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Interaction between mixed-valent rare-earth impurities in BCS suyerconductors
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The Goldstone-Feynman diagrammatic technique is adopted to study the interaction between mixed-

valent rare-earth impurities in BCS superconductors. The influence of cerium-impurity coupling togeth-
er with isolated cerium-impurity upon superconductivity of Thi, Ce system is worked out. In compar-
ison with magnetic rare-earth impurities, depression of superconductivity due to impurity interaction of
nonmagnetic mixed-valent rare-earth dopants is much smaller.

I. INTRODUCTION

Rare-earth ions doped in conventional metals and su-
perconductors can behave either as magnetic or nonmag-
netic impurities due to various interactions between the
isolated dopants and electrons in the host. Furthermore,
the exchange interaction between the doped ions them-
selves mediated by host electrons can play an important
role in the case of magnetic impurities. ' For example,
the reentrant behavior of superconductivity in

LaQ 75Tho 2&Ce„, and the enhanced superconductivity in

Co, NbSe2, unsolved by Abrikosov-Gorkov theory, '
would remain unexplained until the consideration of the
infiuence of Ruderman-Kittel-Kasuya- Yosida (RKKY}
coupling on superconductivity.

In this paper, we will discuss the case of nonmagnetic
impurities, i.e., the mixed-valent rare-earth system such
as Th, „Ce„. Generally, cerium may have two
different ionic configurations: (i) Ce +(4f ') with energy
level E, and angular momentum J=—', and (ii) Ce +(4f }

with energy level Eo and angular momentum J=O. For
isolated ion of cerium, E, (Eo, so that 4f ' configuration
is ground state and Ce + shows large magnetic moment.
However, in alloys like Th& „Ce„, the energy levels of
the two configurations 4f and 4f ' are shifted as

Eo ~EO +ED E
~
~E

&
+E

&
due to the mixing interac-

tion between the cerium 4f electrons and the host con-
ducting electrons. In this way, the valence of doped ceri-
um ions is neither three (Ce +) nor four (Ce +), and in
strong mixing coupling or large N (N=2J+1) limit, the
two energy levels are reversed as E&+E&)Eo+Eo. The
averaged valence of cerium impurity lies between three
and four. The suppression of superconductivity due to
isolated mixed-valent rare-earth impurities has been dis-
cussed by using mixed Goldstone-Feynman tech-
nique. ' It is an interesting problem to elucidate the

role of interimpurity correlation in this kind of alloys in
comparison with that of the RKKY interaction as men-
tioned above. We will extend the Goldstone-Feynman di-
agrammatic technique" ' to include impurity-impurity
coupling on a single Goldstone time axis and work out
the concentration dependence of superconducting transi-
tion teinperature T, (x ).

II. FREE-ENERGY DENSITY

+ y kk(ak ak+a —ka —k }
k

+( ~)r (ak a —k+a —kak)
k

H'= y y [( Vkak+X"' +H. c. )
1

+( V ka+kXoj' +H. c.)],

(2.1)

where j represents lattice sites, k stands for kl, —k
stands for —k l, X t

=
~
m ) (1

~
are the Hubbard projec-

tion operators, H is the Hamiltonian of mixing interac-
tion between electron of extended states and 4f electron,
and Eo,E, are energy levels of 4f,4f ' configurations of
a single cerium ion, respectively. By extending the per-
turbation H', partition function of the system may be
written in the form of" '

The total Hamiltonian of superconducting Th, „Ce,
system can be written as"'

H =Ho+H',

Ho = g [EoXoo+ g EiX ]

y y ( —1) f'dr, f 'dr f d~,„(h,'(r&}h,'(r ) h,' (~2„)),
J2 J2„

(2.2}
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where Zo represents the partition function of pure super-
conductor, and h is the mixing interaction Hamiltonian
of single-impurity problem. Up to higher-order approxi-
mation of two-impurity coupling, we may have '

