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%e analyze the possibility of the appearance of long-range correlations of states of quenched
defect systems in disordered solids. For randomly distributed defects with a finite number of degen-
erate internal degrees of freedom such correlations are shown to appear near the defect percolation
threshold if they obey certain nearest-neighbor correlation rules. The corresponding efFective Hamil-

tonian can be viewed as that of a generalized m-component long-range correlated %einrib-Halperin
model. Our renormalization-group investigation shows, however, that it asymptotically decomposes
into a set of m noninteracting one-component Weinrib-Halperin models. The coordinates of the
stable fixed point of this model are determined to O(c ~ )

I. INTRODUCTION

In the last two decades wide investigations have been
focused on the properties of disordered solids. In par-
ticular, of special interest was the critical behavior of
crystals containing quenched defects. In the major part
of the literature the considerations have been restricted
to the case of point defects with small concentrations so
that the corresponding random fields have been assumed
to be Gaussian and b correlated in the frame of the con-
tinuous approximation.

An important achievement in this field was the formu-
lation of the Harris criterion. i In accordance with this
criterion subsequent renormalization group (RG) treat-
ments confirmed that defects of scalar type (random crit-
ical temperature defects) are relevant only for the Ising
model, and, moreover, only a slight modification of the
critical exponents takes place in three dimensions2 while
in two dimensions only logarithmic corrections arise. s

Because the crossover to the impurity-modified critical
behavior is governed by the specific heat exponent a
which is very small in three dimensions and zero in two
dimensions, the modi6cations due to the impurities are
not likely to be observable in real disordered solids.

The latter conclusion is, of course, not true in general.
For example, even a small concentration of defects of
random 6eld type induces drastic changes in the critical
behavior of solids. Unfortunately, in spite of great eKorts,
the behavior of even the simplest random 6eld impurity
Ising model is not known very well. ' This is also true
for some other models of disordered solids.

Therefore it is worthwile to investigate defect models
which are of physical significance and can be solved ana-
lytically and are also open to experimental observations
(including n» raerical simulations) .

For this purpose we consider a crystal containing ran-
domly distributed quenched defects with a 6nite number

of degenerated internal degrees of freedom. Such defects
can be nonspherical molecules, defect pairs of impurity-
impurity or impurity-defect type, defect centers in dumb-
bell configurations, and other defect complexes having
several equivalent energy minima.

It will be shown that near the defect percolation
threshold long-range (LR) correlations of states of the de-
fects appear in a rather natural way if simple rules arising
from the strong short-range (SR) interaction between the
defects are assumed to hold. The presence of LR corre-
lations induces strong changes of the critical behavior of
the disordered solid in a rather wide temperature range
near a second-order phase transition point.

The paper is organized as follows: In Sec. II we de-
scribe the structure of the defects and introduce the rules
of their interactions. Then we derive formulas for the pair
correlation functions which describe the random defect
configurations. In Sec. III we derive the efFective Hamil-
tonian of the model which is found to be an extension of
the Hamiltonian considered by Weinrib and Halperin.
Section IV is devoted to the analysis of the RG equations
which are derived by simultaneous analytical and dimen-
sional regularization of the effective Hamiltonian. It will
be shown that due to the existence of a special stable
fixed (SF) point in a case which corresponds to diagonal
defect matrices all m components of the Quctuating or-
der parameter are decoupled asymptotically in the impu-
rity critical region. Correspondingly, the effective Hamil-
tonian decomposes into a sum of m Hamiltonians each
of which is equivalent to the one-component Weinrib-
Halperin (WH) Hamiltonian. Therefore the values of the
critical exponents are those of the one-component WH
model.

Since WH did not find all coordinates of the SF point
we study this partial problem anew. We have been able
to determine the position of the SF point and are able
to show that its accessibility (a positive value of the SF
coordinate for the LR invariant charge) is governed by
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the extended Harris criterion. ~

Section V is devoted to the analysis of the possibility to
observe such a critical behavior. Finally we make some
concluding remarks including the possibility to extend
the considered effect to other systems.

