced
geometry leads to a rounding of this peak rather than an
attenuation.

The previous theories of the Faraday efFect in
multiple-scattering media assume that the helicity states
of polarization are random variables, independent of the
direction of the wave vector. These helicity states jump
randomly from one state (say, +1) to the other (

—1).
This stochasticity is introduced on purpose to provide a
global damping of correlation functions in a quite phe-
nomenological way. Nevertheless, the polarization states
are not random variables, but follow the random changes
of the wave vector through the scattering amplitude ma-
trix. Here, we have considered a model with better phys-
ical foundation.

This paper is organized in the following way. In Sec. I,
general results of the Faraday effect in multiple scattering
are discussed. The purpose of this discussion is to define
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carefully the nature of the symmetry breaking between
the direct and the reverse multiple-scattering sequences
under a magnetic field. In Sec. II, the problem of one-
dimensional anisotropic multiple scattering is treated.
Due to the simplicity of the model, an exact solution can
be obtained, which shows that, despite the random-walk
nature of the multiple-scattering paths, a strong correla-
tion subsists on the length of these paths. In Sec. III, we
consider the Faraday effect in three-dimensional multiple
Rayleigh scattering. By using recursive relations, it is
possible to obtain the solutions for the Stokes intensities
as well as the different correlation functions in transmis-
sion and re6ection as a function of the magnetic field B.
For reflection, we find an exponential damping [varying
as n(88), where n is the number of scatterings and 8
the mean free path] and asymptotic nontrivial values for
large values of B. For transmission, we find that the
correlation function decays exponentially as n(8/)
which is an envelope for the oscillations. In Sec. IV, we
consider multiple Mie scattering using a Monte Carlo al-
gorithm. Comparison with experiments is made. For
transmission, we discuss the origin of the oscillations of
the correlation function reported in Ref. 9.
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I. GENERAL RESULTS ON THE FARADAY EFFj CT
IN MULTIPLE SCA'I rKRING

We consider a slab of thickness L with infinite planes
parallel to the (x-y) plane. This slab contains randomly
distributed spheres and a magnetic field B is applied
along the z direction. A photon is injected along the z
axis and it is multiply scattered by the spheres. The
mean free path is 8=1/per, where p is the density of
spheres in the slab and cr the total scattering cross sec-
tion. The detection of the emergent beam is also along
the z axis, either in transmission or in reflection.

The magnetic field in an optically active material pro-
duces diferent refractive indexes for right- and left-
handed circular polarization, producing different veloci-
ties of propagation. Since any polarization state is the
combination of these two circular states, the effect of a
magnetic field can be described alternatively in a rect-
angular basis by a rotation of the polarization state (Fara-
day rotation) by an angle a= VB kr where V is the Ver-
det constant, B the magnetic field, k the unitary wave
vector, and r the distance between two scatterings. ' The
helicity states are conjugated by the time-reversal symme-
try and their different behavior under a magnetic field
corresponds to a time-reversal symmetry breaking.
Moreover, an important feature of the Faraday effect is
the failure of the reciprocity theorem due to the nonsym-
metric permeability tensor of a gyromagnetic medium.

In the hrnit of weak disorder, we can assume indepen-
dent multiple-scattering sequences, and for each sequence
we can assume that the scatterings happen in the far-field
limit, so that the longitudinal component of the electric
field can always be ignored (Fig. 1}. In this case, the elec-
tric field after n —1 scatterings is given in the "scattering
plane" representation by

FIG. 1. Representation of a sequence of four scatterings in
reaction. The laboratory frame (x,y, z) is represented in the
beginning of the sequence. The first two local frames (x&,y&, z& )
and (x2,y2, z2) are also represented. The exit intensity is mea-
sured in the frame (x4,y4, z4) which is an improper rotation of
the laboratory frame. The scattering planes are represented for
the first and second scatterings.

E

Eny

exp( jkr„)—=R(a„)P —J J(cos8„)
kr„

Eox
XR (a„)—~") Eoy

(1.1a)

where the order of the product is important. It starts
with the first term (~—1) in the right-hand side. Here
j=v' —1

cosa —sina
sina cosa (1.1b)

and

J(cos8)= S~~(cos8}

Si(cos8) (l.lc)

where two consecutive wave vectors A:„& and k„define
the ath scattering plane. The scattering angles
8„=arccos(k„,.k„) can take continuous values in the
interval [O, m ]. The azimuthal angles P„ take continuous
values in the interval [0,2n ] and project the electric field
along the parallel and perpendicular directions of the Wh
scattering plane. These components are then scattered
with amplitudes St(cos8) and S~(cos8), respectively,
given by the Mie theory of scattering. Notice that the
last scattering angles 8„and P„are not random since the
detection is fixed to be perpendicular to the slab. The
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matrix J is diagonal because of the spherical symmetry
of the scatterers but it does not commute with the rota-
tion matrix, so that we cannot simply compose the rota-
tions. Furthermore, the intermediate electric fields are
given in their local basis, the basis (8„,$„,k„).

The "scattering plane" frame representation of the
multiple scattering is the simplest basis to write the Jones
matrix. But in the multiple-scattering regime, this
simplification is only apparent since after each scattering
we must keep track of the transformation of the local
frame to the laboratory one (x,y, z} in order to impose
the condition that the photon quits the slab with a wave
vector normal to the slab plane. It is better suited for the
present problem to use the Chandrasekhar-Sekera repre-
sentation. "Although algebraically more complicated, in
this representation the wave vectors k„ are always given
in the laboratory basis by the spherical angles 8„and 4„
and the fields are given along the direction („, 4„).

A. Single scattering

Let us first consider 8 =0 and a single scattering from
the incident wave vector ko to k, . The scattered field E,
is obtained from the incident one Ep through the Jones
matrix

J» J12

J21 J22
(1.2a)

Its elements can be obtained from Eqs. (1.1} in the
Chandrasekhar-Sekera representation. Following the no-
tation used by Cheung and Ishimaru, '

j»=(l, l)X +i(r, r)X , zji2= (r, l)Xt+(—1,r)X2,

jz, = (I,r)X, +—(r, l)Xz, jz2=(r, r)X, +(l, l)X2,

(1.2b)

consequently, p1 pp pp p1 and
leading to (1,1}'=(l,l), (r, r} =(r, r), (I,r} = —(r, 1),
and (r, l)'= —(I,r), and finally j'»= —j», j22= —jz2,
J12 J21 a J21 J12

Now let us define the "antitransposition" of a matrix A

by the relation

ll 12
A '"'=Antitransposition a 21 a22

a11 a 21
(1.3a)

12 22

This operation has the property

(gg)(atj g(at)g(at) (1.3b)

J11 J21

J12 J22
(1.4)

Let us now consider the situation where the medium is
magneto-optically active while the scatterers are insensi-
tive to the magnetic field. The magnetic field is applied
along the incident direction (ko). The Faraday effect ro-
tates the polarization in the plane perpendicular to the
wave vector. For the direct scattering we have
R(ai)J(k„ko)R(ao). Let us consider two particular sit-
uations: the forward and the backward scattering. The
Mie theory for the forward scattering (ki=ko) states
that S(1)=Si(1)=Si(1) so that J(ko, ko) =S(1)Iwith

1 0I=

The Jones matrix of the reverse scattering is nothing
else than the antitransposition of the Jones matrix of the
direct scattering:

with

(l, l) =Q(1—po)(1 p, )+p(yu, co—s(h4),

(I,r) = —rosin(b, @),
(r, I)=oisin(b4), (r, r)=cos(b4),

Si(cos8)—cos8Si(cos8)
X1=

sin 8

Si(cos8) —cos8Si(cos8)
X2=

sin 8

and

(1.2c)

(1.2d)

For this situation, R(ao) commutes with Jwhich leads to
an effective Jones matrix pro ortional to R(ao+a, ). For
the backward scattering (,= —ko), the Mie theory
states that S( —1)=Si(—1)=—St( —1) so that
J( —ko, ko) =S(—1)o„where

1 0
CT z 0

is the Pauli matrix. The efFective Jones matrix is then
proportional to

R( —ai)o', R{ao}=o,R{ao+at) .

cos8=+(1—po)(1 —pi) cos(h@)+@&yet, (1.2e)

with p1=cos01 pp=cosOp and h4=4p —+1, where
Op, @p and 0,,@, are the polar angles of the incident
wave vector ko and the scattered wave vector k, in the
laboratory frame, respectively. The electric field is now
given in the basis of the wave vectors, i.e., along the
directions i and 4, . The reverse scattering is obtained
by changing kI = —ko and f0= —kt, implying that
e1 m Op 0'=m' —01, 4p=m+4 and @1=~+@p,

We stress that (i) we have written —at because k, is anti-
parallel to the magnetic field and (ii) in this case, the
detection is in a frame obtained by an improper rotation
of the laboratory frame (x,y, z). The presence of a, is a
signature of this improper rotation. Hence the Faraday
rotation is always of ap+a1 in the forward and backward
scattering cases.

