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This paper presents a macroscopic theory for analyzing the magnetoelastic response of elastic type-1I
superconductors in the mixed state. The theory includes not only the vortex-dynamic effect, the
normal-current effect, and the flux-flow Hall effect, but also the effect of the London moment induced by
the local motion of the deformable superconductor in the mixed state. The theory is considered to be
valid within the framework of the generalized Galilean relativity at the magnetoquasistatic approxima-
tion. By this theory, a set of linearized coupled wave equations is derived to study some problems con-
cerning magnetoelastic wave propagation in type-II superconductors in the mixed state. Attenuation
and dispersion behaviors of the magnetoelastic wave are then analyzed. It is shown that the nonlocal
effect on the length scale of the London penetration depth may be of importance in analyzing the propa-
gation behavior of the magnetoelastic wave at frequencies higher than the depinning frequency. It is
also shown that the effect of the London moment induced by dynamic deformation can be of significance
as compared with the effect of the normal Lorentz current on the magnetoelastic coupling behavior of
elastic type-II superconductors in the mixed state. Furthermore, it is found that there is a phase change
between the transverse elastic wave and the magnetic wave induced in the type-II superconductor in the
mixed state. This effect is found to be closely related to the vortex-dynamic properties of the supercon-
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ductor.

I. INTRODUCTION

Recently, there has been growing interest in research
on electromagnetomechanical interactions in materials
due to recent progress in sophisticated device technology
and their potential applications."”3 During the past
three decades, many theories have been proposed and
subsequently developed to study the phenomena of elec-
tromagnetomechanical interactions in various types of
materials. A summary of these theories may be found in
the recent work of, for instance, Eringen and Maugin.*
Although much understanding of the behavior of deform-
able normal conductors has been gained and some effort
has been made to study the electrodynamic and mechani-
cal behavior of superconductors,’” ! the theoretical basis
of describing the electromagnetomechanical behavior of
deformable type-II superconductors in mixed states has
not yet been fully established.

During the past, much effort'3~!° has been made, both
theoretically and experimentally, to study the dynamic
behavior of the vortex structures in type-II superconduc-
tors in the mixed state due to its importance in under-
standing the macroscopic electrodynamic properties of
the type-II superconductors. Recently, a series of very
interesting theoretical work has been done by Coffey and
Clem,?®~% in which they have developed a nice theoreti-
cal model, using a self-consistent approach to vortex dy-
namics, to describe electrodynamic responses of the
type-II superconductors in the mixed state. In their
model, a continuum approximation of the London equa-
tion with a vortex term is used and the effect of quasipar-
ticle excitations is included by a normal-current density
contribution. Their model is considered to be applicable
to a wide range of electrodynamic phenomena involving
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vortex dynamics and over a wide range of frequencies, in-
cluding radio and microwave frequencies (below
superconducting-gap frequencies). However, the Coffey-
Clem model cannot be simply used to analyze elec-
tromagnetomechanical behavior of deformable type-II
superconductors in the mixed state, where the effect of
the motion of the superconductor has to be properly tak-
en into account.

In this paper, we shall, therefore, introduce a theoreti-
cal model to analyze the magnetoelastic response of elas-
tic type-II superconductors in the mixed state with the
aid of the Coffey-Clem self-consistent approach.?°~2° In
this model, the effect of the London moment induced by
the local motion of the elastic type-II superconductor in
the mixed state and the effect of the Lorentz force on the
magnetoelastic behavior of the elastic type-II supercon-
ductor will be taken into account. The theoretical model
will also include the flux-flow Hall effect, which can be of
both theoretical and practical interest.!* 172672