=1+ QSJ.+ g (S S. +S~ J )
0 j jjl j2)

II (1+S )= g exp[ —P(E +E )]
J Nl

(2.4)

where N, denotes the impurity numbers, E are energy
levels of 4f configurations, and E +E are shifted ener-
gies owing to the mixing interaction between extending
electrons and 4f electrons. For large N limit, Eo, E, may
be expressed as following in terms of Brillouin-Wigner
theory

PD 1 . IEp —Egl
Eo =Np V —ln +Ref +iP-

27r 2 277

pD 1 . ~E1+Ef ~

E, =pV —ln +Ref +iP—
2% 2 2%

(2.5a)

(2.5b)

where D is the half bandwidth of extending electron,
E&=E, Eo, P(x)=(did—x)lnl (x), and I'(x) is gamma
function. From formulas (2.3}and (2.4}mentioned above,
the free-energy density of the system can be obtained as

= II(1+S } 1+ g S (2.3)

where Sj Sj j represent contribution of single impurityJ~ J)J2
and coupling of two impurities to the partition
function of the system, respectively, and SJ J
=S /[(1+S )(1+S )] is a renormalized one of theJ) J2

impurity coupling term to the partition function.
If impurity concentration x is very low (x « 1), im-

purities in the system are nearly independent, coupling
between impurities could be neglected. In this case it is
sufficient to consider only the influence of isolated single
impurities; when x increases, the impurity coupling is
enhanced and its inhuence upon superconductivity
should be included.

According to the study of single impurity behavior, we
may have the relation" '

N,

f=f. x—y 'ln-ye ~'-+'-'

ln 1+ g S
tJIJ2)

=fo —xP 'ln ge

where FJ i (~R —R.
~ ) represents the free energy of theJ)J2 Jl J2

impurity coupling. The nearest-neighbor approximation
is adopted for the last term including FJ J (R} in the ex-

J)J2
pression above, thus leading to

f=fo xP 'ln —ge +x m;F (R),

(2.6)

where R indicates the average distance of the nearest-
neighbor impurities, m; is the numbers of the nearest im-
purity.

Now, we investigate the free energy of impurity cou-
pling. Along one time axis (O,P), the generators of mixed
Goldstone-Feynman impurity-coupling diagrams are
shown in Fig. 1."'

All impurity coupling diagrams can be generated from
Fig. 1, by exchanging impurity position R, and Rz, and
exchanging their occupied probabilities of initial state Po
and final state P, respectively. Thus yield 24 impurity
coupling diagrams, which are divided into 6 rotation
classes. "'

Owing to exchanging interaction between extending
electron and 4f electron, in terms of Brillouin-Wigner
theory, the occupancies of the 4f configurations can be
found as Po-1, P -0,"' and, as a result, of all 24 cou-
pling diagrams only 6 diagrams shown in Fig. 2 are able
to make contributions to the free energy in the low-
temperature limit.

The free energies from the impurity-correlation dia-
grams (Fig. 2) can be written as following in terms of the
diagrammatic rules of mixed Goldstone-Feynman cou-
pling diagram on a single time axis (see Appendix A)

& X,~—

) imk

& Xeo ——

2 Xmy

g Xoe 14aCk

FIG. 1. Generators of the mixed
Goldstone-Feynman diagrams of two impurity
coupling on one time axis (0,P).
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FIG. 2. Six reserved coupling diagrams,

which are able to make a contribution to the
partition function of the system.

l &ao

2 &go—
(e)

g(R, Ri2—co}g(R)—R2, ico„' }
F,b =Fig. 2(a)+Fig. 2(b)=p 'POPO

p( l co„Ei ) ( l co„ei ) E CO E') l N~ 6')

1 1

g'(R, -R„ico„)
(ico„—e, )

(2.7a)

g(R( R2, i —co)g(R) Rq, i—co'„)
F,d =Fig. 2(c)+Fig 2(d) =. p 'POPo . g g P(i co„+ico'„—2e, }CO