For a more general case, where ko and k, are not
aligned, the reverse scattering is described by an efFective
Jones matrix,
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B. Multiple scattering

Consider now a scattering sequence characterized by
the wave vectors

where the sign 2 corresponds respectively to the
transmission or reflection through a slab of length L
where the magnetic field is aligned along the z axis (ko).
The emerging electric field in transmission is obtained by
the application of the efFective Jones matrix,

J„„,=R (a„)J(ko,k„,) R (a2}

XJ(k2, ki )R(a, )J(ki, kc)R(ao}, (1.5}

to the incident field.
In reflection, the detection is not performed in the lab-

oratory frame but in the frame obtained by an improper
rotation of it (Fig. 1). The emerging electric field is ob-
tained by the effective Jones matrix J„t=J~,+J„„,
where J@,and J„„arethe contributions of the direct and
reverse sequences, respectively. The contribution of the
direct sequence to the efFective Jones matrix is

Js;,=R(a„)J(—kc, k„ i) R(a2}

XJ(k2, ki)R(a, )J(ki ko)R(ao) . (1.6a)

The reverse sequence

~ ~ ~

subsists with the same weight as the direct one even when
the ensemble average is performed. Notice that for the
intensities, it is well known from the Bethe-Salpeter equa-
tion that the intensity of the direct sequence plus the in-
tensity of the reverse sequence equals the ladder dia-
grams; the crossed diagrams equal the intensity of the in-
terference between the amplitudes of the direct and re-
verse paths. The contribution of the reverse sequence is

J„„=R(—ao)J( —ko, —ki) R( —a„2)
XJ(—k„2,—k„ i )R ( —a„ i )

XJ( —k„„ko)R(—a„) . (1.6b)

Using the property Eq. (1.3b) one can write

J„„=[R{—a„)J(—ko, k„,) . .R( —az)J(f2, ki)
XR ( —ai )J(k i, ko)R ( —ao) ]'"' (1.6c)

R( —ac)J( —ko, —k, }R(—a, )

=[R(—a, )J(ki, ko}R(—ao}]'"~ .

In the presence of a magnetic Geld there is a simple rela-
tion between the scattered field of the direct and reverse
scatterings. The effective Jones matrix of the reverse
scattering is obtained by antitransposing the effective
Jones matrix of the direct scattering but changing B into
—B.

J„„(B)=Jz;,(B), one dimension, (1.7a)

and

J„„(B)=Js",,(B), two dimensions . (1.7b)

We point out that in the scalar approximation only the
phases are important, and the reverse sequence is ob-
tained by changing both the order of the matrix product
and k„~—k„. In this case, the reverse sequence is
equivalent to the time-reversed one. For vectorial waves
the time-reversed sequence is different from the reverse
sequence. The breaking of the time-reversal symmetry
calls for some comments. Two experimental situations
must be distinguished: (i) the backscttttering conj7guration,
where the initial polarization state of the direct and re-
verse sequences is the same, and (ii} the reciprocal
configuration, where the initial polarization state of the
reverse sequence is the outcoming polarization of the
direct sequence (this can be achieved by mirroring the
end of the direct sequence, as in the ultrasound experi-
ment of the time-reversal mirror' ). The Faraday efFect
does break the time-reversal symmetry but it does not
necessarily afFect the coherent backscattering cone for
one and two dimensions as we will show. This is a conse-
quence of the unexpected relations (1.7a) and (1.7b}.

We stress that the above results are not dependent on
the size of the spheres. Motivated by the recent experi-
ments of Erbacher, Lenke, and Maret, ' we are interest-
ed in the enhancement factor of the backscattering cone
for the reflection experiment and in the intensity correla-
tion function for the transmission one.

since R (a)=R '"'(a). This expression can be written as

J„„(&)=Jg';,"(—&) .

The previous expression shows clearly the effect of the
magnetic field when compared to the direct sequence:
the rotation angles are the opposite while the matrix
product has to be antitransposed. This leads to
J„„PJ~;„the effect of the time-reversal symmetry break-
ing. Indeed, in the absence of a magnetic field (a„=0),
we have obtained a very general result, which is indepen-
dent of the dimensionality of the system. The effective
Jones matrix of the reverse sequence is simply given by
the antitransposition of the efFective Jones matrix of the
direct sequence.

Consider now the situation where the electric field is
propagating in three dimensions but the scatterers are lo-
cated in a lower-dimensional space [along the z axis in
one dimension or on the (x-z) plane in two dimensions].
In one dimension, only forward and backward scatterings
may occur so that the Jones matrices are diagonal. In
two dimensions, the angles P„can take only two values,
either 0 or n, implying that 64=0 or rr; consequently
the ofF-diagonal terms (r, l) and (I,r) vanish in Eq. (1.2b).
In one and two dimensions, because the Jones matrices
are diagonal, one can write J{—k„„—k„)=J(tt„,k„ i )

and using that R'"( —a)=R(a), where (t ) stands for the
transposition operation, one obtains
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C. Enhancement factor

The enhancement factor is defined as

(1.8a)

where the total intensity in re6ection in the channel
"out" is

with I',„',(B)=(~E,'"„),(B)~ ), and I',"„',(B)
= ( ~E,'"„',(B }~ ), being the intensity of the channel "out"
of the direct and reverse sequences, respectively, for an
incidence in the channel "in." The symbol ( ),
represents the ensemble average. Since I', ), (B ) =I,'"„',(B ),
we can write

Re[(E,'„',(B)E,'„',(B)' ), ]:-,„,;„(B)=1+ I(d) (B )
(1.8b)

In the absence of a magnetic field there is no phase
difFerence between the direct and the reverse path in the
backscattering direction, and the enhancement factor is
then equal to 2. Let us consider first B=0 and incident
light polarized linearly along the x direction (Eo„=Eo
and Eo~ =0) and the detection is performed in this polar-
ization channel (in=out=x). This is a typical same-
channel configuration. From Eq. (1.6d), the diagonal ele-
ments of the direct and reverse sequences are the same,
and consequently E,'"'(0)=E„'"'(0)=jI))Eo, which gives
:-„„(0)=2.Let us now consider the detection on the y
channel, a typical opposite-channel configuration. The
elements of the effective Jones matrix connecting E' '(0)
and E'"'(0) to Eo are j~2)) and —jI2', respectively. In this
case E' '(0)AE'"'(0) and:"„„(0)&2. For E' ' and E'"'
completely incoherent, "= 1.

For one dimension, the reverse sequence has the same
effective Jones matrix as the direct one [Eq. (1.7a)]. The
waves emerging from these sequences have the same po-
larization states even in the presence of a magnetic field.

The enhancement factor is always 2. Obviously the
time-reversal symmetry is broken but the backscattering
cone is not affected. For two dimensions, the reverse se-
quence has an effective Jones matrix which is the tran-
sposed one [Eq. (1.7b)]. Hence the factor 2 does subsist
(under a magnetic field) only for the same channel. In
these two situations (one and two dimensions} and for the
same polarization channel, the diagonal elements of the
effective Jones matrix of the direct and reverse sequences
are not modified by the transposition operation, giving
rise to the factor 2. On the other hand, for the opposite
channel, the factor 2 can be lowered for the two-
dimensional system since the off-diagonal elements of the
effective Jones matrix of the direct and reverse sequences
are not the same. It is interesting to notice that the two-
dimensional system in the presence of a magnetic field
has the same features for the peak of the backscattering
cone as the three-dimensional system without magnetic
field.

In three dimensions, because of the inverse sign of B in
Eq. (1.6d), the phase coherence that gives rise to the
backscattering cone is partially destroyed by the action of
the magnetic field as it was firstly noticed by Golu-
bentsev and MacKintosh and John.

We stress that the reverse sequence is not strictly the
time-reversed sequence because these sequences have
different polarization states as input. These results are
summarized in Table I.

D. The invariance of the opposite-helicity channel

So far, the general consideration of symmetry proper-
ties has not made reference to the ensemble average of
the multiply scattered light. Let us now consider the
same problem of the polarization transformation in the
circular basis or left-right helicity basis, E+ =E,kjE
In this basis the Jones matrix that connects the emerging
to the incident field,

E
=8(k„k()) E

1s

TABLE I. Presence of the factor 2 in the backscattering cone as a function of the dimensionality and
magnetic field.

