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We consider an SXSjunction, N being the two-dimensional electron gas, subjected to a magnetic field

exceedingly large for weak superconductivity. We show that under the condition of Landau quantiza-
tion the proximity effect induces a thin superconducting paramagnetic strip near the boundary of the N
region. We obtain the expression for the supercurrent that accounts for multiple Andreev scattering of
magnetic edge states. We also address Josephson coupling by bulk magnetic states.

I. I¹RODUCrlON

Maximum dc Josephson current in a super-
conductor-normal-metal- superconductor junction only
weakly depends on the thickness of the normal metal bar-
rier at low temperature. ' The reason is that Cooper pairs
can penetrate far in the normal metal, a phenomenon
called the proximity efFect. A weak externa1 magnetic
field H shifts the phases of superconducting leads, which
results in a Fraunhofer-like difFraction dependence of the
current on a magnetic flux through the contact. In a
strong magnetic field, it is necessary to take into account
the influence of the field upon the proximity effect. The
maximum current is expected to be exponentially de-
creasing function of a distance between superconducting
leads when distance becomes larger than magnetic
length.

In another paper we considered the weak supercon-
ductivity of SNS junctions in a strong magnetic field,
which leads to Landau quantization of electrons in the
metal barrier. We considered a two-dimensional (2D)
electron gas, where only a few Landau levels are occu-
pied, as the normal barrier. %e showed that magnetic
edge states (MES's) are important for the dc Josephson
current of the junction.

The edge states are responsible for the transport prop-
erties of narrow channels; ' they also determine the
Aaronov-Bohm type oscillations of physical quantities in
quantum dots. ' A comprehensive review of the trans-
port by MES's in mesoscopic structures can be found in
Ref. 8. For a recent development in the theory of the
edge states of a fractional quantum Hall liquid, see Refs.
9 and 10.

Let us recall the results of Ref. 3. The geometry of
SNS junctions is shown in Fig. 1. Superconducting leads
couple to the MES's of a closed 20 gas. Supercurrent
flows in the two-dimensional system along side the sur-
face. Provided a constant drift velocity of electrons along
the edge, the maximum supereurrent does not depend on
the position of contacts on the surface. The magnitude of
the maximum current is determined by the ratio of the
length of the perimeter of the two-dimensional system
and the coherence length, which is equal to 8z-= V/2m T
(Vis the electron drift velocity along the surface, and T is

the temperature). The current only weakly depends on
the perimeter, provided the perimeter is smaller than the
coherence length. In the opposite limit, the current be-
comes exponentially small by enlarging the perimeter.
As a function of the external magnetic lux, the current
experiences AB-type oscillations, similar to those of the
thermodynamic and kinetic quantities of the quantum
dots

We believe that this kind of SNS system might exhibit
interesting physics, and so we continue the study of the
basic properties of the SNS junction in a strong magnetic
field. This paper continues the study mostly with the in-
tent of taking into account multiple Andreev scattering.
To this purpose, neglecting Zeeman splitting, we derive
the system of equations for the Green's function in terms
of MES's of the lowest Landau level (Sec. II). In Sec. III
we apply these equations for studying the proximity
effect. The dc Josephson current and Andreev spectrum
of the edge states will be considered in Sec. IV. The reso-
nant transmission of pairs will be considered in detail.
The geometry of the junction where superconducting
leads couple to MES's of an open 2D system will also be
studied in Sec. IV. Josephson coupling by the bulk states
will be considered in Sec. V. Finally, we summarize the
main results of the paper.

II. DERIVATION OF BASIC EQUATIONS

In this section we derive the Green's function equa-
tions that describe the Andreev re6ection of MES's. As
in Ref. 3, we consider a structure consisting of a super-
conductor and two-dimensional metal, which are con-
nected by a point contact. This simple model comprises
Andreev scattering and allows one to get rid of complica-
tions caused by a distribution of the superconducting or-
der parameter along the thick contact. Figure 1 presents
a schematic picture of the junction.

