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We present a thorough examination of the deterministic dynamics of finite, nonlinear, continuum sys-
tems which undergo elastic phase transitions. Particular attention is given to the correct implementa-
tion of open boundary conditions, which are nontrivial. As examples of the application of this formal-
ism, in this paper we model two transformations: (i) The symmetry-preserving change of volume first-
order transition undergone by some mixed-valence compounds, such as Ce;_,Th,. This example allows
us to demonstrate how a bulk fluctuation that is subcritical (viz., does not nucleate product phase) can
propagate to the surface and become supercritical (viz., does nucleate the transformed state) due to the
greatly reduced nucleation barrier found at the system’s only heterogeneity, its surface. (ii) The late-
stage dynamics of autocatalytic twinning undergone by shear martensites, such as discussed by Bales and
one of us in Phys. Rev. Lett. 67, 3412 (1991). Such complete dynamical systems of equations involving a
small number of continuum fields are a prerequisite for examining the rich sequences of patterns that
form at these and other first-order transitions involving strains.

L. INTRODUCTION

Structural phase transitions in solids come in a variety
of forms and are mediated by various microscopic mecha-
nisms. A particular class of these transitions are charac-
terized principally by a discontinuous change in the
shape and symmetry of the crystalline unit cell.! In tran-
sitions of this type, there is no net transport of atoms
across unit-cell boundaries, and the lattice remains
coherent throughout the transition. If one specializes to
the case of first-order transitions, these begin with the
creation of a localized nucleus of product phase. Then,
because of the difference in shapes between the unit cells
of the product and parent phases, the nucleus is accom-
panied by the formation of long-ranged strain fields in the
parent lattice. It is this strain field that is the principal
participant in the ensuing dynamics. It is not possible to
characterize the nucleation rate of these domains classi-
cally because the energy of the strain field does not admit
decomposition into the “surface” and ‘“‘bulk” portions as-
sumed by a classical droplet growth model.? Rather, it is
necessary to describe the full dynamics of the elastic field
of the system in order to correctly model either the nu-
cleation and/or growth processes.

Many examples of this type of transition have been
studied experimentally. Here we shall focus on idealiza-
tions of two types of such first-order strain transitions,
where there is no intercell diffusion of atoms. Firstly, we
consider a very unusual type of discontinuous structural
transition: the mixed-valence compound Ce,_,Th, un-
dergoes a fcc-to-fcc transition where no change of sym-
metry of the unit cell occurs—only a rearrangement of
the electronic filling of the d and f levels is found.® So,
only a discontinuous length scale change is found—a
spontaneously shrinking fcc unit cell. Secondly, marten-
sitic transitions involve non-symmetry-preserving strains,
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usually involving shear deformations, and lead to spec-
tacular arrangements of polydomain configurations rem-
iniscent of pattern formation in hydrodynamic systems."*
The dynamics of such transformations are described by
nonlinear, nonlocal partial differential equations that lead
to fascinating bifurcating fronts, and so-called autocata-
lytic twin formation.’ In this paper we shall determine
the complete dynamical evolution of two systems model-
ing these transitions, paying particular attention to what
happens when the transformation fronts reach the boun-
daries.

The first model system that we study here is finite, and
one dimensional, with a single-component displacement
field. The undistorted system has a uniform mass densi-
ty. We model the local elastic interactions by means of a
local potential dependent on the strain of the system at a
given point. The undistorted system is metastable, and
the globally stable product system is a homogeneous
length deformation of the undistorted parent system.
This globally stable state, viz., a straight but lengthened
bar, is only achievable if the end points of the system are
actually free to move. This necessitates the inclusion of
free boundary conditions into the dynamics. Additional-
ly, we include a nonlocal energy density, which depends
on the strain gradients of the system. We examine the
deterministic dynamical evolution of this model system in
the presence of a phenomenological elastic viscous dissi-
pation, using various numerical techniques. We assume
that the system is immersed in a heat bath, so that the
dynamics are entirely isothermal. This reduces the prob-
lem to a conceptually simple but technically involved
nonlinear, nonlocal continuum mechanics problem. (Fur-
ther, one may argue® that for such transitions the forces
arising from thermal fluctuations are always much small-
er than the mechanical forces, and thus to a first and very
good approximation it is the deterministic dynamics that
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are most important.) This phenomenological approach is
somewhat abstract, but it does make the problem both
more tractable and more fundamental.

The second model system that we study involves shear
martensites, and the phenomenology of such transitions
is discussed in detail elsewhere."*> The important as-
pects of this problem are associated with the degenerate
low-temperature phase, and the experimental observa-
tions showing that only for shallow quenches does such a
transition lead to a single domain of martensite—for
deeper quenches one finds a polydomain pattern of
different variants of the low-temperature phase coexisting
with small regions of the high-temperature parent phase.’
This problem, which quite naturally falls under the
category of pattern formation in elastic solids, intimately
involves the behavior of the transformation fronts at the
boundaries. For such transitions there is no absolute
reason why one must employ open-boundary conditions,
although it is certainly reminiscent of an isolated sample
undergoing such a transition. Thus, here we will extend
the earlier work of Bales and one of the present authors®
and display the steady-state profile of the autocatalytic
twinning dynamics associated with the pattern formation
found in martensite. We wish to emphasize that we will
obtain the steady-state configurations via integration of
the equation of motion, and thus for this system we also
require the satisfaction of the open-boundary conditions
at all instants of the system’s evolution.

The principal technical challenge arises from the pres-
ence of boundaries in the model system. In fact, the con-
tinuum hypothesis—that nearby parts of the system have
nearby displacements—is clearly violated by a termina-
tion of the system. This brings into question the validity
the continuum approximation for finite systems. Conse-
quently, it is necessary to pay close attention to the physi-
cal implications of mathematical choices made with re-
gard to “‘surface terms” that arise in a variational formu-
lation of the equation of motion. In the body of the pa-
per, we assume that the boundaries of the system are free
to move but that the system cannot exchange mechanical
energy or momentum through its endpoints. This is not
the most general assumption, but is physically reason-
able, and for the first model that we consider it does allow
the system to access the globally stable, fully transformed
state of the local potential. A more general approach to
arbitrary-stress boundary conditions is described in Ap-
pendix A.

Our paper is organized as follows. In Sec. II we dis-
cuss the continuum approximation for systems with
open-boundary conditions, and apply this formalism to
the two-model systems of interest. In Sec. III we examine
the dynamics found in the discontinuous change of length
transition using a mode-based approximation for the dis-
placement field. We note here that a related approach to
a fixed-boundary condition problem has been studied in a
previous paper,’ where (like Ref. 5) the importance of the
hydrodynamic character of the sound waves in strain sys-
tems was again demonstrated; here we extend that
mathematical (i.e., mode-based) approach’ to the case of
free boundaries. A preliminary version of this work has
been reported elsewhere.® We then examine the late-
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stage dynamics of the dynamical twinning strain evolu-
tion introduced by Bales and Gooding.® Finally, in Sec.
IV we summarize our work on this problem to date.

II. THE CONTINUUM APPROXIMATION
AND THE EQUATIONS OF MOTION

A. Change of volume transition

In this section we shall present all the necessary details
to derive and justify the continuum equations of motion
for the displacement-field dynamics for a discontinuous
change of length transition, modeling a transition such as
that undergone by Ce,_,Th, .3 Then, in the next section
we shall simply state the relevant equations for the case
of shear martensites.