Dimensionality Magnetic field

Enhancement factor 2
(single scattering excluded)

channels

Time-
reversal

symmetry
breaking

off
on
off
on
off
on

yes
yes
yes
yes
yes
no

none
yes
yes
no
yes
no

none
yes
none
no
no
no

yes
none

no
no
no

no
yes
no
yes
no
yes
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Jll+J22 J(J12 J21) J 11 J22+J(J 2+J21 )

d(k„k, )=— .
Jll J22 J(J12+J21} Jll+J22+J{J12 J21}

%{a)=
ej 0
0 e

Consider a direct sequence of scattering in this basis us-

ing the quantum-mechanics notation

~E("') =d(d;,(B)~(rp) =A(a„)8(k„,k„,) R(a, )

X d'(kl, k(1)A(ap) ~crp) .

By definition, the reverse sequence of scatterings is given

by

where the j;~ are the matrix elements of the Jones matrix

given by Eq. (1.2b). From the symmetry properties given

previously in Eq. {1.4), it can be shown that
d'( —kp, —kl )=d""(kl,kp). On the other hand, the ad-

vantage of the circular basis is that the Faraday rotation
is expressed by a diagonal matrix:

lE('1) =d(„,(B}lap&

=8(—ap}d(( —
k(1,

—k, ) . 8(—a„,}
X d({—k„„k(l}%(—a„)~op),

where we can write more simply d(„„(B)=d(z';,'( —B).
For the evaluation of the enhancement factor defined

in {1.8b) we must consider the interference term

(g ~E( ))(E( l~g )

&ld(1,&pl(rp&

X &apl&„d'. ,W. , &,&1 Ptplg. &,

(1.10)

where, for simplicity, A„stands for A(a„),
d'„„,=d((k„,k„ 1}, and ~(rp) and ~o„) stand for the
circular polarization eigenvectors for incident and emer-

gent polarization. A selection rule can be established by
considering the spectral representation of the matrix
products,

(g „~E 1)(E "l~g „)=
I I

~ ~ ~ $ 0 1)0 1r ~ ~ ~ CT

&o„(%„d(„„,(a„,)(o„,(A„, ~(r, &

X (0 1)JRld 1 pRp)clp)((rp(% cP 1)o 1)

x&g„'

The selection rule originates from the double matrix ele-

ment products. In the diffusion situation, the angles can
be considered as independent and the average in P makes
the nonidentical matrix elements vanish:

((r,. ~A, d(. . .)(r, , ) (cr,'. (%,.d(;, , ((r', , )

=5,5, +5,5
O';, Ol Vi 1 Vi-1 Gl Pl l 1

(1.12}

which leads to the helicity-preserving channel 5, and

the opposite-helicity channel 5,. From this selection
i' i

rule, one readily Snds that in the hehcity-preserving
channel, for instance + +, the phase variation is
exp[ —jg," p2a;a, ], which leads to a damping of the
enhancement factor as a function of 8. For the opposite
channel + —,the Faraday rotations disappear by the rule
5 . This damping in the same polarization channel
and the conservation in the opposite one were proposed
by MacKintosh and John.

It must be noticed that the ensemble average over the
directions of the wave vectors k couples the orbital fac-
tors d'„„1 with the Faraday rotations a„, and a„.
The decoupling assumption of the random-helicity mod-
el, which will be discussed in Scc. III, is not justi6ed since

I

a„and d(„„1are related as shown by the spectral repre-
sentation of the fields.

E. Rotatory power

In optically active media such as sugar, for instance,
the two helicity states have different refractive indices:
the rotation of the polarization states, in contrast to the
Faraday rotation, is independent of the direction of prop-
agation of the wave. In our notation, this is expressed by
taking a rotation matrix R(a) independent of k, and
therefore invariant in the reciprocal situation where —k
is considered. It is then established in a straightforward
way that the Selds of the reverse sequences are given by
the same relation as for 8 =0, so that J„„(a)=J~;-,"(a) in
the rectangular basis or J„„(a)=J~,(a) in the circular
basis.

In reflection and in three dimensions, the backscatter-
ing cone is preserved in the same polarization channel
(xx or + +), while for the opposite channels (xy or + —)
the rotation power of these optically active media de-
creases the enhancement factor, as noticed by MacKin-
tosh and John. This e8'ect is indeed less spectacular than
the Faraday effect, since in the opposite channels the
cone is already attenuated for 8 =0.
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F. Intensity correlation function

This correlation function is defined by

& „(0).„(B)&,

& „(0)&,& „(B)&,
where i„=lE„I . In the approximation of independent

paths, the x component of the electric field coming out of
a sample p is EJ''=g+ iE„'"„'/v'N, where E„'",' is the
field of the vth sequence. The modulus IE„'",'I is distri-
buted according to the Rayleigh distribution and the
phases P'"' are distributed uniformly in the interval

[0,2m]. Let us consider the ensemble average of the term

M N

& i, (0»„(B)&, = g, g IE.'",.'(0) IIE.'",.'(B)
I IE.'", „'(o)I'IE.'", „' (B)I

p, =1 + v, v', g, g'=1

X exP Ij[y'„"'(0)—yP'(B ) +y'v"'(0) —y'„"'(B)]], (1.14a)

+ l&E„(0)E„(B)&, I', (1.14b)

where now the average can be interpreted as if we had
one sequence per sample but NM samples. This interpre-
tation of the ensemble average is a justification for a
Monte Carlo simulation. Thus, the correlation function
can be written as

1&E.(0)E.'(B)&, I'

& „(0)&,&,(B)&,
(1.14c)

where M, N » l. Because of the uniform distribution of
the phases, we must consider the two situations where the
summations do not vanish: (i) v=v' and ri=ri' and (ii)
v=g' and v'=g, so that

& „(0)'„(B)&,=&'„(0)&,& „(B)&,

of the helicity of the wave is changed in the improper
frame obtained by the transformation x ~x, y ~—y, and
z-+ —z. As mentioned previously, this reflection is de-
scribed by the Pauli matrix cr, : J(k„,k„,)=S(—1)e,.
The algebra of the multiple scattering is simply achieved
since cr,R(a) =R( —a)o, . This simple commutation
rule leads to an accumulation of the Faraday angles in a
scattering sequence. For instance, the effective Jones ma-

trix of a sequence of n —1 scatterings ending in either
transmission or refiection can be written as

R(ao+ai+az+ +a„),0'z

where I corresponds to transmission and o, to reflection.
For the one-dimensional model, we have that

II. ONE-DIMENSIONAL ANISOTROPIC
MULTIPLE SCATTERING

We consider a photon scattered in a chain aligned in
the z direction along which a magnetic field B is applied.
This system can be seen as a fiber or multiple-layered
medium with incident light perpendicular to the planes
(scatterers). In this chain, we are interested in the polar-
ization properties originated by the vectorial nature of
the electromagnetic field and we ignore all the amplitude
effect due to the localization phenomenon, which affects
the orbital part of the field functions. In one dimension,
the electric field after n —1 scatterings is given by Eqs.
(1.1) with $„=0and 8„ is still a random variable, but it
can have only two values, either 0 in the forward scat-
tering or m. in the backward one. In the forward scat-
tering the polarization is not changed and
J(k„,k„,)=S(1)I. In the backward scattering the sign

ap+a1+a2+ - +a„=VBs„,

where s„ is the total length of the sequence. The electric
field after n —1 scatterings is then written as

E„

—j exp[ —jks„] [Ior cr, ]
k"g r„

cos( VBs„) —sin( VBs„) Eo„

sin( VBs„) cos( VBs„) Epy
(2.1)

As discussed previously, for re6ection the reversed se-
quence is identical to the direct one. All the sequences
with a given length s have the same Faraday rotation
a= VBs.

Let us first turn our attention to the average Stokes in-
tensities I,Q, U, V:

U (B)= (B

0 0 0
0 cos(2VBs) sin(2VBs) 0
0 sin(2 VBs ) icos(2 VBs ) 0
0 0 {} +]

lp

Qp

vo

(2.2)
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where ( . ), stands for the path-length average, and
the Stokes intensities are i =i„+i„, q =i, —i,
u =2Re(E,E'), and v =2Im(E„E'} with i = ~E~ . The
Mueller matrix is not diagonal because of the helical sym-
metry introduced by the magnetic field. If the incident
polarization is a pure state, the Stokes sum rule
(ip =qp+up+ vp ) can be applied. The polarization de-

gree is then given by

Q2+ U2+ V2

12

=vp +[(cos(2VBs)),+(sin(2VBs)), ](1—
vp ),

(2.3)

where vp =vplip.
We notice that if B=0 the polarization degree equals

1: there is no depolarization. This is understood because

the forward scattering does not change the polarization
state and the backward scattering only changes the helici-

ty. For incident circular polarization (vp =hip), with a
magnetic field on, there is no depolarization since the
photon will leave the segment in a pure circular polariza-
tion state, with the same helicity as the incident one in

transmission or in the opposite helicity in reflection. If
the incident polarization is noncircular, because of the
Faraday rotation, the outcoming polarization of each se-

quence can be altered for different path lengths, which
produces a depolarization. The strongest one happens
for linear incidence (vp =0) and

P=((/ (cos(2VBs)), +(sin(2VBs)), .

