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The exact harmonic-generation (HG) spectrum is obtained analytically for a one-band one-dimensional

conductor for both ac and ac + dc external fields. It is shown that even and odd harmonics can be created and

controlled depending on the initial-state conditions and the field amplitudes E. The HG spectrum forms a

single plateau with a cutoff defined by a maximum HG order N corresponding to the maximum energy

acquired by the electron in the laser field. This maximum energy corresponds to single transfer between

neighboring sites, i.e., N = eEa jh, co, where a is the lattice constant and co the field frequency.

Quasi-one-dimensional (1D) systems such as conjugated
polymers exhibit unusual anisotropic electric and optical
properties due to a high degree of anisotropic electron delo-
calization along stacked molecular chains, Thus, high values

of g( l, the third-order nonlinear optical (NLO) susceptibil-

ity, and ultrashort response times have been observed in vari-

ous conjugated polymers. ' Theoretical calculations of con-
ductivity and NLO susceptibilities are usually of perturbative
nature. Analytic or numerical results are rather few and are

limited to one-electron approaches. '
y has been ob-

tained previously analytically in the dc limit. ' Field-
theoretical models with a linearized electron spectrum have
been also solved by the diagrammatic method to give general

analytic expressions for y for both degenerate and nonde-

generate conjugated polymers, (AB), polymers, and also
for discrete Su-Schrieffer-Heeger models. ' "Extensions to
higher-order susceptibilities have, to our knowledge, not
been presented previously. On the other hand, current re-
search in atomic and molecular iihysics deals with high-order
harinonic generation (HG), ' ' where theoretical and nu-

merical nonpeturbative simulations have shown the existence
of plateaus in HG spectra defined by sharp cutoffs, i.e., a
maximum HG order followed by a sharp decrease in inten-

sity. Such cutoffs are rationalized in terms of the maximum

energy an electron can acquire in a laser field' ' in the
presence of matter.

In this paper we calculate analytically and exactly the HG
spectrum in ac and ac+dc fields for a one-band one-
dimensional conductor. A well-defined plateau in the HG
spectrum is also obtained, with a cutoff at the maximum HG
order or photon number N =eEa/It to, where E is the field
amplitude, a the lattice spacing, and co the photon frequency.
Even and odd harmonic intensities are initial state dependent.

These results are similar to previous two-state models' and

HG in the H2 molecule. '"' However, these results are to-
tally unexpected as the systems are quite different.

%e consider an infinite 1D chain in the tight-binding ap-
proximation with nearest-neighbor transfer integral V in a
localized Wannier basis set ln) under the influence of an
arbitrary time-dependent electric field E(t):

H(t) = —VX (ln)&n+1I+ln+1)&nl)

+eE(t)g nln)(nl.

The intersite distance a is the unit of length and the electron
charge is —e. The substitution

c„(t)=c„(t)exptL in rI(t)), —

ri(t)=el't ' dt'E(t'),
Jo

in the time-dependent Schrodinger equation for
l y(t))

= Xc„(t)ln), where rl(t) is the exact field area, ' eliminates
in the Hamiltonian (1) the radiative interaction giving the
resulting Schrodinger equation for the new coefficients
c„(t),

8
i fi c„(t)= —V[e'v —' c„ , (t) + e 'v ' c„+,(t)) (3).

Equation (3) can be readily solved with the help of Fourier
transforms, generating functions for Bessel functions J„,and
Graf's addition theorem, ' to give finally,
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S n —r

c„(t)=e '"~"'g c„(0)J„„(2~s~)i
Sr

VeE(t)
d(t) = 2e p 2 cos[ rg(t) —a]. (7)

s =— dt'e'&"'
Ago

s is a new variable involving exponentiation of the field area
r/(t) A.similar expression had been obtained earlier in stud-
ies of dynamic localization. ' One can now define the aver-

age dipole moment per unit volume as in Ref. 18 or polariz-
ability p,

d(0)= —eg np„„(0), pe"=g p„„+,(0). (8)

The parameters p and ~ are determined by the elements of
the initial density matrix p„„(t) thus defining the initial-state
conditions,

d(t)= —eg np„„(t), p(t)=N 'd(t), N~~, (5)

where p„„(t) is the density matrix. Then with the help of Eq.
(4) and after lengthy calculation, we find the following
expressions for the average induced dipole moment Ad(t)
and the second time derivative d(t) (i.e., the electron accel-
eration),

Equations (6)—(8) provide exact and most general solutions
for the electron response to any arbitrary external perturba-
tion E(t).

