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Temperature dependence of the positron annihilation parameters
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We report the results of temperature dependence of S-parameter and lifetime (7) measurements on the
normal and superconducting states of Bi,CaSr,Cu,0, (Bi-2:1:2:2) and Bi,_, Pb, Ca,Sr,Cu;0, (Bi-2:2:2:3)
superconductors. A decrease of the S parameter as well as 7 below T, is seen for both compounds.
These observations are interpreted qualitatively considering a reported positron-density-distribution cal-
culation and invoking the local charge-transfer process from CuO, to Bi-O planes at the onset of the su-
perconducting transition. The possible influence of sample preparation conditions and structural
changes on the temperature dependencies of the positron annihilation parameters across T, is also dis-

cussed.

INTRODUCTION

Positron annihilation spectroscopy (PAS) has long been
recognized as an excellent microscopic probe for the elec-
tronic structure of solids."»? It comes as no surprise,
therefore, that a large number of investigations have been
carried out in the ceramic high-temperature supercon-
ductors using this technique to probe the nature of the
superconducting transition as well as to investigate the
presence or absence of a Fermi surface. It is now well es-
tablished that the lifetime (7) and the Doppler-broadened
annihilation line-shape (DBALS) parameter (S) show
fluctuations at T, which are intimately associated with
the phenomenon of high-temperature superconductivity.
For example, a decrease in 7 and S is seen’ for sintered
YBa,Cu;0, (YBCO) compounds with the exception of
one report on a single crystal, showing an increase* below
T.. Similarly, temperature dependencies of the positron
annihilation parameters have been reported for supercon-
ducting TI-Ca-Ba-Cu-O,>® YBa,Cu,Q;, 7 Nd-Ce-Cu-O,°
and Bi-Ca-Sr-Cu-0.°"!2  However, systems other
than YBCO have been studied less extensively, and par-
ticularly in Bi-Ca-Sr-Cu-O the reports are few and con-
flicting in terms of the temperature dependence of posi-
tron annihilation characteristics across T.. While
Sundar et al.® have not observed any change in T
below 7T, for Bi,CaSr,Cu,O, (Bi-2:1:2:2) and mixed
phase  Bi,CaSr,Cu,0, +Bi,Ca,Sr,Cu;0, [Bi-(2:1:2:2
+2:2:2:3)], recent reports by Zhang et al.'° and Wang
et al.!! show a discontinuous change in 7 and S, respec-
tively, below T, for the latter compound, similar to the
observations reported from this laboratory in terms of a
shape parameter Tj.'? In addition, a consensus is yet to
emerge on what exactly is (are) the reason(s) for the ob-
served increase and/or decrease of 7 and S below T, in all
the superconductors. A notable attempt in this direction
has been made by Jean et al.,> who provide an explana-
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tion taking into account the disposition of the positron
density distribution (PDD) with respect to the CuO,
plane and invoking a charge-transfer process between the
CuO, plane and the O-Cu(1)-O chain in superconducting
YBCO. The extension of this concept to Bi-Ca-Sr-Cu-O
superconductors requires rationalization of discrepancies
in the temperature dependences of 7 and S vis-a-vis the
theoretically calculated PDD. Therefore, further experi-
mental and theoretical investigations are necessary in Bi-
Ca-Sr-Cu-O superconductors. In the present work, we
report the temperature dependence of S across T, as well
as lifetime measurements in the normal (300 K) and su-
perconducting (15 K) states of the Bi-2:1:2:2 and Bi-
2:2:2:3 superconductors. The observations are discussed
in the light of the reported PDD calculation.

EXPERIMENTAL

Samples with nominal composition
Bi,_, Pb, Ca,Sr,Cu,0, (Bi-2:2:2:3) were prepared by the
usual solid-state reaction, involving calcination followed
by sintering at 850 °C. Resistivity measurements showed
the T, for Bi-2:2:2:3 to be 106 K (R =0) [Fig. 1(a)] and
x-ray diffraction showed the compounds to be single
phase. The Bi,CaSr,Cu,0, (Bi-2:1:2:2) compound,
prepared likewise, was seen to have a T, =53 K (R =0)
and x-ray diffraction measurement showed it to be single
phase, except for a small impurity phase, which is respon-
sible for the broader transition width in the resistivity
curve seen in Fig. 1(b).

