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We describe a method for treating fluctuations in two-dimensional superconducting films in zero mag-
netic field. The method involves expanding the order parameter P(x,y) in empty-lattice Wannier func-
tions of a fictitious square lattice. Despite the discrete basis, the order parameter is continuous and has
no unphysical pinning. The thermodynamics of the model is a function of a single variable analogous to
the Josephson coupling in granular superconductors. We estimate the Kosterlitz-Thouless (KT) transi-
tion temperature T, of the model by Monte Carlo techniques. If amplitude fluctuations are neglected,
the model reduces to a partially frustrated XYHamiltonian, even in zero magnetic field. With amplitude
fluctuations, T, is further reduced, the Coulomb-gas scaling hypothesis of Minnhagen is automatically
satisfied, and the jump in superfluid density at the transition may possibly be nonuniversal. Snapshots of
P(x,y) near T, reveal the rapid development of pairs of oppositely charged vortices, accompanied by
zeros of the order parameter, and, above T„by unpaired vortices, in agreement with the original KT
picture. The extension of this approach to layered three-dimensional superconductors is briefly dis-
cussed.

I. INTRODUCTION

The so called XY or planar model has an unusual
"Kosterlitz-Thouless" (KT) phase transition in two di-
mensions (2D}.' Instead of a magnetization which van-
ishes continuously according to a power law at the transi-
tion temperature T„the low-temperature phase is actual-
ly a state of zero magnetization. Below T„ the excita-
tions consist of bound vortex-antivortex pairs. Above T„
some of the vortex pairs unbind to produce a finite densi-

ty of free vortices. Precisely at T„ the helicity modulus

y has a universal jump of magnitude y( T, )/ktt T, =2/n
The KT theory has been applied with particular suc-

cess to thin superconducting films. In these materials,
the universal jump in y has numerous experimental
consequences, such as a power-law current-voltage
characteristic below T, (Ref. 5) and a universal scaling of
resistivity with temperature above T, . This behavior
has been observed in both thin superconducting films
and superconducting arrays. Even bulk high-T, materi-
als such as YBa2Cu307 s (YBCO) or Bi2Sr2CaCu20s+s
(BSCCO) show some experimental evidence for KT-like
behavior, " ' primarily in the power-law current-voltage
characteristics and resistivity scaling. This behavior
probably arises from the highly anisotropic layered struc-
ture of these materials.

The XYmodel is not entirely suitable for describing the
KT transition in superconducting films. One problem is
that the XY spins are discrete variables on a lattice,
whereas the order parameter g(x,y) in a superconducting
film is continuous. This difference may be irrelevant
sufFieiently near T„where the properties are universal.
Nevertheless, one cannot easily compute from the XY
model many important nonuniuersal properties, such as
the continuous spatial distribution of the order parameter

in a given configuration or T, itself.
In this paper we describe a simple way to remedy this

problem, while still retaining the convenience of a
lattice-based calculation. We expand the other parameter
P(r) in a complete set of 8'annier functions on a square
lattice. The Wannier functions we choose are associated
with an empty-lattice (i.e., a plane-wave) basis. We trun-
cate the expansion, by including only Wannier functions
drawn from the lowest band This tru. ncation is roughly
analogous to the so-called lowest Landau level (LLL} ap-
proximation which has been successfully used to treat 2D
superconducting films in a magnetic field. '

When the truncated expansion is substituted into a
Ginzburg-Landau free-energy functional, we obtain a
discrete functional which closely resembles the XY Ham-
iltonian. But our functional has interactions (both "fer-
romagnetic" and "antiferromagnetic") beyond the
nearest-neighbor shell, and includes amplitude as well as
phase fluctuations. The model can readily be treated by
Monte Carlo (MC) methods, and leads to KT transition
temperature closely related to other measurable proper-
ties of the film. Furthermore, if the lattice constant is ap-
propriately chosen, the model automatically satisfies the
Coulomb-gas scaling hypothesis of Minnhagen. '

The calculated order parameter can be displayed in
real space. The vortex-antivortex pairs predicted by the
KT theory appear directly as pairs of zeroes of the order
parameter. The number of these increases sharply as the
temperature approaches T, from below, as expected. The
positions of these excitations correspond well to those
predicted, on the basis of a lattice picture, by Tobochnik
and Chester. ' However, they are not confined to the lat-
tice sites but can occur at any point in the film.