The Hamiltonian of the system, in Namby's represen-
tation, has the form

HBCS +~2D + t I 6r 1 )+Z p(P1 )+ P (P I )~ 4(r t ) I

Here H~cs is the BCS Hamiltonian of the supercon-
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sary to sum over all contacts in (1).
The system of Gorkov equations for the Green's func-

tion has the form

(iso„—Hscs)C(r) = to, 5(r —r, )g(p, ;p'),

(ico„H—zDg (p;p') = t a,5(p p&
—)C(r& )+5(p —p'),

(2)

FIG. 1. Schematic picture of a SXSjunction. Shaded at the
left and right sides are the superconducting leads S. The point
contacts located at p& and p& connect them to the 2D system
(X), the shaded area inside of which denotes the region of the
proximity-induced superconductivity. The thickness of this
strip is of the order of the magnetic length.

ductor and 02D is the Hamiltonian of the two-
dimensional electron gas. The third term in (1) describes
coupling of the point r, of the superconductor to the
point p, of the two-dimensional system. t is the hopping
integral g(r, ) and y(p, ) are Namby operators of the su-

perconductor and two-dimensional system, respectively,
and o;, i =x,y, z, are the Pauli matrices.

In the case of more than one point contact, it is neces-

where C(r) and g(p;p') are the Green's functions of the
superconductor and 2D system, respectively,
co„=(2n+1)mT is the Matsubara frequency, and T is the
temperature.

In a magnetic field, which is larger than the low critical
one, the superconducting order parameter is nonhomo-
geneous. While its form near the point contact is un-
known, presumably it is smaller than in the volume. "
For our purpose the fact of the Andreev reflection is im-
portant, rather than knowledge of the exact form of the
order parameter near the contact. So to solve the first
equation of (2), we approximate the order parameter by
some effective constant b,(r) = ~h(r) ~exp Iig(r) j, where
y(r) is the superconducting phase magnitude near the
contact, and treat the equation as a volume problem. In-
serting the solution of the first equation of system (2) into
the second equation, we obtain the equation for g (p;p'):

ice„b,(r, )m vot
2

5(p —p~)
Qri) + ~Q(r )~z

' b, *(r&~ ice„

Here vo is the density of states in a superconducting metal.
The Hamiltonian HzD has the general form

g(p;p')+5(p —p') .

02D =

1 e
p ——A +eV(p) —s~2' C

'2
1 ep+ —A —e V(p)+ sF

2m c

(4)

where V(p) is the confining potential of 2D electrons and

cF is the Fermi level. From this point it is convenient to
take into account the properties of the eigenstates of the
2D system in a magnetic field. It is well known (see Ref.
8) that the spectrum of two-dimensional electrons in a
magnetic field consists of bulk Landau levels and of the
spectrum of the edge states. Spatially, these edge states
locate near the boundary, the edge states of the lowest
Landau level been nearest to the boundary. As far as we
are concerned in the point contact with the surface, we
restrict ourselves to MES's of the lowest Landau level
only. We also assume that the Fermi level lies between
the bulk Landau levels, where we may neglect the cou-
pling between MES's and the bulk.

Because of the impurity scattering, the MES's with en-

ergy that coincides with the Landau level might have a
strong overlap with the bulk. When the Fermi level
moves to those states, the Josephson coupling proceeds
by the bulk magnetic states. We consider this case in Sec.
V.

In the representation of the edge states, the Hamiltoni-
an

2
1 e

p ——A + V(p) —s~
2m c

reduces to the Hamiltonian' ' iVdldx ——sz (Pi=1
everywhere below), which describes the motion of a parti-
cle along the surface. Here x is the coordinate along side
the equipotential line near the surface, where electrons
drift in the magnetic field with velocity V. The wave
function 4(y) in the transverse direction is the nodeless
function of the range of the magnetic length, centered
near the edge. The precise form of @(y) depends on the
details of the surface potential. In the case when the po-
tential can be approximated as a linear one, @(y) is a
wave function of the ground state of the oscillator. The
term
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'2
ep+ —A + V(p) —eF2' c

of HzD corresponds to a particle moving in the opposite
direction. This term includes the magnetic field that is
opposite to the field in the first term and reduces to
i Vd /dx —eF.

The Green's function for MES's may be represented in
the form

iso„+iV
g(x;x')

g(p;p') =@(y)@(y')g(x;x') .