II. MODEL HAMILTONIAN
AND DEFECT CORRELATION FUNCTIONS

where the double brackets denote a consecutive average
over the internal degrees of freedom t and over the spatial
defect configurations. In particular

V() g V V +V

We start with a most simple model Hamiltonian cor-
responding to a disordered crystal in the vicinity of a
second-order phase transition containing defects which
have only two internal (for example orientational) de-
grees of &eedom:

'R —H~ + 'R,mp,

with

«-. = f d'r ).V,"r '( )I"( )V" ( )
i, le, t

and the host crystal Hamiltonian which is given in a two-
component Landau-Ginzburg-Wilson form

« = —f d r (ro rii(r)' + Irr(r)'

+(&~ (r)l'+ l7~ (r)l'

+&o &pi(r) + /2(r) + 2gopi(r) p2(r) )

where wo ——(T —T, )/T, ( 0 is the bare mass param-(O) (0) ~

eter. The fiuctuating quenched random fields V,& (r) are
- (t)

assumed to have the form

V,.„)(r) = 8(r)V(„

Here 0(r) is the indicator function with 0 = 1 at the po-
sition of the defects (distributed randomly in space with
concentration z) and 0 = 0 otherwise. The index t indi-
cates the diferent internal states of the identical defects
(for example at different but crystallographic equivalent
positions inside a unit cell). These states are assumed to
be distributed with equal weight so that the symmetry
of the crystal on the average is conserved.

Let us in the following consider the case when the ran-
dom field matrices V( ) are diagonal ones:

Here and henceforth we use the notation ( ) for an aver-
age over the spatial configurations only, and a bar stands
for an average over the internal states for a fixed spatial
configuration. Let g(r, r') denote the probability func-
tion with the following significance: g(r, r') = 1 if both
points r, r' are occupied by defects of the same clusteri2
and g(r, r') = 0 otherwise. Then an element of the pair
correlation function (5), for example, Kii(r —r'), can be
written as follows:

IC, i(r —r') = ([1—g(r, r'))Vir (r)V„(r')) (
2

g r, r'
V~~ r V~~ r' —

V~~

It is easy to see that the quantity G(r —r') = (g(r, r'))
is nothing else but the Green's function for the percola-
tion problem. Its Fourier transform G(q) has the form

(q'+ B.')-'B. &, q &&
R--

G(q) ~ ' -'.+. ' ' q)) „'.'
) c

(10)

where in the second term we set t = t' according to our
SR defect interaction rule The. first term describes the
contribution of the defects which belong to different clus-
ters, and so the indices t and t' are independent.

Performing the consecutive average in (7) we obtain

2

I"n(r r ) = r[1 (d(r r ))) I,Vii )
2

+ (r(r r')) (Vi'i')' —*
I,

Vi'i')

= —(Vi —V2) (g(r, r')) = K22(r —r')
4

and, similarly,

Kil(r —r') = --*(V, —V,)' (g(r, r'
4

= —Kii(r —r').

fv, o)~ V&»
~

v, ol~
&0 V2)'

This means that we have tensor-type defects the symme-
try of which is relatively high (random anisotropy axis
type). The general case will be commented on at the end
of the paper.

The simplest assumption concerning the SR interac-
tion between the defects is to postulate that nearest-
neighbor defects have just the same internal states t.

Eet us now calculate the pair correlation functions

K;r, (r —r') of the random matrix elements V,.& .(t).

with R, (~) = Bo l(x —x )/x l

" if the defect concentra-
tion z is near the percolation threshold x, = x, (ao jBo)".
Here ao is of order of the geometric size of a single de-
fect, Bo is the radius of interaction between the defects,
and x is the threshold of the site percolation problem.
q is Fisher's exponent for the d-dimensional percolation
problem and v is the corresponding critical exponent of
the correlation length. When x ~ x the asymptotics of
G(r) becomes a pure power law

Thus we arrive at the important conclusion that near
the defect percolation threshold x LR correlations arise
which are absent in the case of scalar defects without
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internal degrees of freedom (for which Vj = Vz).
It is clear that this conclusion is valid also for tensor-

type defects which are described by symmetric matrices
V!~! of arbitrary rank m. For example, if we consider
defects with m! different internal states (i.e., t = 1, ..., m!)
which are described by diagonal matrices

and the other matrices are given by all permutations of
Vj, ..., V we obtain

and fori gk

In the remaining part of this paper we shall study mainly
this particular case.

