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Direct calculation of spin stiffness for spin-% Heisenberg models
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The spin stiffness of frustrated spin-% Heisenberg models in one and two dimensions is computed by
exact diagonalizations on small clusters that implement spin-dependent twisted boundary conditions.
Finite-size extrapolation to the thermodynamic limit yields a value of 0.14+0.01 for the spin stiffness of
the unfrustrated planar antiferromagnet. We also present a general discussion of the linear-response
theory for spin twists, which ultimately leads to the moment sum rule.

One of the most basic questions in the study of magne-
tism is that of the existence or absence of long-range or-
der in the corresponding magnetic moments. A partial
answer to this question can be given by the determination
of the so-called spin stiffness of the magnet, which mea-
sure the rigidity of the spins with respect to a small twist.
In particular, systems possessing long-range spin order
are stiff, while spin systems that are not stiff accordingly
show no long-range order in the moments. In the case of
spin-; systems, the latter stiffness can be directly mea-
sured by the generation of a spin current with a spin-
dependent magnetic field, as was shown by Shastry and
Sutherland.! This method is analogous to that used to
measure the charge stiffness of a system,? which discrim-
inates between metals and insulators.

In this paper, we apply the former method to the case
of the spin-; Heisenberg model, H,= 3, ,J;;S;S;, on
both chain and square-lattice geometries. First, we give a
general discussion of spin twists for this model based on
linear-response theory, which ultimately leads to the mo-
ment sum rule.> We then make practical use of the above
method to measure the spin stiffness of near-neighbor
Heisenberg chains and square lattices by exact diagonali-
zation of the S,=0 subspace with the Lanczos tech-
nique.* Employing finite-size extrapolations, we find
values of the spin stiffness for the nearest-neighbor
Heisenberg ferromagnet and antiferromagnet on the
square lattice that agree with spin-wave theory results to
within 10%.° In the particular case of the square lattice,
where reported results for this quantity vary widely,® we
obtain an upper bound for the spin stiffness of
ps/J=0.174, as well as an extrapolated value of
ps/J=0.1410.01 in the thermodynamic limit. Also, for
the case of spin-} frustrated antiferromagnets with next
(next) nearest-neighbor interactions, we generally find
that the stiffness coefficient vanishes near the point where
the analogous classical model losses long-range order in
the magnetic moments.” We now turn to the derivation
of the moment sum rule.

Linear-response. Following Ref. 1, the rigidity of a
Heisenberg model with respect to a twist about the spin z
axis is reflected in the ground-state energy of the modified
Hamiltonian,

H= ZJij[%(Si+Sj—eie(j+Si_Sj+e_ieij)+Siszz] , (1)
(i, )
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where 0;; represents the twist angle on the bond (i,).
Hence, in the limit of small twists, the above Hamiltonian
is expressible as H=H,+ H,, where H, represents the
unperturbed Heisenberg model with 6,; =0, and where
the perturbation to this Hamiltonian is given by

H = (2) (6,7 —4637,(S;*S; +H.c.)] . @

ij

Above, ji7'=(i/2)J;;(S;*S;—H.c.) is the z component
of the spin-current operator. Consider now the case of
identical twists, 0, , that exist only along nearest-neighbor
bonds oriented along the x axis. Then since the spin ri-
gidity D; is related to the difference in the ground-state
energy by Ey(6,)—E,(0)=ND,6% for small 6,, second-
order perturbation theory gives
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where the spin kinetic energy operator and the spin-
current operator along the x direction are defined by
TY'=3 19,3878 ;+Hec) and j¥=3(i/
2)J;; +2(S,-+S,._+2 —H.c.), respectively, and where N
denotes the number of sites.

We can next consider placing a small uniform dynami-
cal twist, 6,(2)=6,e’ on all of the nearest-neighbor
bonds that are oriented along the x direction in the
modified Heisenberg model (1). Application of the Kubo
formula then yields a variation in the ground-state energy
per site of N ~'AE,=111§)62, where
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Since the spin current is given by j!¥=03E,/d0,

=NI¥6,, the spin conductivity, o, (0)=M/iw, is

then just

Reo (w)=2m |D,8(w)

+N713 [€0]j¥lv) |2
v#=0
XS8((E,—Ey)—w?) |, (5a)

3415 ©1994 The American Physical Society



3416 BRIEF REPORTS 50
’ 0.50 =
Imo,(0)=w"" F< —T)
1.0¢
0.40 o

[€0|i v HE,—E,)

2
- = . (5b
N vzo (EV_EO)Z—Q)Z !

Integrating Eq. (5a) over all frequencies, and substituting
in expression (3) for the spin rigidity, we obtain the fol-
lowing moment sum rule® for the spin conductivity:
o ( - TX(S) )
J doReo (0)=r—F— . ()
Hence, the fraction of the moment sum rule occupied by
the static twist response is simply

Ps

= e 7)
(—=TY)Y/N

Iy

where we define p, =2D; to be the spin stiffness. Notice
that the above result indicates that the entire magnetic
moment is made up only of excited states in unstiff spin
systems with p, =0. Below, the spin stiffness, as well as
the latter static moment fraction, is computed numerical-
ly using the Lanczos technique on finite chains and
square lattices for both the ferromagnet and for frustrat-
ed antiferromagnets.