To model a discontinuous change of volume transition,
it will be simplest to consider a finite, one-dimensional
lattice of particles; the extension to three dimensions is
straightforward. In the continuum approximation for
this system we introduce a displacement field u(x,?) that
describes the deformations of the lattice relative to some
reference configuration. A point whose reference posi-
tion is x will, at time ¢, have position x +u(x,t). The
strain (tensor) for this system is denoted by e =9, u. For
such a one-dimensional system these strains represent de-
formations that take the form of local contractions (e <0)
or dilations (e >0). (We note that we will be considering
finite strains, and this usually entails introducing a non-
linear combination of partial derivatives of the displace-
ment field to adequately account for the complete distor-
tion undergone by the system—see, e.g., Ref. 9. Howev-
er, for a one-dimensional system this only involves
higher-order powers of 9, u, and since we are about to in-
voke an expansion of the elastic potential energy in
powers of the strain, in ignoring the nonlinear part of the
finite strain tensor all we are doing is ignoring certain
higher-order terms in the potential energy.)

The symmetry of our one-dimensional system dictates
that all powers of the strain tensors are invariant."°
Thus, we find that an adequate local potential energy
density describing deformations of the system, of extent
—I<x=<lis

Vloc=fll[%a(ax“)2“%b(axu)3+%c(axu)4]dx . @.0)
We choose a, b, and c so that this potential energy has a
metastable local minimum for 3,u =0, and an absolute
minimum for some finite homogeneous strain. Such a po-
tential is sketched in Fig. 1. Higher-order powers of the
strain may be included in the potential without changing
the physics of the transition, and only complicate the
mathematics describing the dynamics. This potential en-
ergy may be understood as the isothermal case of a
Landau-type phenomenological free energy for a one-
dimensional bar undergoing a transition involving a
change of length.®

We also include a gradient contribution to the poten-
tial energy, analogous to the Ginzburg term in a
Landau-type free-energy expansion, given by

Vewa=1d [ _’I(aiu)zdx . (2.2)
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FIG. 1. The local, nonlinear elastic energy densities used for
(a) the change-of-volume transition (with @ =0.2, b=c=1) and
(b) the shear martensite transition (with 4=0.15, B=C=1),
plotted as a function of strain e=3,u. In both cases e=0
represents the metastable parent phase. Note that the material-
dependent constants b, ¢, B, and C may be scaled to unity, as
discussed, e.g., in Refs. 5 and 7, leaving only a and 4 as free pa-
rameters.

This term makes the sound waves dispersive, and may be
thought of as representing bond-bending forces. Again, it
is possible, although usually unnecessary, to include
higher-order derivatives to accurately model the phonon
dispersion relation for the system of interest. The magni-
tude of the phenomenological constant d may be deter-
mined from the curvature of phonon dispersion curves
near ¢ =0 (if the curvature of the phonon dispersion
curves is negative then the higher-order gradient terms
must be included). We note that the inclusion of the gra-
dient term is necessary to break the scale invariance of
the elastic medium, and incorporates discreteness effects
of the underlying lattice into our model—we have dis-
cussed the physical implications of this term else-
where.”!!

In this model, the system undergoes a transition in
which it lowers its internal energy by changing its length.
In order for this transition to reach a stationary,
reduced-energy equilibrium state, it is necessary to dissi-
pate the excess (internal) energy from the system. We
therefore include a Rayleigh dissipation functional for
the system, which models the elastic viscosity, given by

R=1ly f_’l<a,axu Ydx . 2.3)

(This term has a functional form that is independent of
the choice of boundary conditions—this is demonstrated
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in Appendix A.) In terms of the sound waves in the sys-
tem, the Rayleigh dissipation function damps the excita-
tions in a form that keeps them propagating at long
wavelengths, consistent with general hydrodynamic con-
siderations. '?

The kinetic energy is given by

- ! 2
T=4p[ (Qurdx, (2.4)
where p is the linear mass density of the undistorted bar.

We use the kinetic and potential energy terms to con-
struct a Lagrangian, L =T — V. — Va9, Viz,,

L= fi,[%ma,u P—1a(d,u)+1b(3,u)

—1e(@,u)*—1d(d2u)1dx (2.5)
and determine the equation of motion and boundary con-
ditions by means of the variational principle. We have
included this calculation in detail because it provides the
clearest derivation of the boundary conditions, which
here appear in the form of surface energy terms. These
boundary conditions are one of the focuses of this paper.

The equation of motion is obtained by setting the first
variational derivative of the Lagrangian, with respect to
the function u, equal to the first variational derivative of
the dissipation function with respect to the function
(d,u).° We compute these quantities, and temporarily
discard the surface terms, which arise during the integra-
tion process, in order to obtain the bulk equation of
motion. The more general boundary-condition analysis
in Appendix A demonstrates that retaining the surface
terms at this stage is equivalent to the energy argument
given in this section. The variational analysis, following
the notation of Ref. 9, gives

OL _ _ (3%u)+(2u)[a—2b(3,u)
Su
+3¢(d,u)?]—d(dtu) (2.6)
and
SR _ )
N E A @7

which then give the bulk equation of motion for the sys-
tem:

p(3%u)=(3%u)[a—2b(3,u)+3c(d,u)*]

—d(d%u)+y(9,02u) . (2.8)

By itself, this equation is incomplete—the boundary
conditions, which arise from the discarded surface terms,
remain to be computed. A particularly powerful and
physically motivated method of obtaining these condi-
tions begins from energy considerations. The Lagrangian
dynamical formalism® requires that the time rate of
change of the energy E of the system, as it evolves ac-
cording to the equation of motion, is related to the dissi-
pation function by 3,E=—2R. Thus, in order to derive
the boundary conditions on the equation of motion, we
construct the quantity



50 HYDRODYNAMIC DESCRIPTION OF ELASTIC SOLIDS WITH . . .

0—=-8,E+2R=fi'[p(afu )(,u)+a(d,3,u)(d,u)
—b(3,8,4 )3, u +c(d,3,u)d,u)
+(dd,32u Nd2u)+y(9,3,u)*]dx .
2.9)

Integrating by parts and substituting for pd’u from the
equation of motion, we find that the integrands cancel ex-
actly, and we are left with only surface terms:

{(3,u)[a(d,u)—b(d,u)+c(d,u)l+y(d,0,u)

—d(33u)]+d(3,0,u)duw)}|_,=0. (2.10)

These form the boundary conditions for the equation of
motion.

While mathematically speaking, only the difference be-
tween these quantities at the two boundaries need be
zero, it is easy to see that physically we must require that
the conditions be met at each boundary separately. The
quantity proportional to d,u,

a(d,u)—b(d,u)P+c(d,u)’+y(3,0,u)—d(du), (.11

may be interpreted as the momentum current J of the
system, conjugate to the momentum density pd,u. In this
interpretation, the equation of motion simply becomes
the continuity equation,

9,(pd,u)=09,J . (2.12)

The boundary condition then has a natural physical in-
terpretation (e.g., as in any hydrodynamic theory)—it is
the momentum flux at the boundary. If the system has
free-boundary conditions, that is, d,u is free to be
nonzero at the boundary, then the momentum current at
the boundary must be zero. Mathematically, it is allowed
that the momentum current at one boundary be compen-
sated by an opposite flux at the other boundary, but this
situation is not physical.

The second part of the boundary condition, propor-
tional to 9,0,u, involves dd2u. This is the generalized
stress conjugate to the strain gradient, as can be seen by
taking the functional derivative of the Lagrangian with
respect to d2u —it is, coincidentally, proportional to the
strain gradient itself, the proportionality constant being
the gradient coefficient d. If 9,0, u is also nonzero, corre-
sponding to free-boundary conditions, then the second
boundary condition is a generalized stress-free boundary
condition, which again must be satisfied independently at
each boundary.