We turn now to the body of the paper. Our formalism
is outlined in Sec. II. Numerical MC results are present-
ed in Sec. III. A brief discussion follows in Sec. IV.
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II. FORMALISM

We consider a two-dimensional superconducting film,
of thickness I., %e will assume that the film is in the
extreme-type-II limit (Ginzburg-Landau parameter
~» 1, where ~—=A. /g is the ratio of the mean-field
penetration depth A, to the mean-field coherence length
g}, so that the magnetic field induced by the screening
currents can be neglected. If there is no applied magnetic
field, the film is described by a Ginzburg-Landau free-
energy functional

F=L,Jd r a(T}~g(r)[ +—[P(r)( + [V@(r)~z

4„z(r)=g exp(ilt R)u„R(r), (2)

Here, a(T) =a'(T T,o), —T,o is the mean-field transition
temperature in zero field, f(r) is the complex scalar order
parameter, r—= (x,y), and a', P, and m' are material-
dependent constants. We assume that P is independent
of z.

To calculate the thermodynamics, we can expand g(r)
in any desired complete set of basis functions. We will
choose a set of Wannier functions corresponding to an
empty-lattice band structure on a square lattice. %ith
this choice, we can calculate the thermodynamic proper-
ties by a straightforward MC procedure.

In any 2D periodic solid, a normalized Wannier func-
tion u„R(r) is defined in terms of the corresponding set of
Bloch functions 4„z(r) by

The next step is to expand the order parameter g(r) in
Wannier functions from the lowest band. Including only
the lowest band imposes a large-k cuto8' in the Quctua-
tions. This is certainly reasonable within the Ginzburg-
Landau formalism, which describes only the dominant
long-wavelength fiuctuations in P(r). The expansion is

r CRuoR(r}
R

When this is substituted into the free-energy functional
(1), we obtain F=F' '+F' ', where

F"'=L,&' g &(T) I CR I'+L, , g CRCR UR R (9)
R 2l7l R R~

and

F =Lz a—g CRCR. CR-CR-.MR R. R., R,.. .(4) 2

R,R', R",R"'

(10)

Here,

UR R~= f upR r ' Qpa~ r

and

1
MR, R', R",R"'

2
d uOR( }uOR'( }uOR" ( )uOR"'(2

(12)

For a square lattice, using the translational symmetry of
the free-energy functional, we can express the dimension-
less coefficients in the form

where n and R are the band and site indices. The %an-
nier functions are chosen to be orthogonal, and are nor-
malized so that the coeScients are size independent:

ru„'R r u„.R I Ap (3)

and

UR, R'= Um —m' n —n'

(14)
where Ap is the area of the Bravais lattice unit ce11.

We will develop our basis from empty-lattice Bloch
functions, i.e., plane waves whose energy spectrum is
folded back into the first Brillouin zone of an appropriate
Bravais lattice:

=2H
Uoo (15)

where we have written R=a(mx+ny) The co.efficients
U can be evaluated analytically, with the results

4„„(r)=exp[i(it+ K„) r], (4) and

where K„ is the nth reciprocal-lattice vector. %e choose
a square Bravais lattice of lattice constant a to be
specified later. The normalized %annier function for the
lowest (Ko=0) band is

uoR(r }=uoo(r —R),
where

( 1)N1 ( 1 )II
U „=2

2 5„O+ 5m, O

otherwise. The first few values are Up j
= 2,

Up 2 +
2 Up 3 9 and Up 4

= +—,'. Similarly, we find

V = Jdx f(x)f(x —mi)f(x —m2)f(x —m3) .

uoo(r) =f —f0 a

sin(m. u }

The first few V coefficients evaluated numerically are
Vo oo=+0.6666. . ., Vo s t =+0.10132

Vp p i
= +0.050 66& Vp i i

= 0.050 66

Vi t 2
—+0.05066, Vo i z

—0.02533,
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Vo o 2= —0.01266 .