Ferromagnet. To check the validity of the method we
consider first the nearest-neighbor ferromagnetic spin-1
chain with periodic boundary conditions. The ground-
state of Hamiltonian (1) has been obtained by applying
the Lanczos technique for N=8,10,12,...,20 sites in
the S, =0 subspace, that permits introduction of twists
along the z axis. After finite-size extrapolation to the
thermodynamic limit as function of N !, we obtain a
value for the spin stiffness of p, /J =0.248+0.005, which
is quite close to the exact result of p, /J=s?=1 for spin
s=%.1 Similar results were obtained in the case of the
square lattice. Also, the average spin kinetic energy for
the nearest-neighbor ferromagnet is simply the total ener-
gy in the S, =0 subspace; i.e., {T"')=—Ns2J. Hence,
Eq. (7) indicates that I,=1, which means that the static
twist response saturates the moment sum rule (6) in the
case of the nearest-neighbor ferromagnet. We have
recovered the latter result numerically to within comput-
er accuracy. The saturation effect can also be directly un-
derstood by the comparison of expression (3) for the spin
rigidity and expression (6) for the moment sum rule, cou-
pled with the observation that the ferromagnetic state is a
null eigenstate of the spin-current operator. Hence, the
spin response of such a ferromagnet is analogous to the
charge-response of noninteracting electrons, where the
Drude weight saturates the f sum rule."?

Frustrated antiferromagnetic chain. Consider next a
periodic spin-1 chain with both nearest-neighbor (J,) and
next-nearest-neighbor (J,) antiferromagnetic interactions.
Again, we have performed exact diagonalizations
of Hamiltonian (1) in the S,=0 subspace for
N=8,10,12,..., and 20 sites. The stiffness extracted
from these studies are shown in Fig. 1. After performing
a finite-size extrapolation of our results for the unfrus-
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FIG. 1. Shown is the spin stiffness p; of the frustrated anti-
ferromagnetic chain (in units of J,) as a function of next-
nearest-neighbor frustration, J,/J,, for various system sizes.
The inset displays the fraction, I, of the sum rule (6) exhausted
by the static twist response.

trated antiferromagnetic chain (J,=0) as a function of
N !, we obtain a value of p, /J,=0.270+0.005 for the
spin stiffness in the thermodynamic limit, that is slightly
greater than the exact value of  (see Ref. 1). The small
discrepancy we obtain with respect to the exact result
could be due to the fact that the existence of algebraic
long-range order in the spin-1 Heisenberg chain"® exag-
gerates finite-size effects.’ Also, we see from Fig. 1 that
while the stiffness rises very slightly upon the introduc-
tion of frustration, J, >0, it drops precipitously to zero
around J, /J,=0.43. This point is in the vicinity of the
well studied spin-Peierls dimerization transition,® evi-
denced by the absence of spin rigidity in the chain. Re-
cent estimates that exploit conformal invariance find a
value for the latter critical frustration of J,.=0.24J,,'°
which is consistent with the decrease of J,. with increas-
ing lattice size that we observe (see Fig. 1). In fact,
finite-size extrapolation of these results yields a value of
J5. /J;=0.3310.05. We have also computed the frac-
tion, I, of the moment sum rule occupied by the static
twist response, which is shown in the inset to Fig. 1. In
the case of the unfrustrated antiferromagnetic chain
(J,=0), this value extrapolates to I;=0.9151+0.005 in
the thermodynamic limit, N ~!'—0. It is intriguing to re-
mark that the latter value is quite chose to the analogous
fraction of the f-sum rule contributed to by the Drude
weight in the £-J model chain with one hole,!! which is
0.938. In addition, this fraction increases to a
maximum value approaching unity at J,/J;=0.25 of
I1,=0.98610.005, just before plummeting to zero.
Frustrated antiferromagnet on the square lattice. We
have also diagonalized Hamiltonian (1) for the case of
spin-1 on finite square lattices with nearest-neighbor
(J,), next-nearest-neighbor (J,), and next-next-nearest-
neighbor (J;) interactions. This model has been widely
studied because of its close connection with the 7-J model
on the square lattice,'? and hence because of its relation
to the phenomenon of high-temperature superconductivi-
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FIG. 2. Above, we display the spin stiffness of the square-
lattice Heisenberg antiferromagnet (in units of J,) with only
next-nearest-neighbor (diagonal) frustration, J,, for various sys-
tem sizes. The inset shows the corresponding fraction (7) of the
moment sum rule exhausted by the static twist response.

ty.”13715 In particular, we have found ground states for

N=8,16,18, and 20 site square lattices with periodic
boundary conditions!® via the Lanczos technique. In the
case of the nearest-neighbor Heisenberg antiferromagnet
we obtain stiffness values of p,/J,=0.185, 0.177, and
0.174 for systems sizes of N =16,18,and 20, respectively.
Notice the general downward trend with increasing lat-
tice size. After finite-size extrapolation to the thermo-
dynamic limit we find a value of p,/J,=0.1410.01.
Both this value and the former upper bound of 0.174 for
the spin stiffness lie below that of p, /J, =0.18 obtained
from second-order-spin-wave theory.’