We have noticed that the London moment was first
predicted theoretically by London® for rigid-body rotat-
ing superconductors and, later, was observed experimen-
tally first by Hildebrandt.?! Recently, the London mo-
ment has also been observed by Verheijen et al.’? for
some rotating high-temperature oxide superconductors.
In practice, the effect of the London moment has been
used to construct, for instance, gyroscopes for some space
flight scientific experiments, among others. The generali-
zation of the London phenomenological theory to de-
formable superconductors in the Meissner state has been
made recently by Zhou'"!? to include the effect of the
London moment induced by the local motion (dynamic
deformation) of the elastic superconductor rather than
the global rotation of the material body within the frame-
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work of the generalized Galilean relativity at the magne-
toquasistatic approximation. In this paper we shall fur-
ther study the effect of the London moment on the
behavior of elastic type-II superconductors in the mixed
state. We shall assume that the elastic type-II supercon-
ductor considered is isotropic and nonmagnetic for the
sake of simplicity. It is, however, possible to extend the
work to anisotropic superconductors. Some treatments
on deformable magnetic superconductors may also be
found in the recent work of Zhou and Miya.! For the
type-II superconductor in the mixed state, we shall as-
sume that the vortex displacements are small in compar-
ison with the intervortex spacing so that a linear elastic
approximation of the vortex lattice continuum can be
adopted. We also assume that the superconductor is in
an isothermal state so that thermal forces due to temper-
ature gradient can be ignored. As a consequence, mag-
netic history, critical state effect, flux creep effect, and
thermoelectric effect in the type-II superconductor will
not be treated here. In addition, we shall assume that the
elastic deformation of the superconductor is small so that
a linear elasticity theory can be applied for the supercon-
ductive material medium.

With the aid of this theoretical model, some magneto-
elastic wave phenomena in the elastic type-II supercon-
ductor in the mixed state will be studied in this paper.
We shall see how the effects of the London moment, the
vortex dynamics, and the normal conduction fluid may
influence the dynamic response of the elastic type-II su-
perconductor in the mixed state.

II. BASIC EQUATIONS FOR ELASTIC TYPE-II
SUPERCONDUCTORS IN THE MIXED STATE

It is known that, at the microscopic level, a flux line
consists of superelectrons moving with a certain density
and velocity distribution around the center of the flux
line. This means that forces on a flux line will actually be
experienced by the electrons and can, therefore, be
caused by electric and magnetic fields. At the macro-
scopic level, we are dealing with phenomena that can be
described in terms of average macroscopic fields and
currents. Phenomenologically, in a reference frame
S'(x,t’) attached to the material medium, we may write
the following equation of motion for the flux-line lattice
continuum:

9’ d R
mf at/“zl =_na—;ul—_Kw+qeﬂ'Eu+J XBU ’ (1)

where m, denotes the effective-mass density associated
with the flux-line lattice. So far, little is known about the
effect of acceleration as a cause for macroscopic forces on
flux lines. Some studies have shown that the inertial
force is usually negligibly small compared to pinning
forces in most hard superconductors. However, inertial
forces could be sufficient to trigger flux movements in
samples with very low pinning strengths.’® A recent
study of Coffey and Clem?! suggested that the inertial
effect may be significant in the vortex dynamics of high-
temperature superconductors. The vector w denotes the
vortex displacement vector, measured from an equilibri-

um pinning site in the medium in S’. 7 is the flux-flow
viscosity for the isotopic superconductor. The current
density vector J', the vortex magnetic field B;, and the
vortex electric field E;, are all averaged quantities over
microscopic fields and current distributions in the super-
conductor. In Eq. (1) we have adopted a simplified mod-
el'®2% in which, for the case of local vibration of flux lines
without global flux-flow motion, the effect of the pinning
force and the deformation of the flux lattice is modeled
by a simple restoring force of the form f™'=—Kw for
the isotropic type-II superconductor, where K is the
spring coefficient.

It can be seen that the third and fourth terms on the
right-hand side of Eq. (1) are, respectively, the electric
and magnetic driving forces on the flux lines. As we shall
show later, the electric force, caused by the vortex elec-
tric field,

E,=—(3dw/0t')XB, ,

induced by the motion of the flux lines, may cause the
flux-flow Hall effect. We have noticed that although the
flux-flow Hall effect of the type-II superconductors in the
mixed state was observed early in the 1960’s (Refs.
34-36) and studied by a number of researchers,!417-37.38
its microscopic mechanism seems not yet to have been
fully understood, especially for the recently discovered
high-temperature oxide superconductors.?®”2® Here, we
shall use simply a phenomenological treatment by intro-
ducing an effective charge density g4 for the flux-line lat-
tice continuum. It is possible that Eq. (1) may also in-
clude a random (or Langevin) force to model the effect of
flux creep.?* For some simplicity, however, we shall ig-
nore here the Langevin force term by limiting our study
to cases where the effect of flux creep is not significant
and, in addition, we shall assume that the superconductor
is in an isothermal state so that thermal forces due to
temperature gradient can be ignored.