The free-boundary elastic continuum system with the
local potential given by Eq. (2.1) is therefore completely
described by the equation of motion Eq. (2.8) subject to
the nonlinear, time-dependent boundary conditions

a(3,u)—b(d,u)*+c(d,u)+y(3,9,u)—d(d3u)=0
at x=I and x=—[, (2.13a)
d(d2u)=0 atx=I and x=—1 . (2.13b)

The above equations represent the continuum approxi-
mation to the equations of motion and boundary condi-
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tions for a finite elastic system. However, as discussed in
the introduction, the validity of this approximation is not
obvious. To be specific, the continuum approximation in-
volves representing slowly varying discrete variables, the
displacement of each individual ion, by a continuum field.
The termination of a system is certainly not a slowly
varying perturbation, so we must justify this approxima-
tion near the boundary. With this in mind, we consider
the discrete representation for this system.

The system consists of some number N of atoms linked
together in a chain, and in the undistorted state is uni-
formly spaced with some repeat distance. Each particle
has a local displacement from the undistorted
configuration associated with it, and these distortions are
the dynamical quantities of interest. The kinetic energy
of the system is given by

N
T=3Y imi?, (2.14)
i=1
where m =pL /N, with L(=2]) the total length of the
systems, and the overdot represents differentiation with
respect to time, viz., 4; =du; /dt, etc. The local potential
of the continuum system is modeled here by a sort of
“nonlinear springs” between adjacent particles. There
are N—1 such springs, which are sensitive to the
difference in the displacements between adjacent parti-
cles. We denote the undistorted distance between parti-
cles, the lattice constant, by 6. The energy of these local
potential springs, as a function of the distortion
difference, has the same shape as the continuum local po-
tential. The local potential for this system is then given
by

2 3

Ui U;

(2.15)

The discrete analogue of the nonlocal potential is a next-
nearest-neighbor energy term, which favors even spacing
between adjacent springs. There are N —2 terms of this
type, given by

N-—1 2
—_ 1
Vgrad— 2 ?d
i=2

Ui tu —2u
82

(2.16)

Finally, there is a dissipation-function term, which damps
the velocity differences between adjacent particles, given
by

(2.17)

In the foregoing, the parameters a, b, ¢, d, and ¥ are the
same as in the continuum case, which is approached in
the limit of large N and small 8 such that N6=L remains
constant.

The dynamics for this discrete approximation to the



3592 A. C.E. REID AND R. J. GOODING 50

continuum system can then be obtained by standard,
finite-dimensional Lagrangian analysis on the dynamical
variables u;. Since the individual terms in the Lagrang-

different kinds of resulting equations of motion. For an
index k corresponding to the bulk regime, that is, k not
within two spaces of the end points, we obtain the equa-

ian must involve variables at two or more sites, there are  tion of motion

.. a b
muk=_82_(uk+1+uk—l_2uk)—_83 (g oyt = 2w Nug 4y —ug )]
c
+_84 (gt =2 0w oy Fud Huf g =gy — gty —ug )]

fz—mkﬂﬂk-l—zuk). (2.18)
For the left boundary, the local potential part of the Lagrangian, given by Eq. (2.15), has only one term containing u |,
so that the equation of motion for u,; does not have the same structure as the above. The nonlocal term, Eq. (2.16), has

only one term containing u,, and two terms containing u,, whereas it contributes three terms for a typical bulk site.

d
_'57(“](_2_4uk,l+6uk _4uk+1+uk+2)+

The equation of motion for the end particle is therefore

. _a
mu, 82

(u1~u2)—§;(ul-—u2)2+é(ul—u2)3+ %(u3+u1—2u2)+—2;7(u1—122) .

(2.19)

The equation of motion for the second particle in from the boundary has the bulk form for the terms derived from the

local potential and a modified nonlocal contribution,

mily =55 s+, —2u2)~%[(u3+u, 2,y —u;)]

c d S .
+~8—4—[(u3 +u,—2u,)udtud+ud—usu, —u,u, —uju, )]—g(u4—4u3+5u2—2u1)——é%(u3+u1—2u2) .

The right end involves analogous equations.

The principal advantage of this formulation is that the
boundary conditions are intuitively straightforward. In
particular, free boundaries are implemented simply by
not constraining the end particles—that’s it. This sys-
tem, being a well-posed Lagrangian dynamical problem,
will then show the correct behavior, approaching the
continuum behavior as the number of particles is in-
creased for a given (undistorted) physical length. This
makes this system an excellent “benchmark” with which
one can scrutinize the boundary conditions, which were
derived above to append the bulk equation of motion for
the continuum. To be specific, if one integrates the equa-
tions for the set of u;, as well as for the continuum field
u(x,t), and finds identical descriptions of the displace-
ments, then clearly our continuum approximation includ-
ing the boundary conditions is vindicated.

Figure 2 shows a series of displacement fields of the
system, each taken at a different time for the dynamical
evolution of the system. This is an integration of the
discrete equation of motion. One can use these discrete
variable to evaluate the boundary conditions stated in Eq.
(2.13)—to do this one must use finite difference approxi-
mations for the spatial derivatives (see Ref. 13 for these
approximations to arbitrarily high order in 8). We find
that the boundary conditions of Eq. (2.13) are indeed
satisfied by our integration of the discrete displacement
variables, to within the accuracy our temporal integra-
tion scheme, thus justifying our use of the continuum ap-
proximation to represent a finite system.

(2.20)

/

1.5 — J

1.0

-5 -4 -8 -2 -1t 0 1 2 3 4 §

FIG. 2. Nonlinear dynamical evolution of the change-of-
length system, derived from the integration of the explicitly
discretized equation of motion. The solid curve is the zero-
velocity initial displacement field. The long-dashed curve is the
displacement field after two time units have elapsed, and the
short-dashed curve is the displacement field after four time
units. The initial condition was chosen such that the early dy-
namics exhibited dramatic changes at the boundary, in order to
test the validity of the continuum dynamical equation of motion
and boundary conditions. This system ultimately evolves to the
fully transformed state.
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(The primary disadvantage of using the discrete dis-
placement variables, and the reason it is not the only ap-
proach discussed here, is that a large number of particles
are required to represent any reasonably sized system,
and it is such systems that form the variety of complicat-
ed patterns observed in, say, transmission electron micro-
graphs of interesting first-order strain transformations.*
For example, the number of arithmetic operations re-
quired to implement this method grows superlinearly in
the number of points N, which is already a large number.
Also, the numerical problem of cancellation errors in the
computation of the high powers of the first differences in
the local potential leads to a round-off problem at long
times'*—no such problem arises when integrating
(1+1)-dimensional partial differential equations, as dis-
cussed, e.g., in Ref. 14.)

B. Shear transformations

The first-order shear transformations have a very sim-
ple one-dimensional Landau-type potential,'> which Bales
and one of us have studied previously.> The local poten-
tial is given by

Vioc= f_ll[%A(axu P—1B(d,u)*+1C(9,u)%]dx .