We now consider the specific case of response to a har-
monic ac field,

E(t) =E cos(cot), e=eE/fire, ry(t) =e sin(rut). (9)
P I r

b, d(t) = d(t) d(t = 0)—= 2ep dt'sin—[r/(t') —v],
&Jo

(6)
The resulting induced dipole moment (6) becomes

V V ( 3 3 e i V cos[(2v+1)u)t]
bd(t)= 2ep t si—(nt)r—J(o)e+2ep e cos(a), F2 1;—,—;—— 4ep— cos(tr)g J2„+,(e)

sin[2 v~t]
+sin(~)g J2„(e)

1

where, F2 is a hypergeometric function. The corresponding expansion of the acceleration form of the polarization (7) reads

V
d(t) =4ep —cu cos(tr)g J2+, ( )e(2 v+1)c so[(2v +1)cot] +si (na)g J2„(e)2v sin[2vrut]

0 1

The electron acceleration form (11)enters as a source term in
Maxwell's equations. ' We note that the acceleration (11) is
devoid of any constant, i.e., time-independent component,
contrary to the dipole expression (10). Such constant dipole
moment creates large background HG contributions in
numerical computations. ' ' In Fig. 1 we present a numeri-
cal example of Eq. (11) for the power spectrum

P(to) =
~
fod(t)e'"'des/T~ Both even and. odd harmonics

appear with a sharp cutoff at around N =15, i.e., the high-
est harmonic order.

We now exhibit the initial-state dependence of the HG
spectrum. Thus for an initial one-electron eigenstate, i.e., a
Bloch wave, then from Eqs. (8) we have the simple result

p = 1, a =k, where k is the initial wave vector. The first term
in the dipole (10) represents the linear growth of the dipole
moment due to the propagation of the Bloch wave with an
average velocity v=(2V/ft, )JO(e)sink, where Jo(e) is a
zero-order Bessel function with argument e = eE/hcu, repre-
senting the average effect of the harmonic field on the elec-

N, =g p„„(0)= 2N7r 'kF, p sine = 0,

pcos~ =2Nm sinkF,
—1

(12)

where N, is the total number of electrons for N sites. For this

tron velocity during one period. This same Bessel function
defines the field-induced Floquet energy separation for two-
level models. ' The second term in (10) compensates for the
nonzero component of the first odd Fourier sum at t=0.
clearly even and odd harmonics are of comparable magni-
tude if the electron in the band occupies initially Bloch states
with k= ~m/4, ~3m/4. Only even harmonics appear for
k=+ 7r/2 and there are only odd harmonics for k=O, + m.
In the latter case the linearly growing dipole term in (11)also
vanishes.

We next consider a partially filled band, i.e., a metal, with
v=2k&/m. electrons per atom where k& is the Fermi wave
vector. From (8) we have the succinct results,
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We note that for e = m/4+ m m (m = integer), low-order odd
harmonics can be made to vanish, whereas even harmonics
will be suppressed at e = 3 m/4+ mm. The boundary or cutoff
of the HG plateau predicted by (14) and (15) is characterized

by the parameter N =ae/2 (lne=1). For harmonic orders v

greater than N, the HG amplitudes decrease extremely rap-

idly in the limit v&) a)0,
S
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FIG. 1. Power spectrum P(co)=II' d(ra)I from Eq. (11) for

eEa/fico=15 and a= m/10. Sharp cutoff at N =15 corresponds

to maximum harmonic generation order.