Because of numerous index symmetries (e.g., V, J k

I

—i —j,—k ii j i —k Vj j —i j—k V kp —ik —j~p

many coefficients can be found from these few integrals.
Using Eqs. (9) and (10), we can rewrite F as

2

g (T)2 g ICm „l + g CmnC, m', n'Um —m', n —n

n, n'

1 a 2

( T)
(18)

Here, c n=C /fp gp=& a(T)/P is the mean-field

order parameter, and g( T) is the mean-field correlation
length, defined by

g2
g'(T) =

2m la(T}l
(19)

g(T) is the only length scale of the problem, and sets the
natural ultraviolet cutoff k,„—I/g( T) for excitations in
the system. Given F, the Helmholtz free-energy density
7 is obtained from the expression

k~T

(Na} L,

xln f" f" IIRdcR&dcR2 exp( F/k+T), —

(20)

where Na is the length of one side of a square sample, and
we have ~~itten cR —cR1+icR2'

The present formalism has a number of appealing
features which make it especially suitable for treating su-

perconducting films. First, the spatially uniform ground
state (i.e., /=lip=const) has a simple expression in terms
of the lowest band of this Wannier basis, namely, cR =1
for all R. Second, the free energies of any states connect-
ed by a uniform translation, i.e., g(r) and P(r —rp}, are
equal, even if ro is not a lattice vector. Thus, even though
the model is based on a discrete Bravais lattice, it intro-
duces no artificial pinning The model . is translationally
invariant for any choice of lattice constant, and even
though f is expanded in Wannier states drawn from only
the lowest Bloch band. The translational invariance is
not guaranteed, however, if F and F are approximat-
ed in some way. Nevertheless, in our calculations, we see
no evidence of unphysical pinning provided that we in-
clude amplitude fluctuations in our approximation. This
point is discussed further below.

The form (18) for the free energy suggests a natural,
temperature-dependent choice for the lattice constant,
namely, a =g'(T). With this choice, all fluctuations of
wavelength longer than g(T) are still included. In addi-
tion, the entire free energy depends on a single
(temperature-dependent) coupling constant which we
write as

fi la(T)l @o Ln

2m' P 8n. A, (T)
(21)

where 4p=hc/2e is the flux quantum and l(,(T} is the
mean-field penetration depth. Alternatively, J can be ex-
pressed in terms of experimentally accessible quantities,
as in Ref. 17. The result is

dH2 Tp T-
J=1.,40 dT T=T

p 4~2K2
(22)

Hence, the phase transition, in this approximation, is en-
tirely governed by the dimensionless temperature
7'=k2) T/J An ana.logous reduction occurs in the scal-
ing theory of the Coulomb-gas transition in the
Ginzburg-Landau approximation. ' In that model, all di-
mensionless quantities are expressed in terms of a dimen-
sionless Coulomb-gas temperature T . The two dimen-
sionless temperatures are simply related by T=m T o.

The phase-dependent part of F' ' can be rewritten in
the form

F(4)— y l
l4

J
8 R

R
(23)

We chose this form after observing that the diagonal
terms of the original expansion (10} have the largest
coefficients, and that the phase dependence of F' ' is in
general weak in comparison to that of F' '. It can be
shown that the approximate form (23) still leaves the free

2XRAR' R,R' (~R ~R') &

where the JR R 's are temperature-dependent coefficients
of either sign and cR=—lcRlexp(ieR}. Thus, F formally
resembles a network of Josephson-coupled coherent re-
gions. However, this picture differs in several ways from
previous "granular" pictures of homogeneous films. '

For example, the coupling alternates between ferromag-
netic and antiferromagnetic, rendering the ground state
partially frustrated even without an applied magnetic
field. In addition, the coupling constant is temperature
dependent. Most important, the resulting order parame-
ter g(r } varies continuously in space, without pinning.

In actual calculations, we have approximated F' ' by a
simple diagonal form with no phase dependence:
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energy translationally invariant provided that only
Fourier modes @oi, near the center of the first Brillouin
zone are excited. Furthermore, (23) gives the ground-
state energy exactly, and gives excited-states energy to
within 2%o. We have checked this error estimate by com-
paring the approximate diagonal value of F' ' after each
MC run to the exact result obtained by numerical in-
tegration of ~P~ . Thus, numerically, the diagonal form is
really an excellent approximation, although, analytically,
the argument for writing it down is somewhat arbitrary.