1

(i co„—e& ) (ico'„—e& )
(2.7b)

2g(R, —R2, ico„)g(R,—R2, ico'„) —g (R) —R2, ico„)
Ff=Fig. 2(e}+Fig. 2(f)=p 'POPo gg, , + g

P( ~ co„—e, }() co'„—e, )( i c+oi '„c—o2e, ) „P(ico„—E, )
(2.7c)

where e, =E, +E, —(ED+ED), is the difFerence of the shifted energy levels between the 4f ' and 4f configuration,
g(R, —R2, ico„) is the intersite Green s function of superconducting electron. We can express g(R, —Rz, ico„) in the
form of (see Appendix B)

2 2
~k Uk+.

t co„—Ek i co„+Ek

—( zp/py )'t/+~+ ~2 Q5 + co& cosa +i co„sina
e

u Qb, +co„
(2.8)

where a=kf~R& —R2~, I =(~ Vk ~ ) is the orientative average value of
~ Vk ~

in momentum space near the Fermi
surface, uk = ,'(1+/k /E—„),vk = ,'(1 —

gk /E„), E—k=Qb, +g, and b, is the energy gap.

III. DEPRESSION OF T,

By the way of calculating minimum value of the free energy density (2.6}, T, equation for the Th, „Ce„supercon-
ductive system can be derived as

T. c)F,~(R )
p ln +A(x, T, ) +x m

To '
Bb,

where" '2

2=O
=0, (3.1)
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TABLE I. Physical parameters in the paper.

r=p(u) V
=~I (eV)

0.031 —1.71

U (eV)

0.67 0.43

E, (eV)

—0.30

E, (eV)

—0.041

xNV Rey( '+t—Ply pl /2') g( —')
A(x, T, ) =

y p[y p+&p &'(Pl y p I
/2~)&m&'(-,'+iPlypl/2~)]

' (3.2)

where yp=Ep e] 6]=E]'+Ei (Ep+Ep), and x is im-

purity concentration. Within the single-impurity
approximation, the T, equation of the system is

p[ln(T, /T, p)+ A(x, T, )]=0; with x increases, the cou-
pling between two impurities is enhanced, and the
relevant term x m[iF|2(R)/Bh ]i 2 should be added

in the T, equation. We can rewrite (3.1) in the form of

T =Top] (3.3)

where T,0=1.36 K, the critical transition tempera-
ture of pure superconductor Th, y, =exp[ —A(x, T, )],
the revision factor of single impurity to T,p,

@2=exp[(—x m/p)[BF, z(R)/Bb ]i 2 ], the revision

factor of coupling between two impurities to T,o. The
numerical results of T, versus x by solving joint equa-
tions (2.7)-(3.2) are shown in Fig. 3, and Table I gives
relevant physical parameters.

From Fig. 3, it is identified that, the influence of single
nonmagnetic impurity on T, of the system is significant,
while the influence of coupling between nonmagnetic irn-

purities seems not obvious. That means in nonmagnetic

mixed-valent rare-earth compound Th& „Ce„, the T,
depression may be mainly attributed to the mixing in-
teraction between isolated impurity and conducting elec-
tron.

The cause of isolated nonmagnetic impurities affecting
superconductivity of the system may be the fluctuation of
electric charge of 4f configuration of Ce: lots of extend-
ing electrons nearby the Fermi surface are required to
participate in the mixed-valence behavior of 4f
configuration, thus reducing the numbers of pairable elec-
tron; the influence of coupling between nonmagnetic im-
purities on superconductivity is possibly associated with
the fact: the transfer of coupling between nonmagnetic
impurities similarly calls for the extending electrons to
participate, thus leading to the lesser extending electrons
near the Fermi surface.