pv) ( —1)"
A2, = —4e sin( K) cos(e —m/4)

f1 QJ i 778 ) 2p
(13)

pV( 2 ~I" 1)v —I

A2, I= —4e cos(K)cos(e+ Ir/4)
A, rdi 178 j 2P 1

(14)

case, the linear dipole term in (10) and the amplitudes of
even harmonics all vanish. For large field amplitudes (inten-

sities) and (or) low fundamental frequencies cu such that

a&)1, the HG amplitudes A„of order v decrease slowly as

p, forming a plateau in the spectrum. This can be readily
ascertained from the Bessel function asymptotics' for e&)

v&0:

For low-intensity or high-frequency fields such that eE/h, ru

(1, the plateaus (13) and (14) and cutoffs (15) and (16)
decrease rapidly as a function of the order v. Thus favorable
conditions for the observation of the HG plateaus correspond
to large fields E and (or) low frequencies co. As an example,
Fig. 1 shows a cutoff at N =15 such that N ficu=eEa

We finally consider the response of the 1D band conduc-
tor to a sum of constant and harmonic (dc+ac) electric fields,

E(r) =Ep+E cosa)r 7/(r) = p1pr+ a sin&or, (17)

where rLIp=eEp/fi is the Bloch frequency for the dc field

giving rise to the well-known Bloch oscillations. Introduc-

ing the notation p, = p&p/ru, the ratio of the Bloch and har-

monic frequencies, and defining the Anger function

I m

J„(a)=— dt cos(pt —e sint),
mJp

then for commensurate values of mp and co so that mp,
=integers, the field-induced dipole (6) can be expressed in

terms of the Anger functions [for irrational values of mp,
analytic expressions for Ad(r) can be obtained only for par-
ticular periods of the field ],

V
b, d(t) = —2ep — 5(p)sin(K)( —1)"J„(a)t+cup 'Jp(e)[cos(empt —K) —cos(K)]

cos[( pep+ Alp) r K] coS( K) COS[( pet) cup) r+ K] cOS( K)+g' J,(e) —( —1)"
VOJ+ Mp PCO —

OJp
(19)

[h(p) =1 for p, -integer, b, (p) =0 otherwise. ] The prime in

the sum implies the omittance of terms with v~p, in the
denominators of (19) if p, is integer thus eliminating diver-

gences.
We note from (19) that the dc electric field provides a tool

to control the HG spectrum. Thus the constant field splits
each harmonic induced by the ac field into two peaks shifted

by the Bloch frequency cop. Changing the dc field magnitude
one changes the splitting uniformly for all harmonics. As in

p V ) 2 i cos(e —m v/2 —m/4)A,= —2e
A co i 77K ) v+p ( 1)v+ I

(2o)

where A „is the amplitude of the vth harmonic in (19) with

the ac case, Eqs. (13)—(16), the HG spectrum in the ac+dc
case also reveals plateaus. For a&) v) 0, the HG amplitudes
decrease as v



3476 PRONIN, BANDRAUK, AND OVCHINNIKOV 50

pV~ 1 ~ 1 ee ' 1A,= —2e
fitu(2mv) (v~ p, ) 2v ( —1)"+'

(21)

Both examples of HG, i.e., ac and ac+dc fields, for a one-
dimensional conductor exhibit plateaus which are ended at

high order v by a cutoff defined by the maximum order or

photon number: N = eEa/htu (a =1 in our model) (see also

the upper (lower) sign corresponding to the sum (difference)
of frequencies vcr and coo. As in (13) and (14) one can again
control even and odd harmonics by choosing an appropriate
s. The position of the cutoff is characterized by the same
parameter N =e as in the pure ac case [Eqs. (15) and (16)].
The HG amplitudes now decrease very rapidly for v)) a) 0
as

Fig. 1). Such a cutoff occurs as well in two-level models'

and in rigorous calculations of HG by the diatomic molecule

Hz .'"' eEa/htu is the ratio of the energy gain of an elec-

tron transfer between neighboring sites to the photon energy.
This turns out to be the maximum energy gain also for an

electron in a 1D conductor subjected to a time-dependent

electric field of amplitude E and frequency ao. Experimental

verification of such cutoffs in the HG spectra of quasi-1D
conductors would allow one to conclude whether electrons

are restricted to single bands in the presence of laser fields.
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