In order to obtain the intensity correlation [Eq.
(1.14c)], we first consider the field correlator G"',

E„(0)E (B)

6,'„" E„(0)E*(B)

G(1) Ey(0)E+(B )

P

2cos(VBs) 0
0 2cos( VBs)

2sin(VBs) 0
0 —2 sin( VBs )

—sin( VBs ) —j sin( VBs )

sin(VBs) —j sin(VBs)
cos( VBs ) jcos( VBs }

cos( VBs ) —j cos( VBs }

'px

Qp

Vp

For the x component we obtain the intensity correlation function

~
6 ' "

~ ( cos( VBs ) ),ip„+ ( sin( VBs ) ),ip„(cos(VBs )—), ( sin( VBs ) },u p6(z)(B ) I,(0)I (B) ip+ (cos(2VBs)),qp
—(sin(2VBs)), up

(2.5)

For linear incidence along the direction x (ip„=ip=qp
and up=0) and for circular polarization (ip„=ip =ipl2
and up=qp =0) one gets, respectively,

( cos( VBs ) ),G( )(B)=
(cos (VBs)),

and

6'2'(B)=(cos(VBs)), +(sin(VBs))2 .

(2.6)

The main result of this section is the complete correla-
tion of the polarization, despite the random walk of pho-
tons in the chain, for given s. For the linear case, the
numerator of 6' ' has an oscillatory behavior when B is
varied. These oscillations are parametrized by the total
length of the diffusion paths and, for one-dimensional sys-
tems, they are damped only through the path-length dis-
tribution P(s ).

In transmission, P(s ) is characterized by a dispersion,
which can be pictured as a window along the s axis.
Hence, for narrow distributions corresponding to thin
slabs, oscillations arise from the average values of
cos( VBs) and cos ( VBs ) inside this window. To be more

(sin ( VBs) ),=—'[1 jp(2VBL }],—

where jp(x ) =sin(x )/x. The intensity correlation func-
tion for the incident linear polarization is then given by

2jp( VBL }

1+jp(2VBL )
(2.7)

which exhibits the oscillations. On the other hand, for

explicit, in transmission, the Laplace transform of the
path-length distribution gives

sP s exp —VBs —=
00 VBI

L sinh VBL

where the approximation holds for L /8' »1, where L is
the chain length and the transport mean free path is
g*=P/(I —(cos8) ), with 8 being the mean free path
and (cos8) = [S(1)+S(—1)]/2. We have that
( cos( VBs ) ),=jp( VBL ),

(cos ( VBs }),= —,'[1+jp(2VBL )],
and
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this one-dimensional model the intensity correlation
function for the incident circular polarization is always
unity.

the direct sequence is E'"'=ej =exp(jg„" i5$„) .The
total phase change induced by the Faraday rotation in
the reverse sequence is

III. THREE-DIMENSIONAL RAYLEIGH
MULTIPLE SCA l 10:RING E'"'=e J =exp —j g 5$„

A. The random-helicity model

1. Transmission

Let us recall the theoretical approach of MacKintosh
and John to the law of variation of 6„'„'(B). Consider
the isotropic scattering regime (Rayleigh regime): the
wave vector k is randomized at the length scale 8, the
mean free path. It is assumed that at the same length
scale the polarization is randomized by a simple random
process of helicity Sip (of "Ising" type) in the circular
wave representation. This is described by an external
second random variable ri =1 with equal probability, the
index tt being the scattering label. The phase difference
between right- and left-handed helicity is given by
5g„=rl „=q VBPcosQ„, where 0„, the angle between
B and „, is uniformly distributed in the interval [O, o.].
The phase difference is a random variable with zero mean
value. For a given sequence, the total phase difFerence 4
between the circular states is

e = g exp(j5$„)=exp j g 5$„

Since the 5(()„are assumed to be independent random
variables of zero average, by virtue of the central limit
theorem,

(exp(j4)), =exp( n(5$ ),—)=exp( n(a ), ) . —

Confining the scatterers in a slab of thickness I., we use
the path-length distribution P(s) from the difFusion

theory (L/F»1}. In transmission, for L/8» 1 the
transmitted light is completely depolarized, i.e.,
(i„(0)),=(i„(B)),= —,'. From Eq. (1.14c) one gets

2

6„'„'(g)~ J ds P(s ) exp

where the change B to —B [Eq. (1.6d)] has been done.
The enhancement factor is then given by Eq. (1.8b}:

:-(n }=1+Re[(E'"'E'""), ]=1+exp( 2n—(a ), ) .

Confining the scatterers in a slab of thickness L and using
the path-length distribution from difFusion theory, we ob-
tain

2s (a2),
:"(B) —1 ~ I ds P(s ) exp

~ exp( —&2VB8 ), (3.1b)

where we have made use of (a ), «1. The analogy of
the Faraday enhancement factor as a function of VB with
the enhancement factor of the coherent backscattering
cone (as a function of the scattering angle) has been estab-
lished by Lenke and Maret, ' where they notice the
difference of the slopes of these cones by a factor ~2.

To conclude this brief summary, we emphasize that
this simple random-helicity approach is not able to de-
scribe the persistence of the backscattering cone in the
reduced-dimensionality systems. The anisotropy can be
included in this simple model by changing the mean free
path to the transport mean free path P', as discussed in
Ref. 14. This simple analysis assumes a randomization
process for the polarization states in addition to the ran-
domization of the wave vector k. This is certainly a con-
siderable approximation of the polarization problem
which must be discussed carefully. For instance, in the
one- and two-dimensional problems, the wave vector is
randomized without any separate randomization of po-
larization (see Sec. II for the one-dimension case and Ref.
16 for the two-dimensional one).

sinh(g)
(3.1a)

B. Rayleigh scatterers

where (~ L Q ( a ), /8 = VBL for ( a ), && 1. As usual,
the mean free path disappears in the last expression. The
reduced variable g couples exactly B and L through the
factor BL. Consequently, this simple theory predicts a
dependence of G„' ' on VBL as well as a Faraday correla-
tion length proportional to B

2. Rejection

For reAection we are interested in the enhancement
factor, so that we have to take into account the phase in-
terference between the direct and reversed sequences.
The phase difference induced by the Faraday rotation for

For the three-dimensional problem, we are not able to
obtain a general analytical result beyond the simple re-
sults of Sec. I. In this section, we will develop a calcula-
tion in the Rayleigh regime while in the next section we
will report numerical results of a Monte Carlo simulation
for the Mie regime.

For Rayleigh scatterers Si(cos8) ~ 1 and
Si(cos8}~ cos8, and all the intermediate fields during the
multiple scattering can be written in the laboratory frame
(x,y,z) through the dipolar matrix ["Jones" matrix in
the (x,y, z } frame). For a sequence starting with ko and
ending with k„, the electric field is obtained from Eqs.
(1.1). For pointlike scatterers it can be written as
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E
n —1

E„~R(a„) g T '(k„)R(a„)T(k„)M(k„)
v=1

0

E
XR (ap) Ep»

0

(3.2a)

where the order in the product starts with the first term
v= 1 in the right-hand side, with

cosa —sina 0
R(a) = sina cosa 0

0 0 1

1 k- —k„k,
M(k) = —k„k

—k, k,

—k„k

1 —k2

—kk Z

(3.2b)
and

cos8 cosP cos8 sing —sin8

T(k )= —sin4 cosP 0
sin8 cosiI) sin8 sinig( cos8

M'=T 'RTM=M cosa+N sina

with N= k,

—k kz y

0 k„—(3.2c)
—k ky x

where a=ek, with s= VBP (we assume that successive
scatterers are separated by 8}, k, =sin8 cosP,
k =sin8sing, and k, =cos8. We impose the condition
that the Faraday rotation, described by the matrix R (a),
occurs in the local frame throughout the action of the
matrix T, which describes the change of frames. Using:
T ' =T'", M =M, and NM =MN =N, one can write

not necessarily close to the boundary surface. Neverthe-

less, it is expected that for large values of n the correla-
tion in the choice of k vanishes. This recursive method is

a generalization, in order to inciude the Faraday effect, of
the method employed by Akkermans et al. '

I. Stokes intensities and polarization degree

First, let us calculate the mean values of the Stokes in-
tensities in the presence of a magnetic field. The nine ele-
ments of the coherence matrix are defined by
C„(s)=(E„(s)Et(s))„where ( ), is the ensemble
average and 1' takes the transpose of E„(s) and conju-
gates it. The starting value is