III. EFFECTIVE HAMILTONIAN

We consider a system in which the pure crystal has a
second-order phase transition with an m-component or-

I

der parameter. Let us assume that in the presence of
&ozen defects the additional Hamiltonian is given by (2)
with diagonal matrices V&~& according to (ll).~ We may
use (10), (12), and (13) for the description of the LR
asymptotics of the pair correlators of the random matri-
ces V'!'l(r) at the phase transition temperature T, g 0
if the characteristic energy J of the SR defect interac-
tion is much greater than the host interaction energy
Jg,q = T, In.deed, in such a case thermal fiuctuations
destroy the arrangement of the internal states inside the
defect clusters at z z, only for exponentially large
distances r = Bp exp(J/T, j,~4 and our postulated rule
works well. 15

We shall investigate in particular the critical behavior
of a disordered crystal which arises at x —z, due to
the presence of the LR defect correlations. It should be
pointed out that z, can be much smaller than z„ i.e. ,
the dilution of the crystal by the defects can be rather
weak. Moreover, the disturbance of the crystal by an
isolated defect can be weak, too, so that zV~g && Ap, gp.
Therefore, in the absence of the LR correlations due to
the defects one may assume that the system is described
by the Khmelnitsky Hamiltonian s and in the presence of
the correlations it is sufficient to take into account only
the lowest-order defect correlation functions (12), (13).

Keeping these remarks in mind and using the standard
replica method for the m-component version of (3) we can
write down the effective Hamiltonian of our problem in
the form

(14)

m Tn

+ F vP I' + Cl1 F 4~ + 2 vP r + v1 I' 4i@y
i=1

where r = r —r', 7 = 7p + x(P ~

&
V'), 4' = ((p'], . . . ,

rp;„), and 4z = P"
z

&p2 . The replica number n ~ 0.
In (14) the functions ug and vg are proportional to the LR
asymptotics of (12), (13), respectively, and the vertices
up and vp describe the SR scattering of the fiuctuations.

We note that the effective Hamiltonian (14) reduces to
the one of the WH m-component model when Ap ——go,
&p ——vp, and u1 ——v1.

For renormalizing (14) we employ the scheme of ana-
lytical and dimensional regularization, which was used
for similar problems in Refs. 17, 18. The Fourier-
transformed defect interaction with the tensor structure
(&p; ) (y;p) takes the form u&P& + uz!q 2~ while that
with the tensor structure (y,. ) (rp~p) may be written as

q where ~(,~1,v o) are positive and, in

accordance with (13), u~ = —(m —1)vz . Carrying out
the renormalization we work in the limits 4 —d = ~ -+ Q

and ( ~ 0. At the end of the calculations one should set
e = 1, ( = 1 —g/2.

IV. RENORMALIZATION GROUP EQUATIONS

At first glance it seems that we have six in-
variant charges A, g, u, uq, v, vq (which correspond to
Ap, gp, up, u&, vp, v~, respectively) and, correspond-(o) (o)

ingly, six independent RG equations for these quantities.
Nevertheless the coupling constants u1 and v1 obey the
following exact relation:

ug ——(m —1)vg,

&om which follows that in fact only 6ve charges are in-
dependent.

This can be readily seen &om the general diagram-
matic representation of the RG equations. In Fig. 1 we
have displayed the structure of the contributions to the
Gell-Mann —Low functions P„, and P„,. The correspond-
ing analytical RG equations can be written explicitly as
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FIG. l. Structure of the contributions to the Gell-
Mann —Low functions (a) P„, and (b) P„,.

dug

dt
= Aui + (m —1)Bvi,

dv—= n ——24k+. 16(u+n) —16ui +16u, +.
dt 2

(uij, ~ O(, i)2)
3A

(19)

Writing down (19) we took into account that WH have
obtained for the m = 1 case the following values of coor-
dinates for their "long-range" SP point:

A* = —+ O(e), u' = —+ O(e),
12 ' 16

i =o().
(20)

Here we have written down all the second-order terms
and have used the exact relation (15). It is easy to see
that there exists a fixed point v* of order e ~ with a
coordinate

dvy

dt
= Avi + Bui + (m —2)Bvi.

(16) Moreover, WH pointed out that the fixed point of the
short-range impurity Ising (SRII) model (with ui = 0)
loses its stability if

Here t = jnjR /Ro j, where R,(T) is the correlation
length. It is obvious that if the relation (15) has been
true for the initial values of ui and vi the same con-
dition must hold for any value of t. Relation (15) is,
therefore, a direct consequence of the symmetry relation

uI = —(m —1)vI obtained from (13).
The critical behavior of the disordered crystal de-

scribed by the effective Hamiltonian (14) can be analyzed
by studying the fixed points of the RG equations. We are
interested only in those SF points which can be reached
from the region of the initial parameters of (14) and shall
not investigate the rest.

