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Effect of the impurity scattering on the zero-temperature penetration depth in d„2 2 symmetry
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We have calculated the effect of impurity scattering in the Born (weak) and unitary (strong) limits on
the absolute value of the zero-temperature penetration depth A,(0). The gap is taken to exhibit d &x -y

symmetry in the copper-oxygen planes and a model two-dimensional tight-binding band structure is used
with nearest-neighbor hopping only. Impurities depress the value of the critical temperature and, at the
same time, increase the value of k(0). Weak and strong scattering are compared. The predicted increase
in A,(0) is smaller than indicated in recent experiments.

I. INTRODUCTION

There is considerable experimental evidence for the
idea that the gap in the copper-oxide planes of the high-
T, oxides may exhibit d» symmetry. Earlier evidence

was reviewed by Annett and Goldenfeld. ' Among the
evidence is NMR and Knight-shift data, temperature
dependence of the penetration depth, which is found to
be linear at low T over a wide temperature range in
high-quality YBa2Cu307 & samples, some tunneling
data, ' angle-resolved photoemission, ' inelastic polar-
ized neutron-scattering data on the spin susceptibility,
and the superconducting quantum interference device ex-
periments of Wollman et al. and Sigrist and Rice. '
Another set of important experiments are those relating
to the collapse of the scattering rates in the supercon-
ducting state which would be qualitatively consistent
with an antiferromagnetic spin-fiuctuation mechanism in
as much as the spin susceptibility, which plays the role of
the pairing interaction in these theories, is expected to be
modified by the onset of superconductivity. These experi-
ments include the microwave work of Bonn et al. " and
Nuss et al. ,

' the thermoconductivity data of Yu
et al, ,

' and the optical data of Romero et al. ' There is
also data on the e8'ect of atomic substitutions on various
properties which indicate d-wave superconductivity. We
mention here explicitly the NMR and Knight-shift work
of Ishida et al. and Hotta. ' '

The experiments of Hardy et al. were carried out on
single-crystal samples of YBa2Cu307 &. Similar experi-
ments on thin films often give a T dependence' in-
stead of the T-dependence characteristic of a pure d-wave
superconductor. This observation can be interpreted
qualitatively as due to disorder scattering which changes
the predicted T law to T for a dirty d-wave superconduc-
tor. ' In particular, Hirschfeld and Goldenfeld have
discussed the crossover temperature T at which the
change from T to T law comes about in impure samples
with resonant impurity scattering. Very recently, this
crossover problem has been investigated experimentally
by Lee et al. and Bonn et al. The change in the value
of the zero-temperature penetration depth has been mea-
sured as s function of Ni and Zn concentrations, in par-

ticular, by Ulm and co-workers.
In this paper, we consider a strong-coupling formula-

tion of the problem of a d 2, superconductor within a

tight-binding band and calculate the effect of impurity
scattering in both Born and unitary scattering limits on
the value of the penetration depth at zero temperature
with a view at a comparison with experiment. The earlier
work of Hirschfeld and Goldenfeld involves the weak-
coupling limit and an infinite band approximation with a
constant electronic density of states at the Fermi surface
and spherical symmetry for the electronic bands in the
copper-oxide plane. These approximations are not used
in this work. Here, we will not be concerned directly
with the crossover between the T and T law but concen-
trate on the impurity dependence of the zero-temperature
penetration depth. In Sec. II, we present some of the
necessary formalism and give results for the critical tern-
perature as a function of impurity content. The penetra-
tion depth is discussed in Sec. IV where numerical re-
sults are presented. A brief conclusion is included in Sec.
IV.

II. FORMALISM AND RESULTS FOR 7;

Strong-coupling equations for a superconductor with

gap exhibiting d» symmetry with a planar Brillouin

zone and with impurity scattering have been given by Ar-
berg, Mansor, and Carbotte. They are a set of two
equations for the momentum k, dependent pairing poten-
tial b „(n ), and renormalized Matsubara frequencies
co&(n) with bare frequencies co„=trT(2n —1) n =0,
+1,+2, . . . and T the temperature. The equations are

bt,(n)= Tg g g&A(n —m) g q&D&. (m)

and

re~(n ) =to„+T g X(n —m) g Qq (m)
k'

g Qt, (n)
k'

2 2

c + QQ&.(n) + QD&(n)
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In these equations, the impurities enter only in the renor-
malization channel [Eq. (2)] and not in the gap channel