Cp(s) =R (ap)Ep(0)Ept(0)R '"(ap},

and the rotation before the first scattering is then con-
sidered. The scatterings are independent of each other,
allowing the recursion relation

where now

f d8„sine„f dp, ' ' '4~o" "o
Writing the elements of C„as a function of the elements
of C„„wesee that the integral in P disconnects the ele-
ments in two sets, one with C„,C, C, C„, and C „
and the other with C„„C,C „,and C . As we are in-
terested in the outcoming field propagating along the z
direction, only the x and y components are important;
then we only consider the first set. This 5 X 5 matrix can
be diagonalized into two 2 X2 block matrices and one sin-
gle element when transforming the C's into the Stokes in-
tensities I„=C~ „+C„» „, Q„=C,„„—C»» „, U„=C,» „

I„
Xl

Czz

where N, contrary to M, is an antisymmetric matrix. The
obvious properties are N = —M and M'M =M'. We no-
tice that this matrix representation is equivalent to the re-
cursive vectorial form,

E„=MQ„&=(cosa/„R + sina„}(k„RE„ I ) .

where

Q.-i
=X2

, C11 2C21

, and V„=—,'V„

C33 C34

(3.3a)

The matrix M„' depends only on the scattering angles 8„
and iI)„which are the only random variables of the prob-
lem. Thus Eq. (3.2a) can be written as

XI
C21 C22

with

and /2= —
C34 C33

7 1 . 1 1c„= +
2 j2(2s), c2i =

z j2(2s)

(3.3b)

0

n —1

~x:R(a„) Q M'(k„)R(ap) Ep»
]c=1

(3.2d)

The multiple-scattering sequences are obtained by
choosing the random variables kp, k&, . . . , k„as uniform
and independent. The assumption of independence of k
does not treat correctly the exit conditions for a slab,
since the last scattering may be anywhere in space and

and

4 1
cz2 = +—j2(2E),

E

1 . 1. 1
+Jp(2e, ) ——j,(2s)+

2 12(2E),
E 4c

1
c34 —j,(2s)+ jz(2s)

2E,

(3.3c}
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and j „(e}=v'(n/2e)J„+, &2(e) is the spherical Bessel
function and J„(e)the cylindrical one.

%e are interested in considering n —1 scatterings.
Thus we obtain for the (n —1)th power of the 2X2 ma-
trices g& and +2

2( 4 )II 1+yll 1 2[( 4 )ll 1 yll 1]
1 1

Xl 3 2ll —1 ( 4 )n
—1 yn

—1
(

4 }n
—1+2yn —1

3 3

(3.4a}

(s»1}:y= —', and y'= —,', . We notice that y' is a com-

plex variable for weak field which becomes asymptotical-

ly a real variable for a strong magnetic field.
Let us now consider the exit conditions: normal in-

cidence and emergence in transmission and reQection.
For the incidence, the first Faraday rotation is along the z
axis so that the Stokes intensities are Ip =ip,

Qp
=cos(2ep)qp —sin(2ep)up

Up =sin(2sp }qp+cos(2ep) up,

and

Re(y'" ') Im(y'" ')
—Im(y'" ) Re(y'" )

(3.4b)

and Vp=vp. The last Faraday rotation is also supposed
to be along the z axis, with k, taking two values, +1 in
transmission and —1 in refiection. This leads to the rela-
tions I„=I„

where y= —,', +(3/e )jz(2e) and y'=c33+ Jc34 ~y'~e

with
~

y'
~

= '1/ c 33 +c 34 and 4=arctan(c34/c33 ). These
complicated expressions can be simplified for the case of
(i) weak magnetic field (e « 1): y = )4 —,24, e and
y' =

—,', —,~ e —j—,', e, and (ii) strong magnetic field

Q„=cos(2e„}Q„,—sin(2s„) U„

U„=sin(2e„)Q„,+cos(2e„)U„

and V„=V„,. In this way we obtain (without approxi-
mation) the Mueller matrix with a magnetic field:

1 0 0
0 Pt(") cos[(n —1)4I3—2(ep+ e„)] Pt(") sin[(n —1)4—2(ep+ e„)]

(s)=—'( —')" '[2( —')" '+y" ']U„Y 2 ' 0 Pt(") sin[(n —1)4—2(ep+s„)] RPt") cos[(n —1)4—2(sp+e„)]
V„ 0 0 0

0

0

gp(n)
C

qp

p

where

(3.5a)

(3.5b)

is the polarization degree [P(")(e)=Q(Q„+U„+V„)/I„] for linear incident polarization in x (qp=ip and up=vp=0)
and

3(2)n —1

p(n)—
2(4 }n

—1+ n —1

3

(3.5c)

is the polarization degree for circular incidence ( vp =ki p and qp
=up =0). For B=0, we find the values calculated by

Akkermans et al.

In

(0)=

1 [2( 2 )ll
—1+(

7 )ll
—1]

)n
—1

15

y( 7 )n
—1

15

lp

qp

Qp
(3.5d)

0 0 0 y() )n
—1

The symmetry of this matrix is discussed in Ref. 4 and the polarization degree for linear and circular incident polariza-
tion is discussed in Ref. 5.

We see that the Mueller matrix of Eq. (3.5a) has the same structure as the one-dimension matrix [Eq. (2.2}]. Simpler
expressions can be obtained in the diffusion regime (n »1) under weak (e « 1}and strong (e » 1) magnetic field. For
weak magnetic field we have that

Q„O
(s)=(—', )"

0

0
PL'"' cos( —', n s)
P'"' sin( —'n e}—

0
0

+PL(")cos( ', n e)—
gp( )

0
Pl") sin( —'n e)—

7

gp

qo

Qo
(3.6a)
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where we notice that, despite the small value of s, the product ns can be much larger than unity. The polarization de-

grees are given by

Pt"'(s) =PL"'(0) exp — s n

and

p(n)(&) —p(n)(0) —
( ( )n

(3.61)

with Pt."'(0)= ( —,', )". For Rayleigh scatterers, the magnetic field does not modify the depolarization rate for the incident

circular polarization On the other hand, the magnetic field induces a faster decay for incident linear polaazation,
through the s term. For strong magnetic field, the Mueller matrix is

Q„O
U (&)=(—,

')"
0

0 0
Pt"' cos[2(so+ s„)] —PL'"' sin[2( so+ s„)]
—PL"'sin[2(so+a„)] +PL(")cos[2(so+a„)]

yp(n)

lp

qp

Qp
(3.6c)

P(n) i( ) )n a d P(n) 3(()n (3.6d)

In this case the depolarization rate is faster for the in-
cident linear polarization state than for the circular one,
in contrast to the zero-field situation.

2. Destruction of the backscatteriug etthattcement

where the angle 2(so+ a„)corresponds to the Faraday ro-
tations before the first scattering and after the last one.
The polarization degrees are given by

I„(s) Re[I' (s)]
xx (It) (Ii)I, (s) I, (s)

(3.8a)

where the order of the product has been reversed. The
field emerging froin the slab in refiection is the sum of the
direct and the reversed one.

We will consider the xx configuration, i.e., only the x
component of the emerging electric field for the se-
quences with n scatterings. The enhancement factor is
given by Eq. (1.8):

NX

0

1
g

~R( a, ) P M'(——k„)R(—tt„) E„
~=n —1

0

For reSection, we must consider the reverse sequences.
These sequences are obtained by taking k ~—k and con-
sequently a~ —a and reversing the order of the se-
quence. The electric field of the direct sequence is given
by Eq. (3.2d) and the electric field of the reverse one is
given by

with

I(d)(s) I(r)(e) QI +A
Z Z

and

'1

r(")(s)=&E(e)(s)E( )'(s) &=[loo](X„(s)& 0
0

=(X„„(s))io. (3.8b)

(3.7)
I

We also ignore the first and last Faraday rotation,
ao= n„=O. In this case, we can write

1

(X (K))=M'M' .M' (s) 0 [100]M'"M'" . .M'"
0

1

=[M'" .M'"M'" '" 0 '100' M'"M'" M'"
n —1 2 1 2 n —1

0
= (M„'",(s)(X, 2(a) )M„'",(s) ) . (3.8c)

Writing the elements of X„as a function of the elements
of X„ i, we see that the average in P disconnects these
elements in two sets, one with X~, X„y,X,X„„,and Xyz
and the other X,X,X, and X . As we are interested
in the x component propagating along the z axis, we will

I

consider only the Sst set. Performing the transformation
+Xyy Xq Xzz Xyy X X y +Xy and

X„=X„—Xy„, the 5X5 matrix can be rewritten in
blocks with a 3X3 matrix and two degenerate eigenval-
ues,
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Xi,n —1 X;o

X„„, (e)=X3 '(e)

that for n »1 the leading term is A, ,(E). The enhance-
ment factor is then given by

Xzz, n —1

:-„„„—= 1+exp( —2e n ), (3.12a)

and

X „,(s)=a& '(e)X o,

X„„,(s)=Vz '(e)X„o,

(3.9a)

which shows an exponential decrease as a function of
2E. n. In this way, we find the same result predicted by
the random-helicity model. For E, »1, the enhancement
factor goes to 1 as

(3.12b)
where

and

x}1 x}2 2x}3

X3(s)= —x,z xzz 2x 23

X 13 X23 X33

if (e)=—+ j (2e) .
2 1

2 5 4 2 2

(3.9b)

For strong magnetic fields the enhancement factor does
not converge to 1, since it depends on the number of
scatterings n. In the backscattering geometry the most
frequent paths are short, so that n may be small. The
Faraday cone is destroyed exponentially as a function of
the scattering number n with a characteristic decay
1/2E .