We describe most of our results in terms of the helicity
modulus tensor y; . This is defined by the relation

2

where A' is an added constant vector potential imposed
in the presence of periodic boundary conditions. To ex-
press y in terms of the amplitudes c&, we incorporate a
gauge-invariant phase difference into the free-energy
functional (18). The phase-dependent part of (18) takes
the form

J 2K
[ca(~cn. )cos ea Ha. — A' {R—R') Uaa. .

RPR' 0

(25)

BAIBAJ'
(24) By direct difFerentiation (using the mass normalization

2ei)lim'c =1 and taking A'= A'x), we find that

4m go ", , 1
"

(
—1)P

y„„= g ( —1)P+' g StIc „c'+ „j —— g g SIc „c*+p„j
@o p i m, , ' '

p i & mn
(26)

where ( ) denotes a thermal average in the canonical
ensemble. In the ground state (i.e., ca =1), y,„ is equal
to its mean-field value y„„=4ngol@o. In this isotropic
system, y~ yyy.

III. RESULTS

We have considered several different approximations to
the model (18), as well as several difFerent sample sizes.
In the simplest approximation (model I), we neglect am-
plitude fluctuations {i.e., we replace ~ctt~ by its mean-field
value), and we also include only nearest-neighbor cou-
pling. Equation (18) then reduces to the well-known 2D
ferromagnetic XY model with nearest-neighbor couplings
only. This model has a KT transition at 7', =0.89.'6

The next step up in complexity is to include further
neighbors in the XY coupling (model II), thus including
both ferromagnetic and antiferromagnetic interactions,
while still neglecting amplitude fluctuations in the
coefficients ca. Finally, the most complete version of the
model (model III) includes both amplitude fluctuations in
the diagonal approximation [Eq. (23)) and many shells of
neighbors.

Note that in both models I and II, ~g(R)~ =go, the
mean-field value, for all R. Likewise, the spatial average
~g(r)) =go. In both cases, however, the density (P(r)~~
in any given configuration is a function of r. But both
models also produce an unphysical pinning of thermally
excited vortices. Specifically, the vortices must avoid the
square mesh of empty lattice sites IRj. The reason is
that

~ P(R) ~

=go in this approximation, whereas the order
parameter must vanish at a vortex core. This unphysical
pinning would be completely absent in model III if the
phase dependence of F' ' were fully included.

To carry out our calculations, we have used the stan-
dard Metropolis algorithm, starting from the ground
state, discarding the first 2500-5000 passes for equilibra-

tion and retaining the next 25000 passes for averaging
(except for our calculations on a 64X64 system, which
were averaged using 15000 passes). For models II and
III, we included all neighbors through the seventh shell
in the Hamiltonian.

Figure 1 shows the helicity modulus y—=—,'(y„„+y „)
as obtained from this simulation. The error bars corre-
spond to the rms deviation of running averages taken
over 5000 passes. Clearly, the KT transition temperature
T, is substantially reduced in model II relative to model
I. This is the result of the partial frustration in model II.
In both cases, y has a linear temperature dependence
arising from spin waves. ' The low-temperature deriva-
tive

~
d y ( T)Id T

~
is larger for model II than for model I

because the spin-wave modes are softer in this case. T, is
diminished yet further in model III, and ~dy(T)ldT~ is
further increased at low temperatures, presumably be-
cause of the additional density wave degrees of freedom.
In models I and II, y exhibits the expected universal
jump of (2k' T, ln. ) at T, . The jump may be larger than
its universal value in model III. This point is discussed
further below.

The additional decrease in T, in model III can possibly
be understood from the following argument: The KT
transition arises from the unbinding of thermally excited
vortex-antivortex pairs, which requires a certain rear-
rangement of order-parameter phases. The energy re-
quired for this thermally activated process is reduced in
model III, because the space-averaged amplitude ~f~ is
smaller than its mean-field value when amplitude fluctua-
tions are included. Such a reduction is expected from the
form of the second term in F' ', and, indeed, was ob-
served in our simulations. Since these pair excitations are
responsible for the phase transition, the amplitude reduc-
tion drives down T, .

The transition in model III occurs at V', =0.36 (in our
diagonal approximation). From this result, and Eq. (22),
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and a = 100. Then Eq. (22) and the above estimate for T, '

give T, =7S K. This value is well below the observed
transition in bulk samples, where typically T, lies 2-3 K
below T,o. Presumably, interlayer coupling will increase
T, towards the observed value by making the system
more three dimensional (3D).