[Eq. (1}]because the scattering is assumed to be isotropic
and is therefore orthogonal to the d, & gap function
with

I"g Q), (n)
k'

2

y Q„,(n) + yD„.(n)
2 (4a}

and

t+ QQg(n),
k'

(4b)

respectively, with I'= nt and t+ =nt /0=nt 'Vt. In these2= 2

expressions, the sum over momentum

f17)f1I'
where it is implied that momentum ranges over ( m, n )—.
in the first Brillouin zone rather than ( n. /a, m/a). —By
de6nition

qi, =[cos(k„a)—cos(k a)],
where a is the lattice parameter in the Cu02 plane and k
is momentum restricted to the first two-dimensional Bril-
louin zone. In Eq. (2), nt is the impurity concentration
and 0'=1/Vz, that is, the inverse of the impurity poten-
tial taken to be constant in momentum space. The limit
c-+0 corresponds to the unitary limit which is also re-
ferred to as resonant scattering and V'~ 00 is the Born ap-
proximation. In these two limits, the impurity team in (2)
reduces to

~c Qei, .+Eq.
Ai =gk, rig g rig~ tailh

2+a'„.+a„'.
(10)

where we have explicitly carried out the sum over Matsu-
bara frequencies to greatly simplify our Eqs. (1) and (2).

Another limit of interest is to go to the infinite band
case with constant density of states around the Fermi sur-
face. In this case, the sum over k can be replaced by an
integral over the electronic density of state N(e) and tak-
en out pinned to its value at the chemical potential }M, =O
leaving only an integration over angles denoted by ( )
and which is assumed to be normalized. We then obtain
from (1) and (2)

Ez(n) =r}i,n Tg g A(n —m)( gi,.Di,.(m) )

The absolute size of a F(co) is adjusted to get the desired
value of critical temperature T, for a given choice of
spectral weight which, for simplicity, we will take as a 5
function at the boson energy coE. This choice is not im-

portant in our numerical work and the size of the ratio
T, /coE is the strong-coupling index.

It is of interest to look at more familiar limits of Eqs.
(1) and (2). The BCS limit corresponds to neglecting the
X(n —m) renormalization in Eq. (2}. If, in addition, we
ignore impurities, the renormalized Matsubara frequen-
cies co&(n) reduces to their bare values co„. Further, if
X(n —m) is assumed to be constant and equal to X and we
introduce a cutofF co, on the energy in the sum over k' so
as to get a finite result, we obtain a gap b,z(n) which does
not depend on co„and satisfies the equation

and

ioq(n)
Qi, (n) =

e„+co„(n) +b,„(n)

coq(n) =to„+nTQ A(n —.m)(Qi, .(m) )

( Q, (n))
c + [(Qi, (n))] + [(Di,, (n))]

(12)

b, i,(n)D„(n)=,
ei, +alii, (n) +b i,(n)

with ez the electron energies. For a tight-binding band
with hopping matrix element t and up to second-nearest-
neighbor interactions

ei, = 2t[cos(k„—)+ cos(k ) —2B cos(k„)cos(k )]—p,

with B the second-nearest-neighbor hopping in units of t
and p the chemical potential.

Finally, to completely satisfy our basic Eqs. (1) and (2),
it is necessary to define X(n —m) and the parameter g. If
one introduces some electron boson spectral density
a F (co }to describe the pairing and uses the same spectral
density in the gap and renormalization channel except for
a constant of proportionality g (often set equal to 1.0 in
our work as its value does not change things much}, then

X(n m)=2 f— (9)
CO +(CO„CO )

E~(n)
D„(n)=

Quoi(n) +bz(n}
(14)

At the critical temperature, the gap is in6nitesimal and
Eqs. (1) and (2) can be linearized and the impurity term in
the unitary and Born limit reduce, respectively, to [Eqs.
(4a) and (4b)]

I g Qi,.(T„n =0) and t+ QQ„.(T„n =0),
k'

which are the equations used by Prohammer and Car-
botte and are a strong-coupling version of those used by
Hirschfeld and Goldenfeld. In Eqs. (11) and (12),
A,

—:N(0)X, I'=nt/N(0)n, and c =[I/N(0)m VI] and
by de6nition

a)i,(n )
Qi,(n) =

+co„(n) +E„(n)

and
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I g Qq(T„n =0)
k'

and t+ g Qz, (T„n =0)
k'

for unitary and Born scattering, respectively, which we
denote by mI' and mt+. These are the two quantities that
naturally replace m.I and mt+ in the more familiar
infinite band case. Returning, for a moment, to Eqs. (11)
and (12) at T, and assuming that A,(n —m) is constant up
to a cutoff ~, and zero, otherwise we recover familiar
BCS equations, namely