DBALS measurements were carried out using a 2-cc
high-purity geranium (HPGe) detector with a resolution
of 1.0 keV at the 511.8-keV ¥ line of '%Ru. A **Na posi-
tron source, sandwiched between two pellets, was mount-
ed on the cold head of an APD closed-cycle helium refri-
gerator and measurements were carried out from 300 to
15 K. Lifetime spectroscopy LTS measurements were
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FIG. 1. Resistivity as a function of temperature for Bi-2:2:2:3 (a) and Bi-2:1:2:2 (b) superconductors.

carried out at 15 and 300 K using a fast-fast coincidence
spectrometer with a time resolution of 250 ps. The
response function as well as source contribution were
determined using standard procedures as described else-
where.!® The lifetime spectra were analyzed using POSI-
TRONFIT.*

RESULTS AND DISCUSSION

The lifetime analysis showed two components 7, and 7,
after source correction. The average lifetime 7 and bulk
lifetime 75 were calculated using 7, 7, I, and I, as

T=71d,+7,0, ,
g =, /r+1,/7)7 ",

and are presented in Table I.

The room-temperature (300 K) 7, 7,, and 75 obtained
for Bi-2:1:2:2 are 220 ps (75%), 377 ps (25%), and 245 ps,
respectively, not very different from those reported by
Sundar et al.,”’ i.e., 220 ps (85%), 360 ps (15%), and 233
ps. The difference in 75 arises due to the fact that our
sample contains a small amount of impurity phase. The
Tp for the single-phase Bi-2:2:2:3 is also seen to be lower
(230 ps) as compared to the Bi-2:1:2:2 phase (245 ps), con-
sistent with the observation in the TI series® where the 7
decreases with increasing number of CuO, planes. In the

TABLE I. Lifetime measurements on Bi superconductors.

Sample 7 (ps) 7, (ps) 7 (ps) 75 (ps)
Bi-2:1:2:2 220 (75%) 377 (25%) 259 245
Bi-2:2:2:3 223 (93%) 396 (7%) 235 230

superconducting state (15 K), the 75 values were 4 and 7
ps lower than the values at 300 K for Bi-2:2:2:3 and Bi-
2:1:2:2 samples, respectively. The S parameter evaluated
as a function of temperature in Bi-2:1:2:2 and Bi-2:2:2:3 is
seen to decrease at the onset of superconductivity as
shown in Fig. 2. The present observation is consistent
with our earlier measurements’? on Bi-2:1:2:2 and Bi-
(2:1:2:2+2:2:2:3) in terms of a shape parameter T (full
width at half maximum of the bulk electron momentum
component), which was seen to increase at T,. An in-
crease in Ty i.e., an increase in the higher-momentum
component in the Doppler curve, leads to a decrease in
the S parameter. Therefore, in view of the present work
and the literature data,'°” 2 § and 7 are seen to change at
the onset of the superconducting transition in these com-
pounds, although no such temperature dependence was
observed by Sundar et al.’

There are several possible reasons for the temperature
dependency of S and 7 parameters in high-T, supercon-
ductors, such as changes in local electron density,
changes in the momentum distribution of electrons due to
a structural transition, the effect of the superconducting
gap parameter, changes in electron-positron correlation,
etc. In the light of the above, we have attempted to ra-
tionalize our observations in what follows in the frame-
work of the proposal by Jean et al.> based on the disposi-
tion of positrons to CuO, plane and electron transfer
away from this plane.