Multiplying (3) by 4(y) from the left and integrating over

y, we obtain, for g{x;x'), the equation

The 5 function on the right side of the system (6a) de-
scribes the coupling to the superconductor through the
point contact; therefore, it has to be considered as a limit-
ing form of the smooth function.

In what we have considered above, we assumed that
the superconducting leads are conventional singlet super-
conductors and did not distinguish between spin-up and
-down states in the 1V region. Both states are necessary
for the proximity efFect. Zeeman splitting leads to a spa-
tial separation of MES's of opposite spin directions.
Generally speaking, Eq. (6a) has to be modified to incorp-
orate the fact that MES's with up and down spin have
different velocities and hopping to the leads. Our as-
sumption means that we neglect these difFerences. '3

Equation (6a) can be solved exactly. We will apply it in
the next sections to describe the proximity effect and
Josephson coupling by MES's.

im„+iV —gF
X

i co„h(r&)
= —p 5(x —x ), . g(x;x')

b, '(r& } i r0„

+5(x —x') .

Here we introduce a parameter

(6a)

III. PROXIMITY Ea a a;CT
ON MAGNETIC EDGE STATES

In this section we consider the penetration of Cooper
pairs into the 2D system. In our case the amplitude of
the Cooper pairs is determined by the nondiagonal ele-
ment of the Green's function

m'v0t 2

@i=, , [~'{yi)l'
Qro2+ ~h(r, )~2

(6b) F(x )= T g Sp{ (cr„+io )g(x;x ) I . (7)

In a case of a few point contacts, one needs to take a
sum of all contacts on the right side of the system (6a).

Consider the system with one contact at the point x, .
Equation (6a) can be solved by the substitution

1 x xg(x;x') =—exp —r0„[1+@,5(x —x, ) ]
x

eF(x —x')
X (a1+cr, )exp i

eF(x —x') sF(x+x') sF(x+x')
+b(1—o, )exp i —+co+exp i +do exp i—

V
(8)

The wave function of the Cooper pairs (7}is related to d', for which we have the equations

d 2l EF+1
i V a+ph exp

dx V
5(x —x

&
)d =5(x —x'),

@A*exp
2l GFX

5(x —x&)a+iV d=0.
dx

Here x, is the coordinate of the point contact. The solution (8}has to be continuous at x =O,L. Here L is the length of
the drift path along the surface.

Solving the system (9), we obtain an expression for the wave function of the Cooper pair:

exp{i/, (x,x, )+iy~{x,x, })
F(x }==2T

V ~„&ocosh{(co„L/V}(1+@/L}J—Ql —ri„cos(eFL/V}
(10}
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Here we introduce the parameter

'2

The phase Pi(x, xi } corresponds to circling from xi to
x in a positive direction,

X X) 1f XF
w1 & ] y I x +x jf x+xrh(x, x )= (1 la)

The phase $2(x,x, ) describes the path from x, to x in
the opposite direction,

P~(x, x, )=—
r

L —x+xl 1f x +x

x& —x ifx&x& . (1 lb)

A few consequences come from this expression. Below
we consider the limit of a long junction V/6 & L.

(1}Provided a constant velocity V, the density of Coop-
er pairs does not depend on the distance from the con-
tact; in fact, it depends only on the perinmter of the two-
dimensional system. As follows from (5}, the density de-
creases exponentially at the magnetic length from the
surface.

(2) The coherence length is equal to fr= V/2mT
This expression is reminiscent of that for a clean metal.

(3) The coherence length has to be compared to the
perimeter L. When L )Pr, one may take into account
only the first term in (10};therefore, the pair's wave func-
tion module is proportional to exp( L/8r). W—hen
L & Pr, the sum in (10) may be converted to an integral,
and it appears that ~F(x }~ ~ L '. It follows from the
above that the proximity effect disappears in the thermo-
dynamic limit L ~ 00.

This can be understood from the classical point of
view: The electrons combining Cooper pairs are in the
states connected by the time reversal transformation, and
therefore they have opposed velocities in 2D. To create a
pair they need to encircle the whole surface; so it is not
surprising that ~F(x)~ depends only on L It is worth.
mentioning that this dependence resembles the depen-
dence of the Cooper pair amplitude on the distance from
the boundary in usual SN sandwiches (see review in Refs.
1 and 2).

