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Kinetics of spinodal decomposition in the Ising model with vacancy diffusion
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We have investigated the kinetics of domain growth in the Ising model of a two-dimensional alloy compris-

ing two kinds of atom plus a single vacancy, where the atoms are allowed to move only by changing places

with the vacancy. Not only is this model more realistic than the more usual Kawasaki dynamics in describing

the decomposition process in real metal alloys, but it can also be up to 30 times faster in terms of computing

time. The domains have shapes similar to those observed in the analogous model with Kawasaki dynamics, but

the asymptotic regime of domain size growth (R ~ t") is approached much faster particularly in the case of
1:1alloy composition at low temperatures. The data also show that interface diffusion cannot fully explain the

slow approach towards the asymptotic regime in the case of Kawasaki dynamics.

The Ising model has been used successfully since the
1970s (Refs. 1—3) to describe the decomposition of a homo-

geneous mixture into domains of two different phases. This
process is quite important for metal alloys since the size and
structure of the domains (or precipitates) play a major role in

determining the mechanical properties of the material.
The Ising model represents a mixture consisting of two

sorts of atoms on a lattice, usually with a nearest-neighbor
attractive interaction between like atoms. The atoms may
move by diffusion which —in the case of the Ising model —is
usually modeled by Kawasaki dynamics, in which two

neighboring atoms are allowed to exchange, with a certain
probability depending on the change in total interaction en-

ergy occurring with the exchange. ' This is, however, a very
poor representation of the diffusion process in real alloys,
where atoms can change places easily only if a neighboring
lattice site is empty. Nevertheless, most simulations have
been carried out using the simpler direct exchange mecha-
nism instead of the vacancy mechanism for the diffusion.
The structure of the domains obtained in these model simu-
lations was close both to theoretical predictions and to
experimental observations. ' ' '"

However, even in the longest simulations carried out so
far, ' the domain size was observed to grow with time as
t with an effective exponent a close to 1/4, rather than the
theoretically predicted '""' cr = 1/3. Alternatively, the
growth law can be well approximated by

R =(kt)'/3+R, ,

where X and Ro are constants. The Ro term, proposed by
Huse' as a means of including interface diffusion in the
theory as well as bulk diffusion, is not negligible, even at the
largest times to which simulations have been taken. Thus,
whichever representation is used, even the latest stages
reached in the decomposition of the Ising model with Ka-
wasaki dynamics' are thought still to correspond to an in-
termediate stage at which the theoretical asymptotic expo-
nent of 1/3 has not yet been reached. '

Recently, Yaldram and Binder' studied an Ising model in
which diffusion proceeded via the interchange of atoms with
vacancies. This work showed that vacancy diffusion leads to

the same type of patterns for the domain structure as in the
earlier simulations using the Kawasaki direct exchange
mechanism. ' It was concluded that the actual diffusion
mechanism (vacancy diffusion or direct exchange) is of mi-

nor importance for the process of phase separation in the

Ising model. A drawback to this study is that the vacancy
concentration was taken to be a few percent, which is several
orders of magnitude larger than vacancy concentrations in

real alloys. Moreover, even though the shapes of the do-
mains are not affected by the diffusion mechanism, there
might still be a change in the asymptotic growth law (1).

In the present paper we describe simulations of the Ising
model on a two-dimensional square lattice with 128 lattice
sites and periodic boundary conditions. One of these lattice
sites was empty, a proportion c of the other sites were filled
with A atoms and the remaining sites with 8 atoms. This
corresponds to a vacancy concentration of I/128 =6X10
which is a realistic value for an alloy undergoing phase
separation. In order to avoid trapping of the vacancy in one
of the two phases, ' we chose the Hamiltonian of the system
to be

E= —I g s(i) s(j)= 2 1 nett+ const, (2)

where the sum extends over nearest-neighbor (NN) pairs.
The symbol nzz denotes the number of NN pairs of A-B
atoms in the lattice, 2J&0 is the energy of such an A-B pair
and s(i) is defined to be +1 if the atom at site i is of type A,
—1 if it is of type 8, and 0 if it is the vacancy. As the
vacancy concentration is very small, we do not expect the
equilibrium properties of the Ising model to be affected by
the introduction of the vacancy. Indeed, using the fourth-
order cumulant method, ' we could not detect any change of
the critical temperature T, , which remained at the value de-
rived by Onsager k T,/J =2.27.

Since there is only one vacancy on the lattice, an efficient
algorithm can be written, similar to that for the Ising model
with nonconserved order parameter. ' At each time step one
of the neighbors of the vacancy is chosen at random. If an
exchange of the vacancy with this atom would decrease the
total energy given by (2), then the exchange is carried out. If
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FIG. 1. Snapshot pictures at T/T, =0.5 with vacancy dynamics
after (a) 6300 MCS at c=0.5 and (c) 6.3X10 MCS at c=0.1

and with Kawasaki dynamics after 2 X 10 MCS at (b) c=0.5 and

(d) c=0.1. For all four configurations the average domain size R
measured by the first zero of the correlation function is approxi-
mately 11 lattice spacings.

the exchange would increase the energy, by an amount AE,
say, then the exchange is carried out with the probability
e ' (the Metropolis rule'").