There is no necessity for writing down the rather
lengthy system of the RG equations for all five invari-
ant charges because the existence and the stability of a
unique SF point can be proved in a general manner.

Let us use, as before, the notation P; for the Gell-
Mann —Low functions of an invariant charge i. It is easy to
see that if g = 0 then P; for i = A, u, ui do not depend on
v and vq Therefore these functions at g = 0 coincide with
the P functions obtained by WH in the case of the (m =
1)-component order parameter model. WH established
that in the subspace spanned by the invariant charges
A, u, uq a SF point exists. Thus we need to consider the
fixed point with the following coordinates:

—A~H ~ u —u~H,

u1{VTH) ~

(, = (~'l + O(.),
f6el '~

(21)

Therefore the value of the regularizator $ must be of the
order O(e ~ ) at the LR fixed point (20) which eventually
becomes stable instead of the SRII fixed point when (21)
is satisfied.

In their investigation WH did not determine the value
of the coordinate ui for the LR point (20); neither did
they check whether this coordinate is positive. The latter
is a necessary condition for the accessibility of point (20)
from the region of the initial parameters of (14).

However, the value of the coordinate uy can be eas-
ily found if one notes that the coordinates of the SRII
and LR fixed points coincide at m = 1,( = (, . Since()
the former fixed point is stable for ( ( (, and becomes

unstable at ( ) (, it is natural to suggest that a new

"long-range" SF point arises just at f = (~ l and, conse-
quently, its coordinate obeys a relation

(22)

with b ) 0.
Indeed, the RG equation for the charges A and u for

small values of uz have solutions

1 P6.-&''
+ O(e),

12 (53)

where A~» u~H, uz{~H& are the coordinates of the SP
point of the one-component WH model. ~ The value of
the coordinate of the new charge v* is unknown. There-
fore let us consider the RG equation for v:

1 t 6.-)'&'
+ O(e)

16 (53j
where r. = e+ 96ui. Substituting (23) into the RG equa-
tion for uq we obtain
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6
- X/2—(e+ 96ui) (24)

(25)

and the coordinate of the LR fixed point ui is given by

VPH models.
In particular, the correlation length exponent v and,

correspondingly, the exponent of the specific heat a are
known exactly and are given by

d —2+g
Thus we have proved the existence of the LR 6xed point
of the one-coxnponent WH model. It has a positive coor-
dinate ui for ( & ( (in the range where the SRII fixed
point loses its stability) and b = 1. Simultaneously we
have established that there is a fixed point with coordi-
nates (17), (19), (23), and (25) for our generalized model
(14).

Before we analyze the stability of this fixed point we
shall consider the extended Harris criterion for the m = 1
WH model. According to this criterion the presence of
LR-correlated defects affects the critical behavior of a
disordered crystal if and only if

(26)

where al and vl are the exponents of the specific heat and
the correlation length, respectively, of the SRII model.
Substituting the &i~2 expansion for these exponents one
obtains again expression (25) for $,. Since after its for-
mulation the validity of the extended Harris criterion has
been confirmed to all orders of renormalized perturbation
theory we can be sure that ui in (25) is a positive num-

ber, because this is guaranteed by this criterion. There-
fore we have proved that, starting from the initial values
of the parameters of Hamiltonian (14), one can reach the
fixed point given by Eqs. (17), (19), (23), and (25).

The stability of this fixed point can be established by
analyzing the general structure of the matrix BP,. /Bzz
(z;, x~ = A, g, u, ui, v, vi). It is easily seen that (a)
Ps oc g and corresPondingly BPs/Bz;~ 0

= 0 at
x; = A, u, ui, v; (b) the charge v appears in the func-
tions P; (i = A, u, ui, g) always in the combination v g
(a, b & 1), from which follows BP;/Bv~„e ——0; (c)
the charge vi has the same properties as v, and so there
are no additional terms of the type (Bvi/Bui)(BP;/Bvi)
withi = A, u.

Therefore we have the following eigenvalues of the sta-
bility matrix: Three of them coincide with those of the
one-component WH model and the other two are simply

" = —12A' 1+0(e ~ ) & 0,

where o. and v are the specific heat and correlation length
exponents of our full model. As the additional eigenval-
ues (27) are negative the LR fixed point (17), (19), (23),
and (25) is stable.