In order to understand the decrease of S below T, it is
essential to consider the calculated PDD in Bi-based su-
perconductors. A calculation by Sundar et al.® shows a
maximum of the PDD in the region between the Bi-O
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FIG. 2. Temperature dependence of S for Bi-2:2:2:3 (a) and Bi-2:1:2:2 (b) superconductors.

layers, and the positron density in the CuO, planes is
negligible. However, a calculation using the linearized
augmented-plane-wave (LAPW) method by Singh et al.'®
shows that positron density is substantial in the CuO,
planes (as well as in the Bi-O plane) if electron-positron
correlation is taken into account. This homogeneous dis-
tribution of positron density is true for an idealized struc-
ture; but the actual material is known to be incommensu-
rate with a fairly large modulation in the Bi-O layer.
This modulation, among other things, is due to the pres-
ence of bismuth-rich and bismuth-deficient (vacant) re-
gions with a periodicity. These vacant Bi regions attract
positrons preferentially, and the positron density may
still be a maximum in the Bi-O layer instead of the CuO,
planes.'® In other words, the PDD is greatly influenced
by the superstructure and is mainly confined between the
Bi-O layers. The Bi-O planes might be electronically ac-
tive at the onset of superconductivity, resulting in the
changes in the S and 7 parameters across T,. The in-
volvement of the Bi-O layer in the mechanism of high-
temperature superconductivity is well documented. For
example, a band-structure calculation shows that, apart
from the CuO,-derived bands, the Fermi level also has
contributions from the Bi-O-derived bands.!® It is also
known that the Bi-O plane acts like a charge reservoir
and a charge-transfer process exists between CuO, and
Bi-O layers.!” The Bi-O layer seems functionally
equivalent to the O-Cu(1)-O chain in YBCO. At the on-
set of superconductivity, a local electron transfer from
CuO, to the Bi-O plane results in the generation of holes
(charge carriers) in the CuO, plane and a concomitant in-
crease in electron density in the Bi-O plane. This leads to
a reduction in 7 in the superconducting state, as ob-
served. Under the electron-gas approximation,? an in-

crease in electron density would lead to an increase in
Fermi cutoff (momentum), reducing the area under the
central low-momentum region of the Doppler curve.
Therefore an increase in electron density would also de-
crease S at the onset of superconductivity, as seen in this
work (Fig. 2).

The observation of Sundar et al.’ seems contradictory
to the present observation and literature data. They as-
cribed the temperature invariance of 7 to the lack of posi-
tron density in the CuO, plane and at the apical oxygen
atom. It was also shown by these authors’ that 7 in Bi-
2:1:2:2 is dependent on heat treatment in oxygen atmo-
sphere, because intercalation of excess oxygen in the re-
gion between Bi-O layers increases the effective valence of
Bi. Therefore the involvement of the Bi-O plane in
governing the positron annihilation parameters is corro-
borated. The superstructure in the Bi-O plane is affected
by the heat-treatment conditions, !® and in turn influences
the PDD and consequently the temperature dependence
of the S and 7 parameters across T,. It is interesting to
note that different temperature dependencies of the S and
7 parameters were seen in YBCO (Refs. 19,20) under
different heat-treatment conditions, indicating a link be-
tween the heat-treatment conditions and the PDD.

A plausible reason for the observation of a temperature
independence of 7 could be a homogeneous PDD involv-
ing both the CuO, and Bi-O planes as expected in an
idealized structure.!® In case positrons sample both these
planes with near-equal probabilities, increase in the S and
7 parameters due to annihilation from the CuO, plane?
might counterbalance the decrease in these parameters
due to annihilation from the Bi-O plane, leading to near-
constant S(T') and 7(T) profiles. A probable cause for
such a homogeneous PDD could also be the presence of
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vacancies in the CuO, plane owing to Cu deficiency.
Apart from the above reasons, the structural changes at
the onset of superconductivity might also influence the
temperature dependence of the S and 7 parameters. In
Bi-based superconductors such structural change is seen
from the "0 NMR response?! as well as being expected
from the change in the lattice parameter following elec-
tron transfer away from the CuO, plane (as seen in T1 su-
perconductors?).

We conclude that the Bi-O plane is electronically ac-
tive at the onset of superconductivity and probably per-
forms a similar role to that of the O-Cu(1)-O chain in su-
perconducting YBCO. The temperature dependence of
the S parameter is explained taking into account the
PDD and invoking a local electron-transfer process be-

tween the CuO, and Bi-O planes at the onset of supercon-
ductivity. The effects of heat-treatment conditions and
structural changes on the temperature dependencies
across T, could be substantial. Further investigations
with selective substitution in the CuO, and Bi-O planes
may help confirm the explanations provided in this work.
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