When the flux lines move, they must also obey a con-
tinuity equation’3

3B,

V'XE,=— e

(2)

In many cases, electrodynamic phenomena of supercon-
ductors can be analyzed with the aid of knowledge gained
from studying the behavior of the superconductor in
time-harmonic fields (~e’®). In the time-harmonic
fields, we may get from Eq. (1) the following relation:

wy, = Ryeppgd; By (3)

ioB)?

in which o is the radian frequency, e;x is the permuta-
tion symbol, and Ry, is defined by

-1
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where n’ is the unit direction vector of the vortex mag-
netic field (n’=B, /B,) and B, is the magnitude of the
vortex magnetic field. oy, =0 —ioy, is the complex
flux-flow conductivity, defined by

K —mfwz
oB?

v

0V1=—n— and o,,= (5)

B?

v

If the direction of the vortex magnetic field B; is sup-
posed to be along the z' axis, we may find

03 TG
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_ deft 0'3
[Rkl]_ ' 2 ” 2 ”2
Bv(au+qef/Bv ) Uv(0v+qeﬁ'/Bv )
0 0 L

(6)

We may also derive the following expressions for the elec-
tric current density components:

Ji=0yE+Rp. (7)
BU
. , et
Jy,—aVE,,y,——Be—,va, , (8)
v

which shows that the coefficient g.4/B, characterizes
effectively the flux-flow Hall effect. Introducing the Hall
angle ay,’’ we may write g.; =7(tana)/B,. In general,
7 and ay may be determined experimentally. There are,
however, some microscopic models that may be used to
analyze these parameters.'*!” The derived current-
vortex displacement relation, given by Eq. (3), can be
used self-consistently in electrodynamic field equations in
a similar way, proposed first by Coffey and Clem.2°~2°

Let us now discuss the electrodynamic and mechanical
field equations for the study of elastic type-II supercon-
ductors in the mixed state in the reference frame S(x,t)
of the laboratory, which is supposed to be fixed in space.
To model the electrodynamics of the type-II supercon-
ductor in the mixed state, we shall use the following
Mazxwell equations at the magnetoquasistatic approxima-
tion:

JoB

VXH=J and VXE=——at—, 9)

and the modified second London equation,
2 m*
PALVXI ———VXV=—(B—B,), (10)
e

where J; is the supercurrent density, V is the local veloci-
ty of the superconductive medium (V=9U /3¢ with U be-
ing the elastic displacement vector of the medium), B is
the magnetic induction field, and B, is the local vortex
magnetic field which is, in general, not equal to the mag-
netic induction field B due to the nonlocal effect on the
length scale of A; and to the presence of normal conduct-

ing fluid.?% p, is the permeability of free space and A, is
the London penetration depth. m* and e* are, respec-
tively, the mass and electric charge of the Cooper pair su-
perconducting electrons. It can be seen from Eq. (10)
that the Coffey and Clem formulation?®~ %> has been
modified here by the introduction of a new term, the
second term on the left-hand side of Eq. (10). The in-
clusion of this new term is due to the effect of the London
moment induced by the local motion (dynamic deforma-
tion) of the elastic superconductor.'"!>" The concept of
the London moment originated from London’s work*® on
rotating superconductors, which predicated that a uni-
form magnetic field may be generated within the body of
any superconductor which is set into rotation. Such a
magnetic field was first observed by Hildebrandt’! and is
now often called the London moment. Essentially, the
London moment is believed to be due to the effect of the
acceleration of the motion of the superconductor. Here,
the London approximation has been used to model elec-
trodynamic phenomena in type-1I superconductors in the
mixed state. Thus, one may expect that the model is ap-
propriate for the field region B, <B <<B_,. Such an in-
termediate field region is of interest especially for recently
discovered high-temperature oxide superconductors due
to their small lower critical field and large upper critical
field.