(2.21)

This potential, for appropriately chosen 4, B, and C, has
a metastable minimum at zero strain, and two degenerate
stable minimum at the martensitic strains e ==e,,. This
potential is sketched in Fig. 1. The transition we will fol-
low involves beginning a system in the metastable un-
strained state, and watching it transform into either or
both of the stable strained states. Using the same strain-
gradient energy density (with coefficient G), kinetic ener-
gy density (with mass density p’), and Rayleigh dissipa-
tion function (with sound-wave viscosity I') as given
above, one finds the equation of motion studied in Ref. 5,
viz.,
p'*u=(d2u)[ A —3B(d,u)*+5C(3,u)*]
—G(%u)+T(9,3%u) . (2.22)

We append this equation with the boundary conditions,
viz.,

A3, u)—B(d,u)*+C(3,u)’+T(d,0,u)—G(du)=0
(2.23a)
(2.23b)

at x=1,—1,
G(d2u)=0 atx=I,—1

and thus have a complete set of dynamical equations plus
boundary conditions to describe such transitions.

III. DYNAMICAL EVOLUTION

A. Surface nucleation in a change of volume transition

At this point we define our method of studying the
growth dynamics that takes a system with a single super-
critical nucleus to its final state structure—for the
change of volume transition this steady-state arrange-
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ment is fully transformed product phase.

As mentioned in the Introduction, nonlinear elastic
systems do not readily admit the decomposition of the en-
ergy into bulk and surface terms conventionally used in
classical nucleation theory—this is due to the presence of
nonlocal terms in the energy, and also due to the distor-
tion of the parent system arising from the inclusion of a
localized region of product phase.!! It is nevertheless
possible to classify perturbations of the metastable parent
system as supercritical or subcritical, depending on the
behavior of the system under the dynamics with the given
perturbation as an initial condition. If the perturbation
relaxes back into the metastable phase, it is subcritical. If
it grows towards the globally stable product phase (or
some inhomogeneous structure involving coexisting
parent and product phase—see the next section), it is su-
percritical. In principle, any perturbation may be used as
an initial condition, but since we are primarily interested
in the nucleation of regions of product state in the sys-
tem, we restrict ourselves to strongly localized
displacement-field perturbations. We have shown else-
where’ in a similar system that the distinction between
supercritical and subcritical perturbations can depend on
purely dynamical features of the system, such as the mag-
nitude of the sound-wave viscosity, thus emphasizing our
posture that it is essential to study the dynamics in order
to be able to properly characterize nucleation.

In order to propagate a given initial condition forward
in time, we first express the initial displacement field in
terms of orthogonal functions on a finite interval, the
modes of the system, and then numerically integrate the
mode amplitudes in time using an appropriate
amplitude-based equation of motion. This method is not
trivial to implement, and the derivation of this equation
of motion is technically involved. However, a substantial
advantage results from a mode-decomposition of the dis-
placement field: for a complete basis not having any re-
strictions on the value of the basis functions at the boun-
daries, the boundary conditions [e.g., Eq. (2.13)] are au-
tomatically satisfied—thus, only the bulk equation of
motion need be integrated. A detailed description of this
method is given in Appendix B. Within this functional
decomposition, the full dynamics of the system are well
described by relatively few degrees of freedom—the
mode amplitudes—without sacrificing the ability to ex-
actly represent the metastable, homogeneous parent
phase and the globally stable, homogeneous transformed
phase, which are important “landmarks” in the phase
space of the system.

We have used this integration scheme to model the dy-
namics of the change-of-volume system for a variety of
initial conditions and have observed an extremely impor-
tant nucleation event. This “surface nucleation” process
is illustrated in Fig. 3. This system begins from a zero-
velocity, “bump” initial condition. The system first con-
verts the gradient potential energy of the bump to kinetic
energy, which then propagates through the system until
it reaches the boundary. Here a remarkable “cracking
the whip”’ effect is observed, viz., the boundary of the sys-
tem has its slope (i.e., strain) changed from one sign to
another very quickly. This corresponds to the end points
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reaching high velocities and subsequently being carried
by their inertia into a stable well of the local potential.
The system continues pulling more of the system into this
well until, finally, the system is homogeneously
transformed. Clearly, this is an example of heterogene-
ous nucleation, and it is the system’s only heterogeneity,
viz., its surface, which serves as the nucleation center.
This dynamical evolution demonstrates an important
concept. We began with an initial state that subsequently
transformed for a system of a given length. However, if
we begin with the same localized initial condition for a
longer system such nucleating dynamics do not always
occur—only if the propagating bump reaches the surface

u(z,t)
S
o

-0.4
3

2

1

0

-1
-2
-3

-1.0 -0.5 0.0 0.5 1.0
x

FIG. 3. The phenomenon of edge-nucleation, exhibited by
the change-of-length system with a globally stable side-well
state. The material constants in the equation of motion, viz.,
Eq. (2.8), are p=b=c=g=1,2=0.075, and y =0.16. Panel (a)
depicts the early dynamics of the system. The solid curve in this
panel is the zero-velocity initial displacement field, and the
dashed curve is the displacement field at t=2. The initial
response of the system is to flatten out the bump. Panel (b) con-
tains the surface nucleation event at the left-hand edge. The
solid curve is the ¢ =S5 state, the long- and short-dashed curve is
the ¢t=6 state, and the double-dashed curve is the t=7 state.
The left-hand edge of the system is propelled into the stable well
of the potential by the spreading central bump. Panel (c) shows
the long-time limit of the dynamics. The solid curve is at t =35,
and the long- and short-dashed curve is at =36, indicating that
the system is evolving towards the globally stable lengthened
state, the latter indicated by the double-dashed curve.
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with a sufficient strain and/or velocity does the transition
to the elongated state occur. Thus, here we have an ex-
ample of a supercritical nucleus for a system of finite spa-
tial extent, where the nucleation proceeds at the surface,
but homogeneous (bulk) nucleation would not occur for a
longer system (of course, any homogeneous nucleation
event must be independent of the size of the system or it’s
not really homogeneous nucleation). Thus, the bulk fluc-
tuation only becomes supercritical due to its proximity to
the surface.

We note that having established the dynamical system
of equations describing a system with open boundary
conditions and being able to integrate these equations ac-
curately, we have quantitatively studied heterogeneous vs
homogeneous nucleation. To be specific, by using the
linear response theory of Ref. 11 to define potential nuclei
at both the surface and in the bulk, for the first time we
have been able to quantitatively estimate the reduced
heterogeneous nucleation barrier. This work will be re-
ported elsewhere.

B. Late stage dynamics of martensitic pattern formation

Martensitic phase transitions lead to marvelous pat-
terns of juxtaposed polydomain structures, such as those
seen in electron microscopy experiments.!® The main
question motivating most of the work in this section, as
well as our earlier publications,>!”"® is, how does the
system grow into such complicated arrangements? Previ-
ous work by others has focused only on the energies of
the domain walls separating different variants of the low-
temperature parent (martensitic) phase, as well as inter-
faces separating the high-temperature parent and the
low-temperature phases.'® Our work attempts to de-
scribe how such structures evolve from an arbitrarily
chosen supercritical nucleus into the, e.g., twinned bands
of martensite. '

Work by Bales and one of us® was the first step in
answering our questions concerning the growth leading
to polydomain martensite. Firstly, it was demonstrated
that previous work?® on the motion of a parent-phase
product-phase interface based on time-dependent
Ginzburg-Landau theory was incorrect because it did not
properly incorporate the hydrodynamic character'? of
sound waves (see our discussion of this point in Ref. 7).
Then, by beginning the system in a state with a static
configuration corresponding to a supercritical nucleus,
we followed the deterministic dynamics of the growth of
martensite. Figure 1 of Ref. 5 shows the main result of
this work—for sufficiently deep quenches (viz., tempera-
tures well below the first-order phase transition), a
dynamical twinning occurs whereby alternating domains
of martensite of strain e =te,, are produced dynamical-
ly. Figure 1(a) of Ref. 5 displays the evolution of the sys-
tem that arises when the inertia of the displacement field
is ignored, viz., a single domain of martensite is formed
(this is the growth that would be predicted by Chan’s
theory?®). That this path can never be accessed in nature
may be understood by noting that this growth corre-
sponds to a state in which the crystal has a kinetic energy
that scales with the size of the system and is thus infinite
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for any bulk sample.