(15)

and the gap is independent of frequency and

(16)

independent of k. Note that for unitary scattering
el /(1+c ) —+el and for Born scattering ~mt+. Sub-
stitution of (16) into (15) and cancelling out the gap gives
a single equation for the critical temperature T, of the
form

where the temperature dependence of Qz(n) has been
made explicit and taken at T, . In the infinite band limit,
we have, instead, m.l sgn(co„) and mt+ sgn(co„) with
t+ =nlN(0) VI, which are constants independent of tem-
perature. When the density of states is not constant and
a Van Hove singularity can exist in the electronic density
of states, however, the impurity term in (2), as we have
seen, is more complicated and will depend on the value of
T, as well as Matsubara frequency co„even in the normal
state. To get a single measure of the strength of the
scattering, we can use

1

r
1+c

' crit
1+A,
1X13 (20)

From (20), we see that the strong-coupling renormaliza-
tion parameter A, increases the value of the critical
scattering rate above its BCS value, a well-known result
for paramagnetic impurities in s-wave superconductivi-
ty. For Born scattering, I /(1+c ) reduces to
t+=1/2nr' with 8 the impurity scattering time. It
is important to note that for paramagnetic impurities in
the s-wave case, the parameter ~t+ occurs in both the
equation for the gap and the equation for the renormal-
ization channel. When the second of these is substituted
into the first to get a single equation for the critical tem-
perature, the two impurity terms add up and what enters
the pair-breaking parameter p is 2~t . Here, the impuri-
ties do not contribute to the gap channel and so it is mt+
that enters so that the impurities are now half as effective
as the paramagnetic impurities in the s-wave case. All
these results apply only to the infinite band case. When
the density of state cannot be assumed to be constant, no
simple analytic results are possible but the physics does
not change much except for the important difference that
impurities affect not only the gap and its anisotropy but
also smear out the Van Hove singularity in the electronic
density of states. This leads to additional changes in T,
but not to qualitative differences in its variation with im-
purities as can be seen in Fig. 1. What is shown is the ra-
tio of T, (with impurities) to its value T, (in the pure
case) as a function of the parameters m'I /T, for unitary
scattering (dotted curve) and mt+ /T, for Born scattering

C
11=2gk,nT g co„(1+1)+aI /(1, +c )

(17) 1.0

where we have made use of the normalization (rl&) =1.
Equation (17) can be rewritten as

0.8

—ln
Tc 1 1

2 2
+P— 0,6

In this equation, f is the digamma function and 0.4

(19)

is called the pair-breaking parameter. Equation (18) is
the classic equation of Abrikosov and Gorkov which
describes the effect of paramagnetic spin-Nip impurity
scattering in an s-wave superconductor. It has recently
been used by Radtke et al. ' to discuss the sensitivity of
the d-wave state to the presence of normal impurities.
Previous treatments have always used Born scattering.
Here, we see that the same simple form also applies to ar-
bitrary strength of the impurity potential. In this
simplified form, the critical concentration of impurities
that reduce T, to zero is given by

0.2

0.0
0.0 0.5 1.0 1.5

Impurity Scattering Rate
2.0

FIG. 1. The ratio of the impure critical temperature T, to its
pure value T, as a function of impurity scattering rate for Born
scattering (solid line) and unitary scattering (dotted line}. More
precisely, the horizontal axis is mt+/T, and ml /T, for solid
and dotted curve, respectively.



50 EFFECT OF THE IMPURITY SCA j. l ERING ON THE ZERO-. . . 3253

(solid curve). These two parameters play the role in the
finite band case of nI /T, and mt+/T, in the infinite

band case. While in our numerical work we have varied

g, p, coz, t, and the value of the critical temperature T, ,
here we present results only for t =100.0 meV, g =1,
p=25.0 meV, coE=100.0 meV, and T, =—9.88 meV=—115
K. The curves in Fig. 1 are quite similar to the familiar
Abrikosov Gorkov case and the critical impurity scatter-
ing rate roughly obeys Eq. (20}. Since our calculations
fully account for the Van Hove singularity and the effect
of impurities on it, Eq. (20) does not strictly apply. These
more complicated effects, however, seem not to be very
large. Finally, Born and unitary scattering are not very
different when plotted in this way.