In addition, to account for the effect of normal
currents, we shall use the two-fluid model, which may be
expressed by

JI=J.+J,, (1
where J, denotes the normal-current density, given by
J,=o0,(E+VXB), (12)

with o, being the local electric conductivity of the nor-
mal fluid. Here, we shall ignore the Hall effect due to the
normal conduction fluid in the presence of the magnetic
field for simplicity.

Considering now the equation of motion for the elastic
type-II superconductor in the presence of a magnetic
field, we may write

2u

P =V-t+—[(B-V)B—1V(B-B)] (13)

Ko

where p is the mass density of the superconductor, U is
the elastic displacement vector, and t is the Cauchy stress
tensor, which, at the linear approximation, may be ex-
pressed by Hooke’s law t;,=C,;, U ;, with C;;, being the
elastic modulus tensor. For the isotropic elastic super-
conductor, we have

Cijklz(E_%G)81j8kl+G(8ik8j1+8i18jk) y (14)
where E is the elastic bulk modulus and G is the elastic
shear modulus of the superconductor. One may note that
for the type-II superconductor in the mixed state, the
elastic moduli C,j; may differ from their values in the
normal state due to possible anomalies arising from the
superconducting phase transition and from the effect of
magnetic flux structures in the superconductor in the
mixed state, details of which are referred to in, for in-



stance, the work of Zhou and Miya.’

It is shown that the given set of self-consistent-field
equations for analyzing magnetoelastic behavior of the
elastic type-II superconductors in the mixed state are, in
general, nonlinear and coupled. These field equations
should be supplemented with appropriate boundary con-
ditions and initial conditions in order to solve some
mixed boundary-value, evolution problems. A general
discussion about the electromagnetic and mechanical ini-
tial and boundary (interface) conditions may be found
elsewhere.*!° In what follows, two special examples will
be given to study some problems of wave propagation in
elastic type-1I superconductors in the mixed state.

III. MAGNETOELASTIC PLANE WAVE
IN ELASTIC TYPE-II SUPERCONDUCTORS
IN THE MIXED STATE

In this section we shall study the problem of magneto-
elastic wave propagating in the elastic type-II supercon-
ductors in the mixed state. Here, we shall be particularly
interested in the wave problem in which the supercon-
ductor is initially in a static magnetic field B, and it may
have the static elastic displacement U, which can be
caused by some static mechanical forces and/or the mag-
netic force. When the type-II superconductor is in the
mixed state, magnetoelastic waves may be induced by a
small perturbed time-varying loading, which can be of
electromagnetic and/or mechanical origin. In such a
case, we may write the total magnetic induction field by
B=B,+b and the total elastic displacement by
U=U,+u in the superconductor. Here, b and u are, re-
spectively, the small perturbed time-varying magnetic
field and elastic displacement field to be determined. As
the first-order approximation, in what follows, we shall
assume that all material properties concerned are in-
dependent of the perturbed fields b and u, and are deter-
mined only in those static fields at a constant and uni-
form temperature 7. Furthermore, we shall ignore the
flux-flow Hall effect for simplicity. After these considera-
tions, we may now derive and solve the following linear-
ized coupled magnetoelastic wave problem.

From Egs. (9)-(12) we may get

ra. OB, 1
VB—uocr,,—aT+——)Li (B—B,)
m*
— VXV —pgo,VX(VXB), (15)
e*)\?
L

from which we may see that the third and fourth terms
on the right-hand side of this equation are caused by the
local motion of the elastic superconductor, and they
represent, respectively, the effect of the London moment
induced by dynamic deformation and the effect of the
normal Lorentz current. A rough estimation of the rela-
tive importance of these two terms can be made by
choosing some typical values of o, =5X10%/Qm, A, =1
pm, and B =1 T, which shows that the effect of the Lon-
don moment is, at least, of the same order of importance
as compared with the effect of the normal Lorentz
current. If the London penetration depth A; is smaller,
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for instance, A; =0.1 um for some high-T, oxide super-
conductors, and/or o, is smaller at lower temperature
T /T, <1, the effect of the London moment may become
even more important.