We can also compare our MC result for T, to a simple
estimate due to Beasley, Mooij, and Orlando. These au-
thors start from the relation

( iirl m') n, (T, )i(ksT, )=2/ir,

where n, ( T} is the 2D superfluid density. If we now sub-
stitute for n, its mean-field value

n, =m'L, gii=m'L, )a(T)~ iP,
the prediction of Ref. 3 reduces, in our notation, to
V', =ir/4=0. 785. This temperature, marked with an ar-
row in Fig. 1, agrees well with the result from our model
II, which makes an assumption rather similar to Ref. 3,

~ I

~ 16x16
~ 32x32

64x64

we can predict T, for any 20 superconductor in zero
magnetic field. As an example, consider a monolayer of
YBCO, taking ' L, =11.7 A (the interlayer spacing),
T,O=90 K,

(dH, z/dT~T T =3.2210 OeK

namely, that ~g(r) ~
is a nonfluctuating quantity equal to

its mean-field value $0. In general, however, the critical
temperature of Ref. 3 is clearly an overestimate, because
it does not take into account amplitude fluctuations of
the order parameter.

We can get a much clearer picture of the KT transition
by searching for vortex and antivortex excitations in the
film. Such a picture was first extracted from MC simula-
tions by Tobochnik and Chester (TC), ' using a nearest-
neighbor XY model on a square lattice. Here we can car-
ry their procedure further, since the positions of the vor-
tices and antivortices are described by continuous coordi-
nates.

On a discrete lattice, the TC procedure defines the vor-
ticity number q of a given plaquette o. as

q= +he,1

bonds

where the sum runs over the bonds enclosing the ath pla-
quette and b,8 is the phase difference between sites con-
nected by the bond defined so that —n. ~ 58&m.. q as-
sumes values + 1 or —1 is there is a positive or a negative
vortex inside the plaquette and 0 if there is none.

Figure 2 shows snapshots of the vorticity numbers in
model III at several temperatures. Just as found by TC
for the nearest-neighbor XI' model, there are very few
vortices or antivortices for 'T((T„while the number of
pairs increases very rapidly as T~7', . The insets of
Figs. 2(a) and 2(b) show contour plots of ~P(r)~ at the
MC times corresponding to these vortex configurations.
Here we can clearly identify the vortex and antivortex
cores. They show up as zeroes of ~P(r) ~, and may be lo-
cated anywhere in the plaquettes. (There appears to be
no preferred position within the unit cell, because of the
evident absence of pinning in this model. ) In every pla-
quette containing a vortex or an antivortex, we find one
such zero. Such a zero is required in a vortex-containing
plaquette, to keep the current density finite inside the
vortex cores. In addition, we sometimes find nonzero
minima of ~g(r)~ which are associated only with ampli-
tude fluctuations and do not correspond to vortices.

We have also calculated the two-point correlation
function

(28)

0.0 0.2 0.4 0.6 0.8 1.0 f.2

FIG. 1. Helicity modulus y =
z (y» +y» ), in units of

4mgol40, plotted as a function of reduced temperature '7 for
various system sizes. The upper curve denotes behavior of our
model I, equivalent to a classical nearest-neighbor ferromagnet-
ic XY model on a square lattice (Ref. 20). The middle curve
represents our model II, corresponding to a partially frustrated
XYmodel with no amplitude fluctuations. The lower curve cor-
responds to our model III, and includes both phase and ampli-
tude fluctuations. The solid curve of slope 2/m denotes the ex-
pected universal jump in y(T, )lk&T, at a KT transition.
Different lattice sizes are indicated in the legends to the Figure.
The arrow denotes a simple estimate of Y, due to Ref. 3.