We now present results for this growth at very long
times for a finite sample—by including the boundary
conditions given in Eq. (2.25), we can allow the growth
front studied in Ref. 5 to reach the boundary, and thus
allow the system to approach its steady-state
configuration. In fact, despite the large body of work
that has studied the stabilities of various transformed
structures, the existence of certain twinned states is still
in question—for example, some work?' has predicted
that very special surface stresses must be present for a
twinned crystal to be stable. Then, the very natural ques-
tion that arises is, does the structure that is created in the
dynamical twinning process found in Ref. 5 survive when
the transformation interface reaches an open boundary
and the system is allowed to proceed to a steady state?
To address this question, and thus determine the late-
stage dynamics of dynamical twinning, we have integrat-
ed Eq. (2.22) subject to the boundary conditions given in
Eq. (2.23). In this case we have integrated the equation
of motion using a variant of the method of lines that has
recently been proposed'*—we note that identical results
are obtained if the mode-expansion technique is em-
ployed.

We have chosen the initial state to be a static localized
strain in a system bounded by —/<x </. An antisym-
metric initial state, viz., one where the localized strain is
antisymmetric with respect to inversion about x =0, is
the initial condition most reminiscent of a small local
fluctuation of the displacement field, and thus here we
present the results obtained from integrating such a state.
However, we note that for a symmetric initial condition,
similar dynamics are found. For the symmetric initial
state, the boundaries move once the transformation front
has propagated to the boundary, and our results are
shown in Fig. 4. The t—o graph is the static
configuration in which the system finishes. Thus, the
dynamical twinning concludes with a twinned product
configuration. This is clearly not the absolute minimum
of the elastic potential but rather is a metastable state,
which, in the absence of thermal fluctuations, has an
infinite lifetime. The greater the length of the system
studied, the more regular the spacing between the mar-
tensitic variants—thus, the irregularity of the spacings
seen in this figure is a finite-size effect.

As mentioned above, for all initial conditions with a lo-
calized fluctuation of the strain, when the system is
quenched to be at a sufficiently low temperature, we find
a final steady-state configuration with a twinned
morphology —obviously, such structures possess a robust
stability, in contradiction to Ref. 21. It is unclear of the
reason for the differences between the analytic con-
clusions of Cao et al., and our own numerical results, al-
though admittedly we have only presented results for a
one-dimensional system, and higher dimensionalities may
change our conclusions—our dynamics for two-
dimensional shear transformations will be discussed in a
future publication, and there a complete comparison to
the work of Ref. 21 will be more suitable.

Lastly, in Ref. 5 a dynamical excitation named a two-
kink solution was found (see Fig. 2 of Ref. 5). Such dy-
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namics result if the temperature quench through the
first-order transition is shallow. We have determined the
late stage dynamics for such systems for both symmetric
and antisymmetric initial conditions. For symmetric ini-
tial conditions the final state is a single domain of
martensite—no domain walls are present. For an an-
tisymmetric strain configuration, the dynamics are shown
in Fig. 5. Here the final state is a single-domain wall
separating the two martensitic strain states. Note that
this final state is the same as that found in Ref. 7, where
fixed-boundary conditions were used, and thus we have
clear evidence that the inhomogeneous product
configurations that result from our dynamics can be in-
dependent of boundary conditions.
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FIG. 4. The evolution of a shear martensite, described by
Eqgs. (2.22) and (2.23), undergoing the dynamical twinning se-
quence discussed in Ref. 5, eventually reaching its steady-state
configuration. We only show the x > 0 section of the system. In
Eq. (2.22) we have used p’=1, 4 =0.05, B=C=G=TI=1. For
these parameters the strains of the degenerate product states are
e=xtey~=*1. Panel (a) shows the initial antisymmetric local-
ized strain state as a solid curve, and the t=4 curve as the
dashed curve. This demonstrates the growth front beginning to
twin as the portion of the system just ahead of the growth front
is pushed into the strain state opposite to that of the growing
domain. In panel (b), #=6 is the solid curve and =10 is the
dashed curve. Panel (c) represents the final, static, twinned state
of the system, and is found at any time of the dynamical evolu-
tion for ¢ 2 130.
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IV. SUMMARY

The one-dimensional systems studied in this paper ex-
hibit the important qualitative features of mesoscopic,
finite, continuum elastic systems. We have modeled the
full nonlinear dynamics for this system in the presence of
free boundary conditions, corresponding to the situation
of an isolated single-grain crystal, and have seen how the
intrinsic inhomogeneity associated with the boundary can
give rise to qualitatively new effects. We have employed
this formalism and have observed the phenomenon of
“surface nucleation” in a system with only one hetero-
geneity, viz., its surface. We have extended this work to
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FIG. 5. The evolution of the double-kink system. The pa-
rameters for this system are the same as those of Fig. 4, except
that now 4 =0.15, and again the martensitic strain is ey ~ % 1.
Panel (a) shows the early time dynamics—the solid curve in this
panel in the initial, antisymmetric, zero-velocity strain profile of
the system, identical to that of Fig. 4. The figure shows only the
right-hand half of the system. The dashed curve of panel (a) is
the t =4 state of the system, showing the formation of the two
boundaries, one between the positively strained region of the
system and the negatively strained region, and a second between
the negatively strained region and the unstrained region. Panel
(b) shows the propagation of these two boundaries. The solid
curve is at t =16, the dashed curve at 1 =20. The boundary be-
tween the unstrained region and the negatively strained region
propagates rapidly towards the edge of the system, while the
transformation front closer to x =0 propagates more slowly.
Panel (c) shows the final state for this system, in which only the
martensitic twins and one twin boundary are present.
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yield a complete characterization of the reduced hetero-
geneous nucleation barrier for a free surface, and these
results will be presented elsewhere. Further, we have
been able to demonstrate the stability of interesting inho-
mogeneous structures for shear martensites in the ab-
sence of surface stresses. This work is being repeated for
two- and three-dimensional systems, where the problem
of so-called accommodation leads to even more compli-
cated patterns being formed —this work will also be pub-
lished elsewhere.

The methods described here give numerical access to
the dynamics of finite continuum systems, and these
methods are reviewed in Appendix B. The finite-
difference method of Sec. II provides an intuitively
straightforward but time-consuming solution to the
dynamical problem, and is restricted to systems of severe-
ly limited spatial extent. However, results from such
work serve as a benchmark through which other numeri-
cal methods can be tested. (In fact, here we used results
obtained from this technique to justify the nonlinear,
time-dependent boundary conditions that we have found
in Sec. III.) Our proposed solution to the integration of
such continuum systems involves expressing the continu-
um fields as a modelike expansion in terms of a complete
set of basis functions, where there are no restrictions on
the functions, or any of the function’s derivatives, at the
boundaries. Then, one must express the Lagrangian in
terms of these basis functions, and then integrate the
Euler-Lagrange equations for the mode amplitudes. This
provides a complete description of the dynamics of the
system, including the boundary conditions. The utility of
this approach to higher-dimensional systems is straight-
forward.
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APPENDIX A: GENERALIZED
BOUNDARY CONDITIONS

Our primary motivation for modeling elastic systems
at the mesoscopic level is to understand the nature of
structural phase transitions. The choice of free-boundary
conditions for the principal analysis in this paper is a
somewhat idealized choice, assuming a completely
coherent initial state consisting of a single, uncon-
strained, initial domain. In practice, experimental sam-
ples consist of numerous crystalline domains in mechani-
cal contact with each other. A first step towards model-
ing this situation can be taken by generalizing the bound-
ary conditions.