Now, let us study further Eq. (15). By integrating the
vortex continuity equation (2) with respect to time, we
may find

B,=B,+b,=B,—VX[ByX(w+u)], (16)

at the linear and magnetoquasistatic approximation.
Thus, by Eq. (3), where B, is replaced by B, and J' is re-
placed by J at the linear and magnetoquasistatic approxi-
mation, we may derive, after some manipulations, the fol-
lowing equation in time-harmonic fields:
X*Vb=b—V X(uXB,)
+ (i/2)8%cVX[(VXb)-nln—(iom* /e* )V Xu
14+2iA2 /8%

’

17
where X is the complex penetration depth defined by
A2 —i8kc /2
1+2iA2 /8%

)1/2

XXw,By, T)= (18)

and 8y =(2/ugwo, is the normal skin depth, and
8yc=(2/uwo y)""? is a complex skin depth. We have
noticed that the complex penetration depth A was first in-
troduced by Coffey and Clem.? In Eq. (17), n is the unit
direction vector of By, i.e., n=B,/B,. Here, By is as-
sumed to be a constant and uniform magnetic field. It is
shown that the appearance of the second and third terms
on the right-hand side of Eq. (17) is due partly to the
effect of current flow parallel to the magnetic field B, and
partly to the effect of the local mechanical motion (dy-
namic deformation) of the elastic type-II superconductor
in the mixed state.
Furthermore, from Eq. (13), we may get

—pou=(E+G/3)V(V-u)+ GV

+-L B, Vb—V(Byb)] . (19)
Ho
Equations (17) and (19) constitute a set of coupled linear-
ized field equations for the determination of the per-
turbed magnetic field b(x,?) and the perturbed elastic dis-
placement field u(x,?) in the elastic type-II superconduc-
tor in the mixed state.
We shall now look at the following type of magneto-
elastic plane wave:

u, =ugexplilot—kx)], (20)
b,=byexpli(wt —kx)] , (21)

where uy and b, are constants relevant to the wave am-
plitudes of the elastic displacement and the magnetic
field, respectively. Other field components are u, =u, =0
and b,=b,=0. o is the radian frequency of the wave
and k is the propagation constant which is, in general, a
complex quantity k =k,—ia, with a being the attenua-
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tion coefficient. Here, we have chosen the z axis along
the direction of the magnetic field B,. Equations (20) and
(21) describe a type of magnetoelastic wave that is longi-
tudinal in the elastic displacement u but transverse in the
magnetic field b. This wave propagates along the x-axis
direction, being perpendicular to the direction of the
magnetic field B,

Substitution of Egs. (20) and (21) into Egs. (17) and (19)
gives the following equations:

(@*—k%} uy+i

ikByuy—(1+k*X*)by=0 , (23)
for the determination of u, and b,. Here,
¢, =[(E+4G /3)/p]'"?

is the longitudinal sound velocity. The condition for the
existence of a nontrivial solution of Egs. (22) and (23)
gives the following dispersion equation:

(@*—kX})N+Kk T =k2Y (24)
where ¢ , =B, /(pp,)'’* denotes the Alfvén speed, which
J

is a measure of the relative importance of magnetic
effects in comparison with mechanical ones insofar as
wave propagation is concerned. It is noted that the
wavelength of the magnetoelastic wave considered is usu-
ally much longer than 1 um in most practical cases where
the wave frequency is less than 1 GHz. The continuum
model presented here may work well. For higher fre-
quency applications, the model may work in some cases
if, however, the effect of microstructures of the material
can be taken into account effectively. Two special cases
may be of interested. First, if one lets A; — o mathemat-
ically, by noting Eq. (18), one may find that Eq. (24) re-
covers its classical form for a normal elastic conductor.
Second, if one lets A; —0, one may find that Eq. (24) re-
covers the result obtained by Shapira and Neuringer® as
far as the longitudinal elastic wave is concerned. In the
general case, we may introduce an effective complex con-
ductivity o .4=0,,—i0,,, defined by