3. Correlation function

Here,

2 . 1. 1x» = +jo(2e) ——jl(2e)+ jz(2s),
E 2E,

1x,z
= —j,(2e)+ jz(2s),

2E

2 1 . 1x»= — + ji(2e)—
z jz(2s),

2E 2E

1.
xzz= jo(2e)——j,(2s),

(3.9c)

Let us now turn our attention to the product
6„(e)= (E„(0)E„(e)), which gives the field correlations.
The generalized cohence matrix 6(e) is obtained by the
product

G„(s)(MkMk ) M) Go(e)MI'"Mz"' Mk"') .

The initial value is defined as Go(e)
=Eo(0)Eo(0)R'"(ao). As previously, we will ignore the
first and the last Faraday rotation of the sequence. As-
suming that the scatterings are independent of each oth-
er, one can use the recursion method,

6„(.)=(M„G„,(.)M„'") . (3.13)1 4 1
xz3 Jz(2s), x33

1 z Jz(2e)
26 15

Let us now consider the eigenvalues of X3. For small
values of e we have A, i(e)-=—', (1—2s ), Az(e) —=—,'(1+2s ),
and X3(s)=—

—,', (1—
—,', e ). For large values of e, the Bessel

functions are very small, so that A, i(e) =——,', )L,z(s)
=iL3(s)—=0. Since in both limiting cases A, ",(e) is much
greater than Az(s) and A3(e), in the diffusion regime
(n »1) we can write

(3.10)X; „(s)—=A, ",(e)X;o .

Similarly, for small values of s, Zz(s) —=
—,', (1—

—,', e ), and
for large values of s, Vz(e) =

—,'. Thus one gets Gq,.-}
G„n 1

Gqo
rn —1(s ) G.,oXi,n+Xq n ~1+~2 .

l (3.11a)
and+xx, n (3.&4a)

Writing the elements of G„as a function of the ele-
ments of G„„we see that, after averaging in 4, the
values of 6„„,6, 6„,6„,and G „are independent of
the values G z Gzx Gy and G~, . As we are interested in
the outcoming field, only the x and y components are im-
portant; we will thus consider the first set. We observe
that 6„ is not the complex conjugate of 6 „. Changing
the variables 6;=6„„+6,6 =G„„—6„, G„=G„
+6„», and 6„=6„„—6„», we obtain a reduction of the
5X5 matrix in terms of a 2X2 matrix I, and a 3X3 ma-

trix I 2.,

The enhancement factor is obtained from Eqs. (3.8a) and
(3.8b):

6;n 6;o

X „(e) 2X„„„(e)
(3.11b) Gzz, n —} G„o

where I„(E)and Q„(e) are the Stokes intensities given by
Eq. (3.6a) in the limit of small values of e and by Eq.
(3.6c) in the limit of large values of e. For incident linear
polarized light along the x axis, the incident Stokes inten-
sities are qo =io and uo =Do =0. For e « 1, A, ,(e) & Kz, so

with

and

g }1 g12
r, (e)=

g }2 g11

(3.14b)
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g33 g )2 2g53

I 2(a) g12 g44 2g54

IG,„(a)l'
(3.16c)

and

g53 g54 g55

g» =jo(a}——11{a)+—j2{a»2 2.
g2

g»= —j1{a}+—j2{a»1.

Let us now consider incident linear light polarized along
the x direction. In this case Gq Q Gi p lp so that

I„(0)I„(a)

-=exp( a—n)[1+2( ,',—)"exp(a n/2) cos(4an )] .

(3.16d)

g» =jo(a)——j1{a)+—,j2(a»2. 4.

2
g~ =jo(a) j1(a)

4 .
g53 =j1(a)-—,»(a»

E

pn —1
1

Re(y" ) Im(y" )

—Im(y" } Re(y" )

with y"=(g»+ jg,2)"

j2{a} g5s= j2(a}.
E

For n —1 scatterings, we have

(3.14c)

(3.15a)

For a n «1, we cannot make any distinction between
the incident linear and circular polarization since both
correlation functions decay as exp( a—n ). This is a re-
sult obtained by the random-helicity model. This fact
was observed experimentally by Erbacher, Lenke, and
Maret. Nevertheless, the correlation function for in-
cident linear and circular polarization has difFerent
behaviors for larger values of a n. For circular polariza-
tion it keeps decaying as exp{—a2n ), but for the incident
linear polarization, this function is only the envelope of
an oscillating function with period of an=71r/2. This
kind of oscillation has also been observed in a Monte
Carlo simulation. 9

IV. MONTE CARLO SIMULATION

For c «1 and for n & ) 1, we can write y"
=( —,', )"exp( j ', an—) a—nd I ",

' becomes a rotation matrix

damped with a factor ( —,', )":

cos(~4an )
—sin( —', an )

In —1 7 n

sin( 4 an ) cos( ', an )— (3.15b)

-=—,'[A,",{a)6;0+(—,', )"cos( —', an)6 11] . (3.16a)

Let us 5rst consider an incident circular polarization. In
this case G Q=O, so that

(a)l = ,'A 1( )ai =0—,'( ,') "exp( —a—n)io.—(3.16b)

The Stokes intensity along the x direction is given by Eq.
(3.6a) and reads I„(a}=——,'( —', )"io, so that the intensity
correlation function is given by

Now consider the 3X3 matrix I 2. For small values
of a, the eigenvalues of I'2 are A, ,(a) =—', (1—

—,'a ),
A2(a)= —,'(1+—,'a ), and A3(a)= —,', (1—

—,",a ). In the dif-

fusion regime n »1, the leading term is given by the
largest eigenvalue, which is A, 1(a), so that 6;„(a)
=A 1 (a )6 p. In order to calculate the intensity correla-
tion function, we have to obtain 6 (a} for incident light
linearly polarized along the x direction and circularly po-
larized. In both cases, 6„0=0in Eq. (3.14a), which leads
to

6 (a) =(E„(0)E„(a)t),
6;(a)+6 (a)

2

A. Algorithm

To simulate sequences of Mie scatterings in a slab of
length L under a magnetic field 8, we have included the
Faraday rotations between the scatterers in the Monte
Carlo code we have developed to study the statistics of
the polarization. In this code, the Mie coefficients and
scattering amplitudes Sl(cos8) and S1(cos8) have been
obtained as described in Ref. 18 using the Lentz algo-
rithm. '9 The Jones matrix of each Mie scattering con-
tains the Faraday rotation due to the magnetic field. The
efFect of the magnetic field inside the scatterers is ignored.
These matrices are calculated using the Chandrasekhar-
Sekera representation. "'2

In the slab, the photon history starts at the origin of
the laboratory (lab) frame (x,y,z). It propagates along
the z axis until z'&0. This distance is generated follow-

ing the exponential distribution exp( —r /8 }//Z. The dis-
tance 4 =1/(po, ) is the mean free path, where p is the
concentration of spheres and cr, is the total cross section
(we do not consider the effects of absorption). If z'&L,
the photon leaves the slab without being scattered and
the Faraday rotation inside the slab is taken into account.
On the other hand, if 0&z' &I., the Faraday rotation is
taken into account for this segment and a sphere of ra-
dius a is supposed to be present at this position. A local
coordinate system is considered so that x, =x, y &

=y, and

z, =8 In this local frame the scattering angles 8, and p1
are generated by the Mie distribution and a new distance
r, is generated by the exponential distribution. This new
position (81,$1,r1) corresponds to a new scattering and
its coordinates are then calculated in the lab frame
(x1,y1,z, ). If z1&L, the photon is transmitted and if
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z, (0, the phonon is rejected. In both cases, the photon
leaves the slab perpendicularly to the walls, suffering one
collision, and the Faraday rotation is taken into account
for this segment. If the photon does not escape the slab,
the Faraday rotation corresponding to this segment is
considered as well as a new local coordinated system,
x&=8,, y2=$, , and zz=k, . The scattering angles are
chosen following the Mie distribution and a new distance
is generated in this new local frame. This position is cal-
culated in the lab frame and this process is repeated suc-
cessively until a sphere lies outside the slab. When the
exit condition is satisfied, the last scattering is taken back
and the photon is forced to be scattered in the direction
8' and P' in the last local frame. These last scattering an-
gles are not random, but calculated so that the photon es-
capes perpendicularly to the plane of the slab. In
transmission, the multiply scattered Jones matrix is ca1-
culated in the lab frame (8'=x, P'=y, k'=z), but in
reflection, it is calculated in the frame (8'=x,
P'= —y, k'= —z), which is an improper rotation of the
lab frame. A weight (the probability for a photon to be
scattered with the angles 8' and P') is then assigned to
each sequence. The reverse sequence is calculated so
that, if the phonon quits the slab in reflection, the Jones
matrix of the reverse sequence is considered. The Muel-
ler matrices are then calculated and the averages are per-
formed. In this way we obtain the enhancement factor
and the intensity correlations as a function of the magnet-
ic field and slab length.