for model III at several different temperatures. Compu-
tationally it is easiest (although not necessary) to evaluate
I'~'(ro) at the lattice sites ro=R, since at those sites

g(R) =gocR. In Fig. 3 we show the arithmetic average

obtained by averaging the MC results only over the last
2000 passes. The mean-square order parameter
(~g~ ) —=I' '(0) noticeably decreases with temperature,
as expected. According to the KT theory, the order-
parameter correlation function is expected to die off alge-
braically at temperatures below V', but exponentially
above Y,. We have not attempted to fit this prediction to
our data, because unambiguous proof of the scaling
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FIG. 2. Snapshots of vortex configurations in model III at temperatures (a) T=O.30, (b) 0.36, and (c) 0.40. The vorticity is defined
relative to plaquettes of the square Bravais lattice, and is calculated by the method of Tobochnik and Chester (Ref. 16). Plaquettes
containing positive and negative vortices are indicated by ~ and 0 symbols; empty plaquettes contain no vortices. The insets are
magnified views of framed areas. The contours are loci of constant

~ |((r)~
. The darkened areas are vortex or antivortex cores. Note

that both vortices and antivortices correspond to zeroes of the order parameter, and that these zeroes are generally not located at the
plaquette centers.

behavior would require larger system sizes than were
available to us.

IV. DISCUSSION

It may appear that our results depend on a fictitious
lattice constant a, which we have chosen to equal the
mean-fleld correlation length g(T). We believe that such
a cutoK is actua11y intrinsic in the Ginzburg-Landau free
energy itself. The Ginzburg-Landau model is intended to
describe only fluctuations of wavelength larger than

Therefore, it is not appropriate, within this mode1, to in-
clude shorter-wavelength fluctuations in our calculations.
By choosing a flctitious lattice constant a of order g( T),
and keeping only the lowest band of fluctuations, we

correctly include only fluctuations of wavelength longer
than this expected cutoff. It is true that there is still some
degree of arbitrariness in the cutoff, in the sense that we
could have chosen a=Kg(T), with E=l but EAl
Each such choice corresponds to a slightly different mod-
el, and would lead to slightly different results, as dis-
cussed below. The arbitrariness in this model is ap-
parently intrinsic to the choice of a Ginzburg-Landau
functional, which does not uniquely specify the short-
wavelength cutoff below which fluctuations are to be ex-
cluded. A choice K &&1 would also be possible in prin-
ciple, though inconvenient, since it would necessitate in-
clusion of higher Bloch bands in order that all fluctuating
modes with wavelength greater than g(T) be correctly in-
cluded. The other extreme choice, K&(1, would be
equally inconvenient, since then most of the first Bril-
louin zone would involve fluctuations of wavelength
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C3

I I I I I I I I I I I I I I

I-/a

i2 16

FIG. 3. Correlation function I' '(r) plotted as a function of
r, in units of go, for model III at several temperatures V' as
marked. Note the decrease of I' '(0) with increasing 'T.

much less than g(T), which would have to be excluded
arbitrarily.

It is of interest to compare our results with those of the
Coulomb-gas scaling theory of Minnhagen. ' This theory
predicts that the Coulomb-gas transition temperature
T, ~

—,', which translates to T, +m/4 in our notation.
This is exactly the value denoted by the arrow in Fig. 1.
The equality T, =

4 is predicted to hold in the limit of
infinite core energy E„i.e., if the vortex fugacity

z =exp( E, /k&T)=—0.

Clearly, in our model the vortex core has a finite energy,
so we should find T, (n/4, whic. h is indeed consistent
with our numerical data.

The scaling theory also makes predictions about the
universality of the jump in y(T, )/k T2I, . Namely, the
jump is predicted to have its universal value of 2/m. as
long as T, ~T', where T'=0. 144, corresponding to
'T'=0. 45. In our model III, T, =0.36. For this value,
Ref. 22 predicts a nonuniversal jump of about 3/n, which
is indeed consistent with the jump seen in Fig. 1.

It appears that in real low-T, superconducting films,

the transition occurs at T, =0.476, where the jurnp

should be universal. This value is somewhat larger than

that obtained here. Our model III has several assump-

tions, however, which could account for this discrepancy. .