UCEE*.——L:E , (25)
JTINOYS

from which, by noting Eq. (18), we may find, after some
manipulations,

(0 1+ w0 ;0 oA N1+ B0 yyA] )= o0 1 AL (0 yy— w0 , 0 1AL )

Oe1

(1+p000 A7 )+ (oo 1AL

) (26)

_ (0 12— 100 , 0 y1 AL N1+ 12000 1oAY )+ R0 A (0 )+ 1000 ,0 1A )

O™

Mathematically, for A; —0, one has 0,,=0,; and o,,
=0y, and for A; — 0, one has 0,,=0c, and 0,,=0, as
expected. If the effect of the normal conduction fluid is
negligible in some cases, we may set o, =0 mathematical-
ly, which results in the following expressions:

_ A%!
Te1™ 22 22’ (28)
(1+pwo Az )+ (oo A7)
0 pyFpgw(od+oi,)A2
g.,= v2 T Ho@\ Oy V2L (29)

(141000 yyAL P+ (o AL )

which shows that the nonlocal effect on the length scale
of A; leads effectively to the reduction of the flux-flow
conductivity of the superconductor in the mixed state.

To solve the dispersion equation (24), for simplicity, we

(14 powo A3 P+ (pewo A3 )?

27

f

make the approximation by replacing the term k? which
appears in the second parentheses on the left-hand side of
Eq. (24) by its zero-field value (w/c; ), which may be
justified by noting the fact that the effect of magnetic
fields modifies only slightly the phase velocity of the elas-
tic wave. With this approximation, we may now obtain
the attenuation coefficient a by
_ o |a
a="2 |4
cp |12

1/2
[\/1+(b/a)2—1]J (30)

and the phase velocity c,,, of the magnetoelastic wave by
~1/2

cr , (€))

%[\/1+(b/a)2+1]

where the parameters a and b are given by

1+(1+c% /e Not /o3+02,/03) (0, /00024 /c})

a:
1+(1+c3 /e 02 /03+02,/03)+ (20, /0g)(1+c% /cf)

and

(i /cENa,/0y)

(32)

b=

1+(1+c? /e o2, /03402, /08)+ (20 ,, /o) (1 +ch /)
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where o is defined by oy=w/(uc? ).

It is shown that Shapira and Neuringer’s result® has
been modified here by accounting for the nonlocal effect
on the length scale of A; and the normal-current effect,
which may be seen from the complex conductivity given
by Egs. (26) and (27). In this example, the effect of the
London moment does not show up since the wave is lon-
gitudinal in the elastic displacement. Some numerical
calculations are shown in Figs. 1 and 2, where material
parameters are chosen to be illustrative rather than to de-
scribe any particular material sample.

Shown in Fig. 1 is the variation of attenuation
coefficient a with respect to the normalized frequency
o /w,, calculated from Eq. (30). Here, o, is called the de-
pinning frequency, defined by the relation o,,/0,
=wy/w. If the Bardeen-Stephen model'* and the Gittle-
man and Rosenblum model'S are used, w, can be ex-
pressed by

27J,(T,By)V/ B,
w0yl T, Bg)= —t-=0 VB (34)
on(T)B(T)V @,

where ®, is the flux quantum (®,=2.07X10715 Wb).
Numerically, if we take some values of B ,=25 T,
J,=5X10* A/cm?, 0y =2X10""Qm, and B,=4 T, we
get wy=~2.76X10® rad/s. Intuitively, we might argue
that o, should not increase with an increase in the mag-
netic field B because the surface resistance should not de-
crease for increasing magnetic field B. If this argument,
which has yet to be verified experimentally, is correct, we
may expect that the field dependence of the dc critical
current density J. should be of the form J, < B ™7 with
y = 1 if the model is proper. Indeed, Kim, Hempstead,
and Strand*® have proposed a model in which one has
J.<(B+B,;)"!, where B, is a small constant. The Bean
model*! in which J, is supposed to be independent of the
field B (i.e., y=0) seems not to obey the criterion of
v 2 4. However, if the operating frequencies of concrete
problems are far from (for instance, much lower than) the
depinning frequency, the Bean model may still work be-
cause the result will not be sensitive to the exact value of
the depinning frequency. Other forms of the field depen-

3.0 T i
By=4T Bep=15T M=0
g p = 7x103 kg/m3
=
= ¢ = 5x103 m/s
£ 20¢
8 oy =3x10% /Q.m
Q
&€ = 8
§ W, = 2.45x10° rad/s. AL=5 pm -
g
3
g 1.0 }
g
g Normal state
0 \ .
108 102 10! 100 10! 10?