III. PENETRATION DEPTH

In the London limit, the penetration depth A, ,J(T) can
be written as

[a„(n)'+e„'—m„(n)']
A,, '(T) =4~, 2T g v„,v„,

[+g(&) +eg+cog(&) ]

[eq —cot(n) ]

[e~+cot(n) ]

(21)

Here, e is the charge on the electron and c is the velocity
of light. In formula (21},vz; is the ith component of the
Fermi velocity and co&(n) is co&(n) evaluated in the normal
state, i.e., obtained from Eq. (2) setting b,z(m) zero every-
where on the right-hand side of the equation which
makes (2) an explicit expression for co&(n) and not a cou-
pled equation. To make contact with previous work,
several limits of Eq. (21) are of interest. First, we consid-
er the case of an infinite band with constant density of
states taken out at the Fermi energy and the velocities
pinned to the Fermi surface. We get from a contour in-
tegration over energy E'

4m b,j,(n)
A, ,J (T)=

2
e nT2N(0) g v& v&

C ' (arroz(n) +b&(n) )
(22}

Using the fact that the electron density n =—23N(0)mvz
and that the classical London penetration depth
Ao =(4n.e /c )(n/m) (unrenormalized quantities), we
obtain

00
n(T)=A, 2mT g„=) [b,(n) +a)(n) ]'~ (24)

with m the electron mass. If we take the BCS limit, E(n)
becomes independent of n and co(n }=co„, in which case at
T=O

0 (g2+ z)3n (25}

The integral in (25) is equal to one giving A,(T =0)=AD,
as expected.

Another interesting limit of (22) is the pure BCS limit.
Using the formula

~f0}
~ (x'+~'. )' (26)

The second term, referring to the normal state, has
dropped out as it is zero after the energy integration has
been performed. If the gap is assumed to be isotropic, we
recover the well-known result quoted by Carbotte in his
review, namely

00 Q2
A, ," ( T)= 2e m v~N (0)T p-

c 3 „=) [E(n) +co(n) ] ~

(23)

we immediately obtain from (21)

4~e' ~ (E~}
(27)

with Ez =Qez+hz. It is clear that the last term in (27)
vanished at T +0 and we recover—A,o as before.

In Fig. 2, we present our main results. The parameters
are the same as those used in the previous section during
our discussion of T, and its variation with impurities.
What is plotted is

[A,„„(T =0,n~ =0) /A, „„(T, n~ ) ]z

versus reduced temperature for four samples in the range
T/T, =(0 to 0.8}. The solid line is for the pure case and
shows an almost perfectly linear behavior throughout the
temperature range displayed. The dotted line is for an
impure sample with T, /T, =0.96, i.e., a 4%%uo reduction in
T„while the short dashed and long dashed lines are for
T, /T, =0.92 and 0.84, respectively. Unitary scattering
has been assumed in all cases. Note that in the last case
with a 16% reduction in T, value, the deviation from
linearity starts at rather high values of reduced tempera-
ture and it is not clear that a linear region can even be
identified.

It is also of interest to note the effect of impurities on
the zero-temperature intercept of the curves of Fig. 2. In
Fig. 3, we show the ratio of the value of the zero-
temperature penetration depth at finite impurity concen-
tration to its pure value. On the horizontal axis, we use
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1.0

0.8

C)
II

o 04
ll

E

0.2—

0.4
T/T,

0.6 0.8

the parameter I —T, /T, to monitor the amount of im-

purity used (i.e., instead of rlz). The dotted curve is for
unitary scattering, while the solid curve is for Born
scattering. It is clear that unitary scattering changes the
value of the zero-temperature penetration depth more
strongly than does Born scattering.

We now give a comparison of our work with the exper-

I I I
(

I I I
i

I I I
i

I I I

4.0—

CO

II

O
II~ 3.0—

C)
II

„ 2.0—

Born
Unitary

FIG. 2. The square of the pure system penetration depth
A,„,( T =0, n& =0) at zero temperature to its impure value
A,„„(T, n& ) at finite T as a function of reduced temperature T/T,
for four cases labeled by the ratio of impure T, to pure T, criti-
cal temperature, namely T, /T, = 1.0 (solid), T, /T, =0.96 (dot-
ted), T, /T, =0.92 (short dashed), and T, /T, =0.84 (long
dashed curve).

imental results of Ju Young Lee et al. In terms of
reduction in T, from the ideal clean value, their sample
A and 8, which do not differ much, correspond roughly
to the short dashed curve of Fig. 2 and their sample A