Because we have g, = 0 all the critical exponents for
the model (14) are independent of v', vi. Hence the criti-
cal behavior of this model for any value of m is equivalent
to the behavior of a set of m independent one-component

2(q —2)
2+/

where g is the Fisher exponent for the continu»m perco-
lation problem.

V. DISCUSSION

In this section we would like to compare the Weinrib-
Halperin (WH) model with ours (14) and add some gen-
eral remarks.

WH (Ref. 11) have introduced long-range (LR) cor-
relations into their model in an abstract mathematical
manner. The authors emphasize that they considered
the LR correlation function only as an ad A,oc quantity
without any realization by means of a concrete physical
mechanism. Therefore, in particular, WH restricted their
considerations only to the isotropic version of the model,
although in solids the anisotropic case is quite usual.

The LR correlation functions (12), (13) in our model
arise Rom the presence of a strong short-range (SR) inter-
action between defects with internal degrees of freedom.
As indicated before such cases may arise quite often in
physical systems.

The local-rule condition employed by us may, of course,
be genera, lized. One may consider the conditions of
the so-called bootstrap percolation problemzz zs in which
sites must have at least some minimum number of near-
est neighbors to be a "bootstrap site." It is known that
the nontrivial clusters of these sites are fractal objects so
that the corresponding correlators are of LR type.

More nontrivial types of the SR local rule arise if one
considers the antiferromagnetic version of Pott's model
(AP). For example for this model with three and four
states on a triangular and fcc lattice, respectively, it has
been demonstrated that LR order disappears already be-
low a critical concentration z+P & z, (at T = 0).z4 This
is due to the fact that as for the bootstrap percolation
problem mere connectivity is not sufficient for the pen-
etration of the local order paramater across the diluted
lattice. 2~ It is interesting to note that there exists also an-
other mechanism for a shift of the percolation threshold
for disordered systems with a &ustrated ground state.

Our SR defect interaction rule is simple enough for ap-
plication in a computer simulation. We think it is worth-
while to check our theoretical prediction (28) for two- and
three-dimensional disordered lattices. Indeed, unlike for
the short-range impurity Ising (SRII) model the crossover
exponents for the LR 6xed point are expected to be of
the order of unity. Moreover, the critical exponents (28)
difFer appreciably &om those for a pure crystal. So the
defect entical regime must be rather wide.

On the other hand numerical investigations of the crit-
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ical behavior of models with a bootstrap type of SR inter-
actions may turn out to be useful for understanding the
interplay of clusters of diH'erent topological structures.
This interplay, apparently, leads to novel crossover ef-
fects which have been observed for the SRII model. 2

The attention of the authors of Refs. 22—25 has been
concentrated mainly on the fact of the shift of z for
some models in comparison with the usual percolation
problem. We would like to emphasize a novel feature of
such disordered solids with more complicated local in-
teraction rules: The appearance of LR correlations due
to the presence of degenerated internal degrees of &ee-
dom of defects may lead to the same consequences as the
existence of a mass &actal structure in real space.

In particular, this aspect might also aff'ect the scat-
tering properties of crystals containing impurities with
internal degrees of freedom2 and therefore be important
for interpreting scattering data of light or phonons from
low-lying excitations (as well as low-temperature ther-
mal anomalies) of the so-called orientational glasses. zs so

Of course the problem of a full description of these ex-
citations (including phonon-fracton crossover effects) for
LR-correlated disorder remains a subject for further in-
vestigations.

In conclusion we would like to point out the main
results of our paper: The presence of defects with de-
generated internal degrees of freedom may induce long-

range correlations near different types of defect percola-
tion thresholds leading to a drastic change in the criti-
cal behavior. The critical behavior of our model (14) is
the same as that of the one-component Weinrib-Halperin
model. %e have shown that near the defect percolation
threshold z, the corresponding effective Hamiltonian (in-
volving an m-component order parameter that couples to
defects with m! internal states) asymptotically decom-
poses into a set of m noninteracting one-component WH
models.

We should mention also that in our investigation we

have considered only the case of relatively symmetrical
point defects which are described by diagonal matrices.
In the case of defects with arbitrary low symmetry the
inclusion of off-diagonal disorder (i.e. , V,& g 0 for i g k)
renders the LR fixed point unstable. One may conclude
that in this case the trajectories of the RG equations run
away to infinity as in the low-concentration limit of the
model (14) without the LR vertices.
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