Wa,

FIG. 1. Variation of the attenuation coefficient a with the
frequency w.

T

B,/Bgg = 0.8

0.03} ¢, =5x103m/s By =15T
p = 7x10° kg/m®
Ap=1pm

I3 oy = 3x10% /Q.m
g N / (Mixed state)
g 0.02 o, = 2.45x108 rad/s.
’S -
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0.01
o . . .
103 102 10! 10° 10! 102

FIG. 2. Dispersion behavior of the magnetoelastic wave.

dence of the dc critical current density were also pro-
posed in the past, such as, for instance, J, <B /2
(Yasukochi et al*?) and J, « B~} (u,H,,—B) (Camp-
bell, Evetts, and Dew-Hughes*).

It can be seen from Fig. 1 that the attenuation of the
magnetoelastic wave in the type-II superconductor in the
mixed state is smaller than that in the normal state when
the wave frequency o is less than the depinning frequency
oo However, for wave frequencies larger than the depin-
ning frequency, the attenuation of the magnetoelastic
wave in the type-II superconductor in the mixed state can
be larger than that in the normal state. In particular,
Fig. 1 shows the effect of the London penetration depth
Ar. The Shapira-Neuringer model correspond to the case
of A, =0. It can be seen that when the effect of the Lon-
don penetration depth is taken into account, the result
predicted by Eq. (30) coincides with the result from the
Shapira-Neuringer model at frequencies near or less than
the depinning frequency w,, but the results show their
difference at higher frequencies. At very high frequencies
much larger than the depinning frequency, Eq. (30) shows
that the attenuation of the magnetoelastic wave ap-
proaches its normal-state value for nonzero London
penetration depth, which is physically reasonable. It
would be valuable if one could verify experimentally the
high-frequency behavior of attenuation of the magneto-
elastic wave in the type-II superconductor in the mixed
state. So far, it seems that no such experimental results
have been proven, probably because of the fact that
high-frequency (GHz) ultrasonic devices are not easy to
obtain. Recent progress in research on hypersound (or
quantum acoustics**) may help to improve the situation.

Shown in Fig. 2 is the dispersion behavior of the mag-
netoelastic wave. It can be seen that the strong disper-
sion of the magnetoelastic wave in the elastic supercon-
ductor in the mixed state appears at frequencies near the
depinning frequency. When the superconductor is in the
normal state, the wave becomes strongly dispersive at fre-
quencies lower than those in the mixed state.

We may note that, in the above example, the effect of
the London moment does not show up. This is because
the wave considered is longitudinal in the elastic displace-
ment. In Sec. IV we shall study the effect of the London
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moment by considering transverse waves in the type-1I
superconductor in the mixed state.

IV. PHASE CHANGE IN SOME WAVES
PROPAGATING IN ELASTIC TYPE-II
SUPERCONDUCTORS IN THE MIXED STATE

In this section we shall study the effect of the London
moment on the magnetoelastic behavior of the elastic
type-II superconductor in the mixed state. We consider
the following problem of a magnetic plane wave induced
by a transverse elastic plane wave in the elastic type-II
superconductor in the mixed state. We shall assume that
the elastic type-II superconductor is in a static and uni-
form magnetic field By and at a temperature T <<T, so
that the effect of the normal current due to thermal exci-
tation is negligible. We shall also ignore the small effect
of the magnetic force on the behavior of the elastic wave
in the special case. Furthermore, we assume that the
magnetic field By is along the z-axis direction and that the
elastic type-II superconductor is in the mixed state. The
superconductor is then subjected to an elastic distur-

with u, =u,=0. Here, u, ( >0) denotes the amplitude of
the elastic plane wave, and c;=(G /p)'/? is the speed of
the transverse elastic plane wave.