Simulations were carried out using this vacancy algo-
rithm, and also for Kawasaki dynamics, at three different
temperatures (T/T, = 0.8, 0.5, 0.35) and two values for the
concentration c of A atoms (c = 0.5, 0.1).A time scale was
defined in the usual way'" using units of Monte Carlo steps
(MCS) (one MCS = one attempted exchange per lattice site)
for both models. First, we noticed, in agreement with the
previous studies, ' that a very similar domain structure de-
veloped in both models after an initial transient lasting about
100 MCS. The difference in the very early stages is due to
the fact that the vacancy acts locally: it is some time before
the vacancy has actually visited all parts of the lattice. But in
the later stages of phase separation the patterns were very
similar and, in particular, we found that both models showed
dynamical scaling ' ' ' with identical scaling functions.
However, most surprisingly, the process went much faster
with vacancy diffusion, particularly at low temperatures and
c=0.5. This is illustrated in Fig. 1, where snapshot pictures
of the domains are shown for simulations at T/T, = 0.5. Af-
ter 6.3X10 MCS for c=0.5 and 6.3X10 MCS for
c=0.1 with vacancy dynamics [Figs. 1(a) and 1(c)], ap-
proximately the same domain size had been reached as after
2 X 105 MCS with Kawasaki dynamics

J Figs. 1(b) and 1(d)].
In the case of c=0.5, this corresponds to a reduction of
computer time by a factor of 30.

Taking the first zero of the radially averaged correlation
function' ' as a measure of the average domain size R, we
determined the time dependence of R for both models. Fig-
ure 2 shows R plotted against t' for Kawasaki dynamics
(circles) and for vacancy dynamics (disks). It is apparent
from the figure that at high temperatures (T/T, = 0.8), the
dependence of R on t is very similar in both models, but that

t "/ (time in MCS)

FIG. 2. Average domain size R plotted versus (time)"' for three

temperatures and two compositions as indicated. Circles are for
Kawasaki dynamics and disks for vacancy dynamics. The solid
lines are fits with Eq. (1).
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at low temperatures the vacancy dynamics goes much faster.
The effect is particularly pronounced at c=0.5, but is still
present at c=0.1. The solid lines in Fig. 2 correspond to fits
at large t using Eq. (1). This equation represents the data
well for all three temperatures and both compositions. The
fitted values for P and Ro are listed in Table I.

For Kawasaki dynamics (circles), Ro is positive for
c=0.5 as found in earlier work, ' '" but it is interesting to
note that Ro) 0 even at c =0.1. According to Huse's justi-
fication for the Ro term, ' this would mean that interface
diffusion also plays an important role for c=0.1 where the
precipitates are small isolated droplets. As this can hardly be
the case, we must conclude that although Eq. (1) is an excel-
lent representation of the data, its interpretation as being due
to interface diffusion should be reconsidered. For vacancy
dynamics (disks), with c=0.5 and T/T, (0.5, the data are
fitted well by Eq. (1) with Ro=0 apart from a short initial
period. That is to say, for the low temperatures at c = 0.5, the
Ising model with vacancy dynamics has reached the true as-
yrnptotic behavior R ~ t' after only 1000 MCS.

TABLE I. Values for k and Ro [see Eq. (I)] as determined by
fitting the data in Fig. 2. V stands for vacancy and K for Kawasaki
dynamics. Ro is given in units of lattice spacing with a typical
measurement error of ~0.5. k is measured in (lattice
spacings) /MCS with a precision of 5%.
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would expect an even more important contribution of inter-

face diffusion for vacancy dynamics than for Kawasaki dy-

namics. Theoretically, coarsening with diffusion along inter-

faces (instead of bulk diffusion) is believed ' to lead to a

power law R ~ t"; but our result (Fig. 3) shows that para-

doxically just the opposite is happening: the growth-law ex-
ponent is closer to 1/3 for vacancy dynamics [Fig. 3(d)] than

for Kawasaki dynamics [Fig. 3(c)].
For a crude theoretical treatment of this problem, we start

with the differential equation derived by Lifshitz and

Slyozov for the case of a very dilute alloy:

OOOO@
d, 8 o.

dr
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FIG. 3. Average domain size versus time on double-logarithmic

scales. Time has been rescaled by the temperature factor M„(T)
given in Eq. (3), where n = 8 in (a) and (c), n = 4 in (b) and n = 2 in

(d). (a) and (b) are for c = 0.1 and (c) and (d) for c = 0.5, while (a)
and (c) are for Kawasaki dynamics and (b) and (d) for vacancy

dynamics. The straight lines show a slope of 1/3.