' to
the long dashed curve. In the latter case, comparing A'
to the pure case, we find a change in A,(0) of about a fac-
tor of 2, while the experiment is about 3. Strictly speak-
ing, our theory needs modification in the case of sample
A

' which involves oxygen depletion and hence, probably
should be modeled with a change in chemical potential.
For the former case, comparing A or 8 to the pure sam-
ple, we find a factor of about 1.5 as compared to an ex-
perimental value of roughly 1.6 which is quite good
agreement. In both these comparisons, we have simply
used Fig. 3 of Ju Young Lee et al. Thus, for these sam-
ples, there is qualitative and even semiquantitative agree-
ment between theory and experiment.

The more extensive very recent results of Ulm and co-
workers ' on Al, Ni, and Zn substitution show varia-
tions in value of A,(0) which are always larger than those
calculated in this work. In some case, the discrepancy is
as much as a factor of 2 in the ratio of impure to pure
penetration depth A,(0) when plotted against the mea-
sured attendant reduction in value of T, as impurities are
added. While the data show considerable fluctuations
when plotted in this way, it would nevertheless appear
that some modifications to the simple theory presented
here are needed in order to make the theoretical value of
T, less sensitive to impurity scattering, as emphasized
particularly by Radtke et al. ,

' while at the same time
increasing the sensitivity of the magnitude of the zero-
temperature penetration depth by perhaps as much as a
factor of 2 from these two effects combined. More accu-
rate data on the value of A,(0) would be valuable and
might reduce the quantitative disagreement found here.

After this work was submitted, we became aware of
similar calculations by Kim, Preosti, and Muzikar.
These authors use a BCS formalism with a constant den-
sity of state and an infinite band approximation. Here,
we use a strong-coupling formalism, make no Fermi-
surface approximation, but rather integrate over the en-
tire Brillouin zone properly accounting for the underly-
ing band structure and attendant Van Hove singularity.
Despite these differences, our results for the impurity
dependence of the zero-temperature penetration depth
are in qualitative agreement with those of Kim, Preosti,
and Muzikar. Their results, however, show less varia-
tion than do ours, as a function of reduction in T, value.

IV. CONCLUSIONS

1.0
0.0 0.2 0.4

1-V./V.
0.6 0.8

FIG. 3. The ratio of the impure penetration depth at
T =0, k( T =O, n&) to its value in the pure case A,(T=0, n& =0)
as a function of one minus the ratio of impure to pure critical
temperature, i.e., 1 —T, /T, . The dotted curve is for resonant
scattering, while the solid is for Born scattering.

In a model of a tight-binding two-dimensional band
with a Van Hove singularity and for which the gap is as-
sumed to have d» symmetry, we have calculated the

x -y

effect of impurities on the penetration depth A,(T) with
emphasis on the change in its zero-temperature value
A,(0). In our model, impurity scattering, in Born or uni-

tary limit, affects the size of A, (0) not only through
changes in superconducting parameters as it would in
models with a constant density of states, but also because
the Van Hove singularity is being affected. While unitary
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scattering is more eifective at increasing A,(0) than is

Born scattering for the same reduction in T„ the calcu-
lated changes are not as large as are observed in recent
experiments on Al, Zn, and Ni substitutions on the Cu
site in YBa2(Cu, „M&}307. ' The experiments gen-

erally give increases in the A,(0) value that are larger than
expected in our work on the basis of the corresponding
change in T, . It would appear that this data, while easily
understood qualitatively, does present some challenge for
simple d-wave theories of the type described here (and
used extensively in the literature} if they are to be quanti-
tative. More accurate data would be very helpful at this
stage. A similar, and perhaps related, problem has been
noted by Radtke et al. ' who have pointed out that the
experimental value of T, in the high-T, oxide appears not
to be sufficiently dependent on variations in residual resis-
tivity if they are d-wave superconductors. Here, we find

that the observed changes in value of the zero-

temperature penetration depth on alloying are larger
than predicted for resonant scattering from impurities in

a 1-wave superconductor sometimes by as much as a fac-
tor of 2. We hope that further, perhaps more exact,
determinations of the value of A.(0) in impure systems will

be forthcoming so that more definitive conclusions can be
made. From a theoretical point of view, it may be that it
is necessary to include in the theory the large amount of
inelastic scattering at T, that is known to be present in

such systems as this might lead to less sensitivity of T, to
elastic scattering.
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