Most notably, the assumption A=O may not be satisfac-
tory for materials with small ~, as is the case with con-
ventional, low-T, superconductors with v-1. Another is
the diagonal approximation to the quartic term and a
third is our choice of the dimensionless constant K. The
choice I2 =Kg(T), where K is a dimensionless constant of
order unity, would also guarantee scaling, as well as
correctly incorporating only those fluctuations which are
described by the original Ginzburg-Landau model, as
noted above. But a different choice of K, which is still of
order unity, or a more accurate treatment of the quartic
term, might raise the Y', of model III into the universal
regime. (A choice K) l will, in fact, raise 7;, for it

suppresses amplitude fluctuations. )

A feature of our model is that it exhibits frustration
even in zero magnetic field. This is a characteristic of
previous models of superconducting arrays infinite fields,
which may also exhibit nonuniversal jumps in

y( T, )/(kz T, ). ' These latter systems, however, usually
have, in addition to the continuous rotational symmetry
of the XY variable, a discrete Ising-like symmetry. Our
model has no obvious symmetry of this kind. It might
appear that the frustration is really an artifact of our
model, appearing only because of the Wannier basis of os-
cillating functions. But such oscillating functions are ac-
tually required to produce an orthonormal basis in which
the uniform ground state can be expanded. Thus, the
frustration in our model is evidently not an artifact and
will be present even if we chose a different —for example,
triangular —empty lattice to generate our basis functions,
although it may not be strong enough to produce a
nonuniversal phase transition.

The present model can readily be extended to 3D lay-
ered superconductors. In this case, T,o(z) may be taken
as a periodic function of z, the coordinate perpendicular
to the layers, with a period d. The order parameter can
be expanded in 3D Wannier functions as

and

F' '=a g [a(T)+2t]lCR
R, m

+ g CRmCR', mUR, R'
2m R R~

m

2ta g StI—CR CR
R, m

(29)

F(4) L3g 2~Q N oooo2'"
R,R', R",R"'

R m R' m R",m R"',m

~R,R', R",R"' (30)

Here, t=A' /(2m~ad ) is the tight-binding matrix ele-

ment,

~~= fly (z)l'dz,

and m~l is the effective mass along the z axis. Since the
anisotropy ratio m

~~

/m ' can be measured, all the
coefficients in F can be expressed in terms of a few ob-
servable parameters. '

P(r) = g CR uoR(x, y)P (z),
R, m

where R=—(x,y), r—= (x,y, z), m is the layer index, and
(z) denotes a Wannier function in the z direction,

orthonormalized according to the relation

Idz P (z)P (z)=5

In the tight-binding approximation, only the nearest-
neighbor layers interact. As in Ref. 17, the free-energy
functional can be expanded in these basis functions, with
the result F=F' '+F' ', where
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The functional form of P (z) (which determines the
value of woooo) depends on the form of T,o(z). This form
may be difBcult to determine in high-T, layered systems
such as YBCO or BSCCO, but can be written down
unambiguously in an artificially layered heterostructure
such as MoGe/Ge. In this case, T, o(z) will be a piece-
wise constant function alternating between the bulk
mean-field transition temperatures of the two constitu-
ents. Note that the Hamiltonian (29) and (30) omits the
magnetic-field-mediated electromagnetic interaction be-
tween the superconducting layers. This interaction may
be significant in extremely anisotropic materials such as
BSCCO, where the Josephson coupling between the lay-
ers is small.

It would certainly be of interest to evaluate this model
for some naturally or artificially layered superconductors.
A simplified version of this model, namely, the anisotrop-
ic 3D XF Hamiltonian, has been reported to exhibit a
second-order phase transition with a dramatic crossover
from 3D to 2D behavior above T„corresponding to
efFective decoupling of pancake vortices in individual su-

perconducting planes. The effects of amplitude fluctua-
tions on this behavior would certainly be worthy of inves-
tigation.

To conclude, we have presented an order-parameter
expansion for treating phase transitions in 2D supercon-

ductors, and have calculated the critical temperature of
several approximate versions of this model by Monte
Carlo simulation. The most realistic version of this mod-
el satisfies the Coulomb-gas scaling relation proposed by
Minnhagen, ' while simultaneously giving a realistic pic-
ture of the spatial variation of the order parameter f(r)
at finite temperatures. In particular, f(r) exhibits zeroes
at the positions of the thermally excited vortices and an-
tivortices. The model exhibits frustration even in zero
magnetic field. This may possibly be suScient, when am-
plitude fluctuations are included, to produce a nonuniver-
sal jump in the superfluid density at T„although approx-
imations in the calculation leave this question open. Fi-
nally, the model can be extended straightforwardly to
layered superconductors, where a number of applications
to high-T, materials are possible.
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