To study the electrodynamic response of the supercon-
ductor by such a given mechanical disturbance, we look
for the following type of magnetic wave:

x
t___
cr

b,=byexp |iw , (36)

with b, =b,=0. By substituting Egs. (35) and (36) into
Eq. (17) in the absence of normal currents, we may ob-
tain, after some manipulations, the following result:

bo=1b,le’” , (37)

where the amplitude of the magnetic wave, |b0|, is ex-
pressed by

m*o*uy, ~—
Ibol—éfc——\/a%+a§ (38)
T

and the phase factor y by

bance, described by a transverse elastic plane wave of the _,la
following form: y=tan — |- 39)
1
u,=ugexp |io [t— =X , (35) Here, the two parameters a, and a, are given, respective-
°r
ly, by
J
2
o
1+ |2 2 %
cr pow(oy+0oy,)
a;= 2 2 2 ’ (40)
KN 2 Oy Ty
1+c At (62, +02,) 4,202, +02,)?
T Ko\ Oy T Oy, CTHO\Oy1 T O
0oy /[ctuoloy +0,)]
a= 2 3 3 (41)
1+ [— | |A2+ S T— il
c L (02 +02,) 42002 4o )2
T Ko Oy T Oy CTHO\O Y1 T Oy

The result shows that the transverse elastic plane wave
propagating in the elastic type-II superconductor in the
mixed state may induce a transverse magnetic plane wave
with the same phase velocity propagating in the super-
conductor due to the effect of the London moment in-
duced by the local motion of the elastic type-II supercon-
ductor. Furthermore, the result shows that there is a
phase change between the elastic plane wave and the in-
duced magnetic plane wave, characterized by the phase
factor y. This phase factor y is found to be dependent on
the material properties of the elastic type-II superconduc-
tor in the mixed state. It is also frequency dependent.
Mathematically, if we let oy,0,—  (By—0), which
corresponds to the Meissner state, we may find that y be-
comes zero, and Eq. (38) recovers the result derived ear-
lier by Zhou'! for elastic superconductors in the Meissner
state, where that is no such phase change between the
transverse elastic plane wave and the induced transverse
magnetic plane wave. This indicates that the effect of the

r

phase change is closely related to the vortex-dynamic
properties of the elastic type-II superconductor in the
mixed state. So far, it seems that no experiments have
been reported about this effect. Because of possible
theoretical and practical interest, it would be worthwhile
to investigate this effect experimentally.

V. CONCLUSIONS

A macroscopic theory has been introduced in this pa-
per to describe phenomenologically the magnetoelastic
behavior of elastic type-II superconductors in the mixed
state. In this theory we have self-consistently included
the vortex-dynamic effect, the normal-current effect, the
flux-flow Hall effect, the London moment effect, and the
deformation effect in the elastic type-II superconductors
in the mixed state. The theory is considered to be appli-
cable to the analysis of some electromagnetic and



mechanical phenomena in elastic type-II superconductors
in the mixed state, where effects of magnetic history and
flux creep can be ignored. The theory is valid within the
framework of the generalized Galilean relativity at the
magnetoquasistatic approximation. By using this theory,
we have studied both analytically and numerically some
problems concerning magnetoelastic wave propagating in
elastic type-II superconductors in the mixed state at the
linear approximation. It is shown that the attenuation of
the magnetoelastic wave in the type-II superconductor in
the mixed state is smaller than that in the normal state
when the wave frequency o is less than the depinning fre-
quency o, However, for wave frequencies larger than
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the depinning frequency, the attenuation of the magne-
toelastic wave can be larger than that in the normal state.
It is also shown that the magnetoelastic wave in the su-
perconductor shows strong dispersion at frequencies near
the depinning frequency. Furthermore, we have studied
the effect of the London moment on some wave propaga-
ting in elastic type-II superconductors in the mixed state.
It is shown that there is a phase change between the
transverse elastic plane wave and the induced transverse
magnetic plane wave propagating in the elastic type-II
superconductor in the mixed state. This effect is shown
to be closely related to the vortex-dynamic properties of
the elastic type-II superconductor in the mixed state.
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