This rapid approach to a t" law is better illustrated in

Fig. 3, where R is plotted against t using logarithmic scales
on both axes. In order to scale out the effect of temperature,
the time variable has been multiplied by a factor

M„(T)= (T,/T)e

For Kawasaki dynamics, the data for all three temperatures
fall on the same curve with n=8, in agreement with theo-
retical expectations. ' For vacancy dynamics, the tempera-
ture dependence is much weaker and a reasonable superpo-
sition of the curves for different temperatures is achieved by
taking n = 2 at c =0.5 and n =4 at c =0.1 (see Fig. 3).
Figure 3 demonstrates well the rapid approach to a t'
power law for the average domain size, noted above. While
for Kawasaki dynamics at c=0.5 [Fig. 3(c)], the graph is
still curved even when R = 10, with an effective growth-law
exponent of order 1/4 for the longest runs, in the case of
vacancy dynamics [Fig. 3(d)] the graph is straight after about
R = 4, with a slope corresponding to an exponent very close
to 1/3.

This marked difference between the two models may be
related to the fact that the probability distribution of the po-
sition of the vacancy is not uniform because the vacancy is
attracted to the interfaces. If the vacancy is moved from the
interior of a pure phase to the interface, the number n„z of
AB bonds and therefore the total energy (2) is reduced.
Hence, it is more likely to be in interface than inside one of
the pure phases, the more so as the temperature is lowered.
This effect was verified by recording the spatial distribution
of the vacancy in a special computer experiment with a
single straight interface. A higher vacancy concentration at
the interface means a higher atomic mobility at interface and,
therefore, if interface diffusion was important for the coars-

where c,q
is the equilibrium concentration of minority atoms

in the majority bulk phase, and o. is the interface tension.
Assuming for the moment that D and o. are constants, this

corresponds to a growth law R ~ t'~ +O(t ~ ).
If interface diffusion played a role in the coarsening pro-

cess, D would be replaced (since the number of interface
sites is ~1/R) by something like Db„~k+constXD;„„,r„,/R,
which for large R leads' to a growth law of the type (1).
Having argued, however, that interface diffusion is not an

adequate explanation of the results for Kawasaki dynamics,
we turn instead to another very reasonable modification of
(4), namely that the surface tension depends on curvature:

o = o.p(1+RE/R), (5)

D=f(T,c)/(1+R2/R) (6)

with R2=28c(e " —1). Substituting the expressions (5)
and (6) into (4), and solving the differential equation, one
again gets a time dependence of R having the form (1) up to
order t '~, where k=4 f(T,c)X and Rp=(R, —R )/2z.

where o.
o and R

&
are constants. When this is substituted into

(4), the solution of the differential equation again has the

form (1), with an error term of order t " The devia. tion
from proportionality to t' observed for Kawasaki dynamics
could, therefore, be due to curvature dependence of the in-

terface tension rather than to interface diffusion. The con-
stants for Kawasaki dynamics in Eq. (1) are given by
k =(2/9)c, qop/kT, say k', and Rp=R&/2, where we have
used D = 1/4.

If there is no interface diffusion effect, the only parameter
in Eq. (4) that may differ between Kawasaki dynamics and

vacancy dynamics is the bulk diffusion coefficient D. For
diffusion on a square lattice, theory predicts' D=fcvI,
where cz is the vacancy concentration, I the jump frequency
of the vacancy, equal here to the total number N of lattice
sites, and f a number usually called the correlation factor.
The vacancy concentration in the bulk may be estimated as
cv=1/(Ns+NIe ' ) where Ns is the number of bulk sites,
NI the number of sites in the interface, and El is the differ-
ence in energy between a vacancy in the interface and one
somewhere else. We expect NI to behave as

N, =Nc(27rRb')/(mR ), where 8 characterizes the width of
the interface between the domains. Hence, since
N&=N —Ni, we have
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From the data for Kawasaki dynamics (Table I), we may
conclude that R, (=2Ro) =4 to 5 approximately. In the case
of vacancy dynamics, R2 differs from zero, increasing as c
increases or T decreases. We may therefore expect Ro to be
smaller than for Kawasaki dynamics, particularly at lower
temperatures and high c values (i.e., c=0.5 here). These
effects are indeed qualitatively visible in Fig. 2 and Table I.

The strong increase of X from Kawasaki to vacancy dy-
namics suggests that the correlation factor f(T,c) may some-
times be very large, in some cases (c=0.5, T/T, =0.35)
more than 100. We have no satisfactory explanation for this
effect, even though there might be contributions from inter-
face diffusion in the case c=0.5, which are not included in
this discussion. But even at c = 0.1 and T/T, =0.35, where

the domains are isolated droplets, f(T,c) is roughly 3. Cor-
relation factors of this order of magnitude might be due to
the binding between vacancy and impurity atoms within the
domains. Such a binding would, however, suggest a tempera-
ture dependence like exp(2J/kT), because 21 is the energy of
an A Bb-ond. The measured temperature dependence (see
Fig. 3) rather suggests f(T,c) ~ exp(41/kT) at c=0.1.
Clearly, a more quantitative understanding of the correlation
effects for vacancy diffusion in the present model is needed
to get a full picture of the observed enhancement of the de-
composition process.
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