The numerical results exhibit that pair-breaking effect
of the impurity coupling is not strong, and by contrast,
the fluctuation of electric charge of 4f configuration goes
up to a leading factor of depressing the superconductivity
of the system. The conclusions are remarkably distinct
from ones of magnetic system' and provide a further
cognition of the peculiar nature of nonmagnetic doping.

0.8-

00-6
I—

FIG. 3. Critical transition temperature T, vs

impurity content x. The solid curve is the nu-
merical results within single impurity approxi-
mation, and the dashed curve is one in which
the influence of two impurity coupling is also
accounted. The solid marks show the experi-
mental data.
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IV. CONCLUSION

On the basis of previous superconductive theory of
mixed-valent rare-earth alloys, the mixed Goldstone-
Feynman diagrammatic technique is adopted to investi-
gate and compare the influence of both isolated and cou-

pled nonmagnetic mixed-valent impurities on supercon-
ductive system Th, Ce, and the results suggest that
the mixed-valent fiuctuation of the 4f configuration play
a main role in depressing the superconductivity of the
system. The conclusions enable us to acquire a new un-

derstanding of the difference between magnetic and non-
magnetic doping.

APPENDIX A: DIAGRAMMATIC METHOD OF T%0 IMPURITY COUPLING

The lowest-order impurity-impurity correlation terms appear in the fourth-order perturbation

T T2 ~3
~",,'= f'«, f '«, f d.,f '«, y (h,' (., )h,

' (., )h,', (., )h,
' (.4)),

I
U. I

where each two h, ', (r, ) vertices locating on the same rare-earth ion can have following three kinds of distributions:
U1

(1)u, =u2 = 1, u3 =u4 =2; (2)u, =u3 = 1, u2 =u4 =2; (3)u, =u~ = 1, uq =u3 =2 .

(A1)

The conduction electrons propagating between 4f orbits of the two rare-earth ions are shown in Fig. 1 in terms of the
Goldstone-Feynman diagrammatic technique, where two electron lines in each diagram can have independent momen-
tum k, and frequency iso„without violating the conservation law. The rules for writing down the contribution of dia-

grams in Fig. 1 are the same as those for the fourth-order single-impurity perturbation as stated in Ref. l2 except speci-—ik-R„
fying the site indices e " at the corresponding time points.

APPENDIX 8; INTERSITE SINGLE ELECTRON'S GREEN'S FUNCTION

Electron of extended states is required to transfer correlation interaction between impurities in superconductive sys-
tem, and its intersite Green's function is written as" '

1 Ik (RI —R~)
g, (R~ —R&, i~. ) = g I I'kpyg

2 2
k

l COn Ek 1CO~ +Ek
(Bl)

where Vk is mixing interaction strength between extending and 4f electrons, uk =
—,'(I+gk/Ek), uk =

—,'(1 —gk/Ek ),

Ek =Qg +b, , gk is the energy of extending electron, and b, is energy gap. The summation of k can be turned into in-

tegral of g, thus leading to

g, (x, iso„)=— r' 1 —1f dg(iso„+g)
N 2lkix 2i ++2+~2 (+iQQ~+~~

i(t /Vx, . I+ik/x --i(ax/V&) —ikIx
X e ' / —e (82)

where x=R, —R2. If the first term inside square brackets of integrand in formula (B2) takes integral loop of Fig. 4(a),
and the second one takes Fig. 4(b), by means of Jordan's lemma and residue theorem, we may obtain

FIG. 4. Two different integral loops of for-
mula {B2).

(b)
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—'1/ (n+
&

) +(phl2n) Q(ll + ,' ) —+(Pb/2n) cosa+i(n +—,
' ) sina

g, (R,—R~, ice„)=——es 1 2' n

Q(n+ —,') +(Pb /2m. )
(B3)

in the case, a=kfx, y= —,'pkf Vf, Vf is Fermi velocity, I =(~ Vk ~ ) is orienting average value of
~ Vk ~

in momen-
tum space near Fermi surface, co„=(2n + 1)m./P.
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