An important step of the method resides in the choice
of the scattering angles 8 and P. We emphasize that the
complete Mie distribution is not separable. Even worse,
it is parametrized by the incident field. Generating this
distribution numerically, by the rejection method, is very
time consuming. For large spheres, the distribution takes
a simpler form. It is independent of both t)I and the in-
cident field. Therefore, the angle P can be chosen from a
uniform distribution and the angle 8 is given by the ap-
proximate large-sphere Mie distribution

[ ~Si(cos8) ~
+ ~St(cos8)

~
]/(2cr, )

where o, is the scattering cross section. This
simplification has already been used in previous simula-
tions. zo z In this case, the angle 8 can be generated by
the cumulative function (the integral of the large-sphere
Mie distribution). This method is very eScient, since a
single random number is needed for each cos8. The
values of the cumulative function can be tabulated as well
as the values of the scattering amplitudes. The tables are
divided into 180 intervals of cosO and data are obtained
from these tables by linear interpolation.

We stress that the fields are propagated in our pro-
gram, and not the intensities. The selection rule [Eq.
(1.12)] which assures the invariance of the opposite circu-
lar channel is not used in the Monte Carlo code but it
comes out as a result.

B. Results

We have considered incident circular and linearly po-
larized light along the x axis with a wavelength in the

vacuum A,„„=0.4579 pm. The Verdet constant of the
medium is V=157.1 rad/mT and its refraction index
n =1.69. The spheres have a radius a =0.1 pm and a
refraction index n, =1.45 and are diluted, representing
l%%uo of the volume. This leads to a size parameter
ka =2mn a/A, „„=2.32. The magnetic field is applied
along the z axis and we have considered at least 10000 se-
quences for each slab thickness.

From the Mie regime (ka =2.32 and m =n, /n
=0.858) we obtain a total scattering cross section
a, =4.41X10 pm2, 8=1/(per, )=0.0951 mm, the
mean value of the cosine of the scattering angle is
(cos8) =0.669 leading to a transport mean free path

/P=1/(1 —(cos8))=3.02, and the lofFe-Regel pa-
rameter k/=2205. These values correspond to the ex-
perimental situation. ' Two situations have been con-
sidered with the same concentration in volume (1%) and
the same relative refractive index (m =0.858): (i) Ray-
leigh, with ka =0.232, e, =2.19X 10 pm, 8=19.1

mm, (cos8) =0.008 24, and kP =4%4084, and (ii) large
spheres, with ka =23 2, cr, .=4.88 pm, 8=0.0859 mm,
(cos8) =0.931, and k/=1900.

o
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0
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FIG. 2. Comparison between the calculated (numerical simu-

lation) enhancement factor in the + + polarization channel and

xx channel and the ++ channel experiment [the experimental

points have been obtained by Lenke and Maret (Ref. 23)]. The
parameters are: A,„„=0.4579 pm, a =0.1 pm, leading to
ka =2.32 and n, =1.45, n =1.65, leading to n, /n =0.858. In
the experiment the value of L /8 is about 500 and in the simu-

lation the value is of L/8 =15. As discussed in Ref. 14, the

value of the Verdet constant depends on the magnetic field in

the experiment with the starting value of V=1571 rad/mT. In
the simulation we have considered V=157.1 rad/mT. To fit

the experimental data we have used the scale

( VB ) p 3 5( VB ) ' and (EF) p (EF)

I Rebec t.ion

In reflection we have compared the numerical simula-
tion result with the experimental one in Fig. 2. We have
also considered a slab with thickness L /8' = 15
and three regimes of scattering, pointlike scatterers (Ray-
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leigh regime with ka =0.232), intermediate regime
(ka =2.32), and large spheres (ka =23.2). In all regimes
we have considered incident light polarized circularly
and linearly along the x direction. For both cases, we
have obtained the enhancement factor for the same polar-
ization channel (++ or xx) and for the opposite one
(+—or xy). We have observed that the enhancement
factor presents some general properties (Fig. 3).

(l) The enhancement factor in the + —channel is in-
dependent of 8 in all cases. As we have seen in Sec. I D,
this invariance of the opposite-helicity channel has been
predicted analytically by MacKintosh and John7 and
here verified numerically.

(2) For small values of VB and for the same polariza-
tion channel, either ++ or xx, the enhancement factor
decays exponentially with the same attenuation constant.
This attenuation depends on the size of the scatterers.
This behavior has also been observed experimentally by
Lenke and Maret.

(3) For large values of VB, the enhancement factor
does not converge to 1: their asymptotic values are
different and depend on the size of the spheres. This con-
vergence to nontrivial asymptotic values has also been
observed experimentally. These asymptotic values as a
function of the size parameter ka are represented in Table
II.

Let us start the discussion for the small values of VB
The exponential decays observed in Figs. 3(a), 3(b), and
(3c) can be understood qualitatively in the framework of
the Rayleigh model (Sec. III 8). For large values of VB,
we see from Table II that the asymptotic values of the
enhancement factor in the xx, xy, and ++ polarization
channels increase as the size parameter ka increases. On
the other hand, the value of the enhancement factor of
the + —channel tends to decrease as the parameter ka
increases. We see that these values of the enhancement
factor cannot be explained by the proportion of single,
double, or triple scatterings. To understand qualitatively
these results we have to take into account the multiple
scattering of light through the path-length distribution.

The path-length distribution in reaction is roughly de-
scribed by a power-law [P(s) ~s /

] which does not
have any characteristic length. It allows very long se-
quences which are not very numerous. These long se-
quences dephase the direct and reverse sequences
through the azimuthal randomization (P randomization)
and backward scatterings. The P randomization affects
drastically the linear polarization states while the back-
ward scattering changes the helicity of the wave, so that
these long sequences tend to push the enhancement factor
down to 1. On the other hand, this distribution allows
very many short paths, typically of the length of
8'=8/(I —{cos8)). If the scatterings are strongly
peaked forward, the backward scattering is a very rare
event. These short sequences do not have enough scatter-
ings to dephase significantly the direct and reverse se-
quences, and they tend to preserve the helicity of the
waves.

Let us now consider very anisotropic scatterings where
ka =23.2 [Fig. 3(c)]. The scattering amplitudes are
strongly peaked forward. Because of the azimuthal ran-
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FIG. 3. The enhancement factor obtained by the Monte Car-
lo simulation in the ++, +—,xx, and xy polarization chan-
nels as a function of VB for a slab of thickness L /8 = 15. The
considered regimes are (a) Rayleigh (ka=0.232), (b) Mie
(ka =2.32), and (c) large spheres (ka =23.2). The refractive in-

dex ratio is n, /n =0.858. Insets: the parallel and perpendicu-
lar scattering amplitudes as a function of the scattering angle.
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TABLEII. As m totic vy p alues of the enhanced factor for strong magnetic fields.

ka (cos8)
Single

scattering
Double Triple

scattering scattering xy

0.232
2.32

23.2

0.008
0.689
0.931

18.4%
1.31%
0.107%

10.3%
2.48%
0.123%

7.36%
3.22%
0.134%

=—1.15
=—1.25
—= 1.40

=—1.15
=—1.25
=—1.40

=—1.05
—= 1.35
—= 1.60

=—1.20
=—1.10
-=1.05

~ ~

domszatton, any incident linear polarization state will be
scattered into other linear polarization states. So the x
direction has roughly the same probability to be visited as
the y direction after 8'/8 scatterings. This is the reason
why the enhancement factors of the xx and xy channel
have the same asymptotic values. On the other hand, the

ackward scatterings are very rare, and the helicity is
preserved. This is why the enhancement factor of the
++ channel is larger than that of the + —,which is
very close to 1.