Our results for the spin stiffness of the frustrated J,-J,
model (J;=0) are shown in Fig. 2, while those of the
frustrated J,-J; model (J,=0) are shown in Fig. 3. As
intuitively expected, we observe that the spin stiffness
generally decreases smoothly as frustration increases. In
particular, the stiffness vanishes near J,/J; =0.5 in the
case of the J,-J, model with 20 sites, whereas it vanishes
near J;/J;=0.35 in the case of the J,-J; model. The
latter parameter values are close to the points where the
corresponding classical model loses its long-range Néel
order.” The fraction, I,, of the moment sum rule ex-
hausted by the static twist response for both the J,-J,
and the J,-J; models are also plotted in the insets of Fig.
2 and 3, respectively. Figure 2 shows that the J,-J, mod-
el on the 4 X4 lattice has a distinct feature near its classi-
cal critical point for values of frustration ranging from
J,/J;=0.55 to J,/J,;=0.80. Here, the spin stiffness
rises with increasing frustration, but then finally vanishes.
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FIG. 3. Similar to Fig. 2, with the exception that only next-
next-nearest-neighbor frustration, J;, is considered.

It has been pointed out in the literature that uniform
chiral correlations peak near this region,'* and that the
excited states in this vicinity are spin singlets.!> This
feature could therefore correspond to a phase with uni-
form chiral spin order,!* since the latter state is charac-
terized by spin-0 excitations. A spin-glass phase, howev-
er, is not ruled out.”> Note that the absence of this
feature on the other 18 and 20 site lattices that we have
studied could be due to their “tilted” nature.'® For ex-
ample. collinear order—which we know must occur in
the thermodynamic limit for large values J,” —is not pos-
sible in such lattices. Clearly, similar diagonalizations of
Hamiltonian (1) on a 6X6 lattice are necessary in order
to resolve this issue.

In summary, we have extended the theory of the deter-
mination of spin rigidity via twisted boundary conditions!
to the general case of quantum Heisenberg models. This
method has been applied for the first time to the exact di-
agonalization of frustrated spin-; antiferromagnetic
chains and square lattices. Notably, we find an upper
bound of 0.174 for the spin stiffness of the unfrustrated
antiferromagnetic Heisenberg model on the square lattice
that agrees to within a few percent with spin-wave calcu-
lations.” However, the extrapolated value of 0.14%0.01
obtained from finite-size scaling to the thermodynamic
limit is considerably smaller.

Discussions with S. Trugman are gratefully acknowl-
edged. This work was performed under the auspices of
the U.S. Department of Energy. One of the authors
(J.P.R.) was supported in part by National Science Foun-
dation Grant No. DMR-9322427.

*Permanent address: J. Stefan Inst., Univ. of Ljubljana, 61111
Ljubljana, Slovenia.

fPermanent address: Dept. of Physics and Astronomy, Califor-
nia State University, Los Angeles, CA 90032.

IPermanent address: Dpto. de Fisica de la Materia Condensada
(C-12), Universidad Autonoma de Madrid, Cantoblanco,

Spain.
IB. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243
(1990).
2W. Kohn, Phys. Rev. 133, A171 (1964).
3L. P. Kadanoff and P. C. Martin, Ann. Phys. 24, 419 (1963).
4C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).



3418 BRIEF REPORTS 350

3J. Igarashi, Phys. Rev. B 46, 10763 (1992).

SE. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

3. Ferrer, Phys. Rev. B 47, 8769 (1993); P. Chandra, P. Cole-
man, and A. I. Larkin, J. Phys. Condens. Matter 2, 7933
(1990).

8. Affeck, J. Phys. Condens. Matter 1, 3047 (1989).

98. Haas, J. Riera, and E. Dagotto, Phys. Rev. B 48, 3281 (1993).

10K . Okamoto and K. Nomv  Phys. Lett. A 169, 433 (1992).

X, Zotos, P. Preloviek, and I. Sega, Phys. Rev. B 42, 8445
(1990).

12M. Inui, S. Doniach, and M. Gabay, Phys. Rev. B 38, 6631
(1988).

13H. J. Schulz and T. A. L. Ziman, Europhys. Lett. 18, 355
(1992).

14D, Poilblanc, E. Gagliano, S. Bacci, and E. Dagotto, Phys.
Rev. 43, 10970 (1991).

ISA. Moreo, E. Dagotto, T. Jolicoeur, and J. Riera, Phys. Rev.
B 42, 6283 (1990).

16J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).