Consider the one-dimensional, nonlinear, dissipative
“bar” system in contact at either end with linear, nondis-
sipative bars, which model adjacent domains. The effect
of these domains will be to act as springs, introducing
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two new surface terms, which will constrain the motion
of the end points of the primary system. The springs will
have some spring constant k, which characterizes the
new, more general boundary condition. The limit k —0
is the free-boundary case already studied, and the oppo-
site limit k — oo is that of fixed boundary conditions.

Including these new surface terms, assuming differing
spring constants k; on the left and k, on the right, the
more general Lagrangian is

L= f_'ll%p(atu ~1a(d,u)+1b(d,u)—1Lc(d,u)
—1d(32u))dx — L[k u(—D+ku¥D] . (A

The dissipation function is not altered, and is still given
by

R=%yf11(a,axu)2dx . (A2)
In this appendix, we shall derive the boundary conditions
by retaining the surface terms in the Lagrangian analysis,
rather than using the energy arguments of a previous sec-
tion. The first variation of the Lagrangian is given by the
terms linear in A under the substitution u —u + h, where
h(x) is some arbitrary function of x.

sL=[" [p(3,u)(3,h)—a(d,u)3h)
+b(3,u )3, h)—c(3,u) 3, h)—d(d2u )(d2h))dx
—kyu(=Dh(=1)—kyu(Dh(I) . (A3)

For the dissipation function, we make the substitution
o,u —9d,u+h,

5R =yfll(a,8xu)(axh)dx, (A4)
using the same arbitrary function A as in the case of Eq.
(A3). The Lagrangian dynamical method requires that
the variational derivative of the Lagrangian, 8L /8u, be
equal to the variational derivative of the dissipation func-
tion, R /8(9,u). It follows from this that the equation of
motion can equally well be obtained by equating the first
variations 8L and 8R as above. Integrating by parts to
eliminate derivatives of the function A, one obtains a bulk
term, the equation of motion, and two surface terms, one
proportional to d, 4 and one to h. The first surface term
is identical to the boundary condition Eq. (2.13b). The
second surface term is a generalization of Eq. (2.13a) and
is given by

a(3,u)—b(d,u)+c(d,u)—ddu)

+v(8,0,u)—k,u=0 at x=I, (A5a)
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a(d,u)—b(d,u)+c(d,u)’—d@du)

+y(9,0,u)+k,u=0 atx=—1. (ASb)

The gradient boundary condition is as in the previous
case. These generalized boundary conditions clearly
reduce to those of Sec. II in the case k;=k,=0. The
case k,k,— o is most clearly understood by dividing
Eq. (ASa) through by k, and Eq. (A5b) through by k,
and then taking the large k,,k, limit. In both cases, the
equations reduce to u =0, corresponding to fixed bound-
ary conditions, as expected.

APPENDIX B: INTEGRATION
OF THE CONTINUUM EQUATION OF MOTION

1. Naive-mode expansion

Here we shall discuss a method for solving the continu-
um equation of motion that satisfies the boundary condi-
tions. The method involves projecting the equation of
motion, Eq. (2.8), onto a set of basis functions, and then
finding the equation of motion for the basis function am-
plitudes. This method has the advantage of a greatly re-
duced number of degrees of freedom, as well as possibly
generalizing to higher-dimensional systems. A similar
approach was successfully used by us for the problem of
fixed boundary conditions.” [The primary difficulty en-
countered in any attempt to construct this type of im-
plementation is that the first boundary condition in Eq.
(2.13a) is a function of both 9, # and 9,9, u, and is non-
linear.]

The displacement field u(x,?) can be expanded into
component functions

u(x,t)= 3 n(t)f;(x), (B1)

where the functions f;(x) form a complete basis on the
appropriate interval. These functions need not be or-
thogonal on the interval. Within the framework of these
functions, the physical state of the system is completely
specified by the amplitudes n;, and the velocities 7#;, cor-
responding to each of the basis functions.

This expansion substituted into the continuum equa-
tion of motion, Eq. (2.8), then gives the mode expansion,

pii,-f,-=n,~ i"(a—anjf;+3cnjf;nkf;;)
_gnjf;”'"_yﬁj j” , (BZ)

where f/=df;(x)/dx, etc. We implicitly sum over re-
peated indices. Taking the inner product of these expres-
sion with a particular basis function f,(x) on the interval
of interest yields

pii; [ fifndx=an, [ fi'fodx —bnn; [ £'f;f dx +enmmy [ f1fififodx+gn; [ £ fodx+yn, [ fI'f,dx . (B3)

Each term in Eq. (B3) contains an integration, over the
relevant interval, of a product of derivatives of the basis
functions. These integrals are independent of the ampli-
tudes n;, but give rise to tensors (see, e.g., Ref. 7), which

r
couple the amplitudes to each other in the equation of
motion. These tensors depend only on the choice of basis
functions {f'} and the form of the potential energy.

This mode-based equation of motion, Eq. (B3), can
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then be integrated in time to find the dynamics of the sys-
tem. The right-hand side depends only on the system
state. The left-hand side is straightforward if the func-
tions {f} are chosen to be orthogonal. In this case, left-
hand-side integration gives a quantity proportional to
8, - In general, however, the full left-hand-side term will
be a linear combination of the accelerations of the vari-
ous mode amplitudes. In this case, a matrix equation in-
volving the symmetric matrix

M= [ fif,dx

must be solved before the acceleration values can be as-
signed. (This requirement may seem to strongly favor the
choice of a set of functions, which are orthogonal on the
interval of integration, but, in practice, the matrix M,
need be inverted only once and stored, and the left-hand-
side evaluation process represents a small cost compared
to the effort required to evaluate the right-hand side.
Thus, nonorthogonal basis sets do not cause any
difficulty.)

The second ingredient in this method are the boundary
conditions, which can be expressed in terms of the mode
amplitudes by again substituting the mode expansion, Eq.
(B1), into the appropriate continuum equation from Eq.
(2.13). This gives, for example at the right-hand bound-
ary x =1,

an £ —bmn, fI(Df D +engnny £HDf]D (D)
oy fi(h—dn f{"(=0

(B4)

(BS)

and

dn,f!'(1)=0 (B6)

with a similar constraint at the left-hand boundary.

The first boundary condition presents the most com-
plex problem, since it is, in principle, a relation between
products of sums of coefficients. Probably the most
effective method of coping with this type of boundary
condition is by means of a judicious choice of basis func-
tions. We choose a primary set of functions to be ortho-
normal among themselves and to have no first or third
derivative at the boundaries. These functions will then
automatically satisfy the first boundary condition, and
can be linearly combined so as to satisfy the second
boundary condition by means of a projection operator.
However, such a set of functions is not by itself an ap-
propriate choice to represent the dynamics of the
system—it is known that the final, fully transformed
state of the system is the one for which u#(x) is linear,
with a slope corresponding to the bottom of the stable
well in the local potential. This state has a slope at the
boundary, so that it is reasonable to suppose that the
dynamical system will, in the coarse of the motion, ac-
quire such a slope. The dynamics must allow for this.