For a =2.32 [Fig. 3(b)], the scatterings are still aniso-
tropic, but the scattering amplitudes are not so forward
peaked as in the previous case. Backward scatterin s
occur more often so that they tend to increase the
enhancement factor of the + —channel and to decrease
the factor of the ++ channel, which is still larger than
t e+ —one.

For the Rayleigh scattering ka =0.232 [Fig. 3(a}], the
orward and backward scatterings have the same proba-
i ity to occur. A helicity Sip is not a rare event, ushin

the as my ptotic value of the enhancement factor of the
++ channel to a value smaller than the channel + —.
We notice that because of the single scattering the
enhancement factor of the xx channel is smaller than 2.

1.0

0.8

0.6
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L/I
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4) L/8'=—7, 8, 9, 10, and 11, VBL is a good reduced
variable, according to the random-helicity model and
Rayleigh theory [Eqs. (3.1a) and (3.16c)] for small values
of VBL. For larger values of VBL, 6„','(B} cannot be
written only in terms of VBL. This is apparent from Fig.

thick
4 where oscillations are observable above the no' F

ic slabs and for small values of VBL, no information
a out the characteristic lengths due to the Faraday effect
can be obtained.

For the intermediate regime, we have plotted 6„'„'as a
function of VB for L/8'=2, 3, 4, 5, and 10 for linear
and circular incidence. For small values of L/8' the
correlation function displays net oscillations [Figs. 5(a}

2. Transmission
0.2

For transmission, the intensity correlation functions
or incident circular and linear polarization along the x

direction are shown in Fig. 4. In the diff'usion limit (Fig.
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FIG. 4. Intensit y correlation for the Mie scatterers for in-

cident linear and circular polarized light as a function of VBL.
The refractive index ratio is n, /n =0.858 and the size parame-
ter is ka =2.32. The slab thicknesses considered are L/8 ='7,
8, 9, 10, and 11.
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FIG.G. 5. Intensity correlation as function of VB for incident
(a) circular and (b) linear polarized light for slabs of thickness
L/8 =2, 3 4 5 anL /~ =. . . , ~ 10. The other parameters are the same as
in Fig. 4. The lines are only a guide to the eyes.
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and 5(b)] which do not exist in a hoinogeneous slab (no
scatterings) where 6„'„'=l. Another feature is that the
amplitudes of these oscillations are not damped for larger
VB [see curves for L /8 =3 and 4 in Fig. 5(b)].

Contrary to the oscillations calculated in the Rayleigh
regime which are exponentially damped [Eq. (3.16d)], the
oscillations observed in the Mie regime have the same
amplitude and the same period as the magnetic field is in-
creased. These oscillations are essentially due to the
coherent beam and to single scattering. Another mecha-
nism to explain these oscillations is the one-dimensional
behavior. For thinner slabs, because of anisotropy, the
scattering paths are almost straight lines. This is relevant
to the Faraday efFect in a chain, where the photon exe-
cutes a one-dimensional random walk. In this model, the
polarization states rotate in the same sense between the
successive scatterings, which can be either forward or
backward, leading to an accumulation of the rotation an-
gle proportional to the total length of the path. This
mechanism is also observed for incident circular polariza-
tion. We recall that the paths are not strictly speaking
straight lines, so that the incident circular state becomes
an elliptical one; this ellipticity is amplified by the multi-
ple scattering. The effect of the magnetic field is to turn
these ellipses and the correlation function decays. For
large VB it presents oscillations.

DISCUSSION AND CONCLUSION

Several important properties of the multiple scattering
of waves can be understood in the simplified frame of the
scalar theory. The intensity enhancement of the back-
scattering cone is due to the existence of reverse se-
quences which interfere with the direct ones. Hence, for
scalar waves, where only the phase difFerence between the
direct and reverse sequence is taken into account, it is
correct to claim that these sequences are coupled by a
time-reversal operation. This basic interference, due to
the reciprocity principle, is very robust: neither absorp-
tion nor confinement in finite slabs can afFect the value 2
of the enhancement factor (if single scattering is exclud-
ed). The role of absorption or finite slabs is to round off
the peak of the cone by cutting off the long scattering se-
quences (which give rise to the sharp peak of the cone).

When the vectorial nature of light is taken into ac-
count, the situation is more complex. If the multiply
scattered light is detected in the same polarization chan-
nel as the incident light (xx or ++ configurations), the
direct and reverse sequences interfere constructively giv-
ing the factor 2 of the cone. On the other hand, for the
opposite polarization channel (xy or + —), the enhance-
ment factor is smaller than 2, since the final polarization
states are different, breaking the reciprocity between the
direct and reverse sequences. These properties are ex-
pressed mathematically by a simple transposition opera-
tion of the effective Jones matrix (which describes the
multiple-scattering process) written in the circular basis
or an antitransposition for the Jones matrix written in the
linear basis.

The Faraday effect is known to break the time-reversal
symmetry and reciprocity principle for a single scatter-

ing. For a sequence, it introduces the rotation of polar-
ization between successive scatterings. Between two
scatterings, the Faraday angle has opposite sign between
the direct and reverse sequences, but these rotations hap-
pen in difFerent local frames which are conjugated by an
improper rotation operation. The time-reversal symme-

try is always broken by the Faraday effect, but it is the
reciprocity-principle breaking between the direct and re-
verse sequences that alters the enhancement factor of the
scattering cone. To exemplify this statement, consider an
optically two-dimensional medium and circular scatter-
ers. The Jones matrix of each single scattering is diago-
nal and the product of these matrices is diagonal. The
enhancement of the same polarization channel always ex-
ists but the intensity in the opposite channel is always
null since these components are not connected by the di-

agonal matrix. The presence of a magnetic field intro-
duces the rotation matrices between successive scatter-
ings: then the effective Jones matrix is no longer diagonal
and a close analogy with the problem in three dimensions
without magnetic field can be made by replacing a by—P. As in the three-dimensional problem with B=0, the
backscattering cone in two dimensions, for the same po-
larization channel, is not altered by the magnetic field,
but the opposite polarization channel is affected.

Although the random-helicity mode1 ofFers a simple
frame for the analysis of the main properties of the multi-
ple scattering of light, some important features are not
well founded in this model and call for a detailed
analysis. This deeper analysis is the principal motivation
of this work. The first objection against this model is cer-
tainly the fact that the randomness of the polarization
state is not justified as an independent random variable of
the wave vector. Actually, the wave vectors are the basic
and unique random variables of the multiple-scattering
problem. This remark is crucial in the one-dimensional
problem. In this model, a complete correlation occurs
between the polarization rotation and the length of the
difFusion paths, while the wave vectors are totally ran-
domized by the one-dimensional random walk. An
analytical calculation of this situation shows that the
correlations are damped only by the dispersion of the
path-length distribution rather than by any randomness
of the polarization states. The second objection to the
random-helicity model is that the problem of the succes-
sive rotations of the polarization vectors by the Faraday
effect must be handled by a matrix formalism. The nth-
order multiple scattering is mapped mathematically into
a matrix power problem. It solution involves the
research of the largest eigenvalue. The damping of the
correlation function originates from the transition be-
tween the polarization states coupled to the scattering
wave vector rather than independent random transitions
of the polarization. Indeed, there is no scalar analogy of
the problem of the vector rotation in three dimensions.

By a recurrence method, we have succeeded in obtain-
ing the characteristic attenuation factor in the
scattering-number representation for Rayleigh scatterers.
We have found both exponential dampings which are ex-
perimentally observed and oscillatory correlations as a
function of the magnetic field. These oscillations should
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be observed in the intermediate regime, between the
single-scattering and the diffusion regime. By our numer-
ical simulations for Mie scatterers, the main results are
confirmed qualitatively; exponential (Gaussian) damping
of the correlation function in transmission for the
difFusive regime as well as oscillatory behavior for larger
magnetic fields and a moderate number of scatterings.
For reSection, the damping of the backscattering-cone
enhancement factor is well accounted and compared with
the experiments. For stronger magnetic fields nontrivial
values are observed for this factor. These values corre-
spond to the contribution of the short paths or low order
of scatterings, proving that the correlation between the
direct and reversed sequences is maintained even in high
magnetic fields. Finally, experiments for two-

dimensional systems could discriminate between the sirn-

ple analysis of the random-helicity model and the present
analysis. Furthermore, the oscillatory behavior of the in-
tensity correlation function for thinner slabs, far away
from the diffusion regime, is a feature of the Faraday
effect in the context of the multiple scattering of light
that has not been examined experimentally.
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