Our method is to augment the basis function set with
additional functions, not constrained to be orthogonal to
the original basis set, which have slopes at the boundary.
To account for the velocity degree of freedom, we use
two such functions, chosen to be orthogonal to each oth-
er. We represent the displacement field as a function of
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time using the functions

u(x,t)=a(t)g(x)+B(t)h(x)+n;f;(x), (B7)
where
£ix)=V2/L sin |2t Dmx | (B8)
glx)=x, (B9)
and
_ —L3 . |2mx -
h(x) Py [sm < + 1sin 7 (B10)

These functions are not completely general but describe
only odd-parity configurations. This is physically correct
if we restrict ourselves to odd-parity initial conditions,
since the dynamics preserves parity. The function g has
been chosen such that it has a unit first derivative at the
boundary and zero second and third derivatives there,
and the function 4 has been chosen to have a unit third
derivative and zero first and second derivatives at the
boundary. The principal basis functions Eq. (B8), already
discussed, have been contrived to satisfy both boundary
conditions. The functions g and A are not orthogonal to
any of the f’s, and trivially satisfy the second boundary
condition. This augmentation of the basis gives two addi-
tional degrees of freedom, which allows the two boundary
conditions to be incorporated into the equation of
motion. We take the linear case as an example.

If we assume that the initial conditions satisfy the
boundary conditions, it is sufficient to require that the
second time derivative of the boundary condition remain
zero throughout the dynamics. The boundary condition
thus cannot acquire any velocity, and will be satisfied at
all times.

Using the orthonormality of the main basis functions,
and the property that trigonometric functions are pro-
portional to their even-numbered derivatives, specifically,
fl'=—k}f;, with k;=(2i+1)m/L, we have that the
mode-based equation of motion becomes

g O+ Eh+4, =alag P+ BhD —kin,]
_d[agim"'ﬁhim—kf”i ]

+ylag®+BhP —kH;], (B11)
where
g= " |4 g0 | fi(xrdx
1 | 2
and (B12)
=" :l‘i—"nhm filx)dx .

The appropriate time derivatives of the boundary con-
ditions can be expressed in terms of modes as well. The
first time derivative of the first boundary condition gives
a relation involving second time derivatives of the param-
eters a and B,
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a

ég'(D+Bh'(H=——[ag'(H+Bh'(])]

&.ﬂ

)—Bh"(D)], (B13)

_[aglll

and the second time derivative of the second boundary
condition gives

S #f{(=0

i=0

(B14)

The full dynamics for the system can be conveniently
specified in matrix form. Labeling the right-hand side of
Eq. (B11) by 7; and the right-hand side of the boundary
condition Eq. (B13) by d,, we may write

0 0 fy £ (]| é 0

g n() 0 0o -+ 0 B d

go ho l 0 A 0 i’io ro

g h 0 1 0 fiy - A

g, h, O o 1 || r
(B15)

This is the full equation of motion, including boundary
conditions. The system can be reduced to a 2 X2 matrix
by means of row reduction. The appropriate multiple of
each the third and subsequent rows can be subtracted
from the first so that the top two rows of the matrix mul-
tiply only & and 8. The resulting system is

2efi'h I hSfD) >rfi')

a i
g'(h

5=

This system is readily solved for & and §, and the remain-
ing coefficients are then determined by back substitution,

(B17)

hl(l) d] . (Bl6)

h.i =ri _—dg, —th .

The dynamics of this system can then be computed by
using the given accelerations to compute new velocities,
and the velocities to compute new positions, iterating for-
ward from one time step to another. The boundary con-
ditions will be satisfied exactly at all times.

This type of approach can be generalized to include the
nonlinear part of the equation of motion. Formally, this

i

For the particular basis functions chosen here, the
derivative f’'(x) is zero at the boundaries, and thus the
first surface term in Eq. (B23) is zero. The second surface
term, however, is nonzero. Because the functions f;(x)
are odd parity, and the derivative g'(x) is even parity, the
second surface term gives the same sign contribution for
every index i. For the particular basis functions we have

! !
> f_ll[g(x)f,-(x)dx]f,-"=z [g(x)f{(x)l_l—g'(x)f,-(x)‘_l+f_llg”(x)f,-(x)dx fih.
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is a simple matter of altering the definition of the right-
hand side quantities »;. In practice, however, the auxili-
ary function method is not stable in the nonlinear regime.
While the nature of this instability is not entirely under-
stood, it almost certainly involves the appearance of a
divergent (with increasing numbers of modes) term in the
first row of the 2 X2 equation of motion, Eq. (B16).

The mode-expanded equation of motion is subject to a
particular form of pathology involving the auxiliary func-
tions. The sum

>e.fi'(D), (B18)

1

in fact, increases linearly with the number of modes in-
cluded in the system. This effect is present in all im-
plementations of this method, including the linear
method, which we have already seen, but only leads to
numerical instability in the nonlinear case. In the linear
case, the force field of the system at any given time must
morphologically resemble the displacement field and, in
particular, will not contain any new Fourier coefficients.
This is conjectured to give rise to equivalent divergences
in the r; and g; sums in Eq. (B16).

The divergence of the sum, Eq. (B18), arises whenever
the corresponding function g(x) has a slope at the bound-
ary. To see this, we rewrite the sum given by Eq. (B18) as

> { J! goosdx | £ (B19)

and, since f;(x) is the sine function of Eq. (B8), we re-
place it by

_ i"(x)

filx)= P (B20)
giving
_ ’H()
Ef g ()} (x)dx ] — 55— (B21)

The integral can be rearranged by parts twice, using
" _ _d__ ' __Q_ '
g(f{ ') =— (g ()f{(0)] = (g (x)fi(x)]

+g"(x)fi(x),

and, absorbing the k; into the quantity outside the in-
tegral, we have finally that

(B22)

(B23)

chosen, which always have the same magnitude for the
displacement at the boundary, this quantity is propor-
tional to the number of terms in the sum, which means
that it is simply proportional to the number of modes in-
cluded.

This instability can be quite pronounced. A robust
mode-based numerical integration method must satisfy
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the requirement that increasing the number of modes in
the system increases the fidelity of the dynamics. Figure
6 shows a failure of the auxiliary-function mode-based
dynamics to satisfy this requirement. The curves shown
are difference curves between a real-space integration and
two mode-based auxiliary-function integrations. This
figure should be viewed in light of Fig. 7, which is the
corresponding figure for the mode-based-Lagrangian
dynamical method. It is clear that the residuals for the
auxiliary-function method are quite large and are not re-
duced but rather increased by the addition of more modes
to the dynamics. This renders this method unsuitable for
a description of the transformation problem.

A variant on this method, involving a full basis set
with no auxiliary functions, was considered as a solution
to the divergence problem, but expanding the continuum
equation of motion, Eq. (2.8), in any basis set for which
the functions have slopes at the boundaries gives rise to
the difficulty that all of the basis functions must simul-
taneously satisfy the boundary conditions, Eq. (2.13), one
of which is nonlinear. Thus, this type of approach re-
quires that a nonlinear projection problem —that of pro-
jecting the basis-function coefficients onto the subspace of
functions that satisfy the boundary conditions—must be
performed at every time step. This is numerically unsta-
ble and conceptually hideous. It has the advantage, how-
ever, that it is one small step away from the next, more
successful method.
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FIG. 6. Difference curves between a spatially discrete in-
tegration of a nonlinear system over a fixed-time interval, using
an initial condition similar to that of Fig. 2, and the naive
mode-based dynamics. The solid curve is the difference between
the discrete dynamics and an eight-mode integration, and the
dashed curve is the difference between the discrete dynamics
and a twelve-mode integration. This figure shows that the addi-
tion of a greater number of modes to the naive mode-based dy-
namics reduces the accuracy of the approximation, thus indicat-
ing that this scheme is not robust.
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FIG. 7. Difference curves between the spatially discrete in-
tegration of a nonlinear system over a fixed-time interval, using
an initial condition similar to that of Fig. 2, and mode-based La-
grangian dynamics, for various numbers of modes. The solid
curve shows the residuals for a 12-mode integration, the long-
dashed curve for a 14-mode integration, and the short-dashed
curve for a 16-mode integration. For the mode-based Lagrang-
ian dynamical method, the addition of a greater number of
modes to the dynamics increases the accuracy of the approxima-
tion, indicating that the Lagrangian method is robust.

2. Mode-based Lagrangian

The final method used to describe the dynamical evolu-
tion of the bent-bar system is an outgrowth of the preced-
ing method. It combines the advantage of the mode-
based description—a small number of degrees of
freedom —with the conceptual simplicity of a straightfor-
ward Lagrangian dynamical approach.

We begin by expanding the function u in some basis
set, as before, but this time substitute the resulting expan-
sion directly into the Lagrangian rather than into the
equation of motion. The Lagrangian then has a finite
number of degrees of freedom, and the conventional
analysis can proceed. The full Lagrangian is

I . . ’ ’ ’ ’ ’
L=f_l[‘;'Pninjfifj"‘%aninjfifj+%bni”jnkfifjfk
_%cninjnknlfilf;flzfll——';'gninj i ;']dx >

(B24)

and the corresponding dissipation function is given by

! . . 1 pr
R=f_1[%'yn,-njf,~fj]dx . (B25)

In each of these quantities, the spatial integration can be
carried out, and there are no resulting surface terms. The
equation of motion is given by the standard Lagrangian

method for systems with a finite number of degrees of
freedom:
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pii, [ russax=—an, [ fifiax+onm [ fififiax
—enymen, [ fifififidx
—dn, [' fisydx—yi; [ fifja .
(B26)

This equation of motion can be seen to have a similar
structure to the equation of motion obtained by direct
substitution of the mode decomposition into the continu-
um equation of motion, given by Eq. (B3). These two ex-
pressions of the equation of motion are, in fact, related
through the boundary conditions. If the integrals on the
right-hand side of the equation of motion derived from
the mode-based Lagrangian, Eq. (B26), are integrated by
parts, differentiating one of the factors in each integral
and differentiating the rest of the integrand, the resulting
bulk terms give Eq. (B3), and the surface terms that arise
are f;(l) times the first, nonlinear boundary condition,
Eq. (B5), and f/(I) times the second boundary condition,
Eq. (B6). This new equation of motion, Eq. (B26), is
therefore equivalent to the mode-substituted continuum
equation of motion, Eq. (B3), including the boundary
conditions. It is therefore, by itself, a complete descrip-
tion of the dynamics of the system, except insofar as only
a finite number of modes are retained. The boundary
conditions will be automatically satisfied for any given
basis set {f}, although, in practice, explicit enforcement
of the second-derivative boundary condition has been
found to be useful.

The integrals in the equation of motion Eq. (B26) have
fixed values, which do not depend on the dynamics, and
so can be computed in advance. They are the “mode-
coupling tensors” of the nonlinear dynamics (see, e.g.,
Ref. 7), and provide the numerical mechanism that cou-
ples different basis functions to each other. The nature of
the finite-mode approximation is most apparent here.

Since every mode can, in principle, be coupled to every
other mode, a system whose initial condition can be ex-
actly described by a finite number of modes need not have
a dynamical evolution that retains this feature. For this
reason, it is of some importance to select basis function
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FIG. 8. Mode coefficient amplitudes as a
function of mode index, fitted to a bump initial
condition similar to that of Fig. 3, plotted as a
function of mode index. The solid triangles
are the amplitude values for trigonometric
functions, and the squares are the coefficient
values for a fit to Legendre polynomials. The
solid line connects coefficient values for a fit to
Chebyshev type-II polynomials. The Che-
byshev polynomial coefficients approach zero
most quickly with increasing index, indicating
that these polynomials are the best choice with
which to implement any mode-based dynam-
ics.

sets for which a few functions can plausibly be thought to
account for most or all of the dynamical evolution. The
trigonometric functions used for illustration in the
mode-based equation of motion, Eq. (B11), have a direct
physical interpretation in terms of the phonon modes of
the linear system. With other basis sets this identification
is somewhat more problematic, but it is nevertheless clear
that basis functions with large curvatures or many closely
spaced zeros are likely to be high-energy states of the sys-
tem and therefore not relevant to the dynamics. Further,
and in some sense more importantly, it is unlikely that

2.0

1.5

1.0

3

FIG. 9. Dynamical evolution of the system shown in Fig. 2,
but obtained using the mode-amplitude-based integration
scheme. This system correctly reproduces the dynamics of the
corresponding spatially discrete dynamical evolution for a sys-
tem, thus indicating that the choice of boundary conditions for
this method is correct. This plot is of the orthogonal polynomi-
als used in the dynamics, and thus is scaled in x relative to Fig.
2. However, the identities of the curves are the same as that
figure.
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products of these high-index states and lower states will
yield low-energy states. The curvature of the central po-
tential well, and the coefficient of the gradient term, pro-
vide a physical length-scale for the system. As long as
sufficiently many modes have been retained so that struc-
tures on this length scale or longer are well represented,
the mode approximation will be a good one.

Three possible choices of basis were investigated for
implementation using this method, trigonometric func-
tions, Legendre polynomials and Chebyshev type-II poly-
nomials. To select a basis set, a bump initial condition
was fit using each of the basis sets, and the resulting
coefficient sets were examined for rapidity of conver-
gence. This process is illustrated in Fig. 8, where the
coefficients are plotted as a function of index. It can be
seen in that figure that the coefficients of the Chebyshev
type-1I fit converge most rapidly, indicating that loss of
some accuracy in the highest coefficients would not
significantly alter the qualitative features of the fitted po-
lynomial. The Chebyshev type-II basis set is therefore
the most robust of the three fits, and these polynomials
were used on the subsequent dynamics.

The need to choose between polynomial basis sets is
not obvious, since the set of the first n Legendre polyno-
mials and the set of the first n Chebyshev polynomials
span the same set of possible functions—the best fit to a
given initial condition using a polynomial of order n is,
after all, unique. However, smallness of the higher-order
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coefficients gives a more robust fit and contributes to the
numerical stability of the integration process.

Figure 9 illustrates the dynamics of the system as de-
rived from the integration of the equation of motion ob-
tained from the mode-based Lagrangian, using Legendre
polynomials. These dynamics are very close to the linear
discrete-system dynamics of Fig. 2. Furthermore, this
system also exhibits agreement between the dissipation
function and the actual numerically measured rate of en-
ergy loss. The boundary conditions are satisfied by these
dynamics as well.

One final and important point: if this mode-based ex-
pansion is to lead to an accurate representation of the
true dynamics, we must be sure that as we increase the
number of modes, the resulting configurations of the dis-
placement field do indeed converge to some asymptotic
state, viz., the true state of the system. Figure 7 demon-
strates the convergence of the dynamics with increasing
mode numbers for the Chebyshev type-II basis function.
The curves are difference curves between final-state
configurations for a real-space nonlinear integration, and
several mode-based-Lagrangian integrations. The residu-
als are small, and become smaller as more modes are add-
ed to the expansion, indicating that the quality of the ap-
proximation is increasing with added modes. This is one
result that demonstrates that the configurations of the
system, including its intrinsic nonlinearities, are ade-
quately described using a finite number of basis functions.
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