(4} Because of the term cos(e~L /V) in (10), F(x) is an

I

being of the same direction, is twice that of the electrons
in MES s. Using this fact, it is easy to find that the veloc-
ities of the pair and electron coincide. This means that
the supercurrent contributes paramagnetically to the to-
tal magnetization of the N region. ' At the point of con-
tact x =x &, the phase experiences a jump:

2E'F

V

This points out that in the case of extended contact,
where the phase will be continuous, the current changes
direction on the extension of contact.

IV. JOSEPHSON COUPLING
BY EDGE MAGNETIC STATES

In this section we consider the dc Josephson current
between two superconducting contacts attached to the
two-dimensional system at the points x& and x2. The
current, flowing throughout the junction, might be
represented as a difference between current incoming into
the point x& and the current outgoing from x&.

I= T g {[g(; )I„„—g(; )l„„],j .
~n

(12)

Here we took into account that, by the definition, 4(y) is
a normalized wave function.

To find the Green's function, one must use Eq. (6a),
where into the right side the term

l COn—p5(x —x2) &„.g(x;x'),a'(r,

describing the coupling to the second lead, has to be add-
ed. We assume that except the phases leads are identical
and drop the index of p, . Solving the equation for the
Green's function by the substitution (8), we find, from
(12),

oscillating function of the Fermi energy. The magnetic
field shifts the levels of the two-dimensional system and
causes an Aaronov-Bohm-type oscillation of F(x) This
is in direct connection with the Aaronov-Bohm effect in
quantum dots. '

(5) The momentum of the pair,

a 2E'F
{P, (x,x, )+Pz(x, x, ) j

=

g„sinO
I=2eT g cosh[(co„L/u)(1+2p/L)] —(1—rf„)cos(EFL/V)+g cos8

8=/, /2+A, (xi,x, )+4l~(—x~,x i ) . (14)

6I contain the whole dependence of the current on the lo-
cation of the contacts.

The phase 8 includes the phase difference of the super-
conducting leads and the phases due to the circling the
surface [Eqs. (1 la) and (1 lb)]:

In the leading order in il, expression (13) gives the per-
turbative result of Ref. 3. From (13) it follows that at low
temperature and cos(s~L/V)=1 perturbation theory
fails. This is a regime where resonant transmission dom-
inates the current.

At zero temperature from (13), we have (considering
V /L & 5, we may neglect the dependence of g on co„)
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m
—arccos[(1 r—1 )cos(e~L /V) —

r1 cos8]eVr1I=
V 1 —[(1 —rf )cos(eFL/V) —rf cos8]

eVg 2

(15a)

Expressions (13) and (15a) are valid for any g. The
case of small value of g is physically more relevant; there-
fore, we consider it in more detail.

The resonance value of the current is proportional to
r1, and it occurs for cos(sFL /V) =1:

I= sgn sin
eVq cos8 . 8

(15b)

The current is dominated by the Andreev level. To show
this, let us consider the spectrum. One can obtain it from
the poles of expression (13) by the substitution co„~ iE-

Most interesting is the low-energy-lying spectrum. For
6»E and small p, , neglecting 1 »2p/L, we obtain the
dispersion equation

EL 2 czL
cos =(1 71 )cos

V V
—g cos8. (16)

At the resonance the solutions of (16) are

EL 8=+2qcos —+2@i, 1=0,+1, . . . .

The total energy E(8) is the sum over all energies below
zero, and it depends on 8 throughout the top level:

E(8)L 8
V 2

= —2gcos —for 8(m

and

E(8)L 8
V

=2gcos —for 8&n .
2

Taking the derivative of E(8) over 8,—we find (15b).
Away from resonance the current is proportional to rf,

in (15), 6 has to be substituted for V/L. The resonance
current will be modified only if g /A &L, and its value
will be given by (15b) where r1 /L must be changed to
6/2.

%'e have considered Josephson coupling by MES's of a
closed 2D system; we call that a closed S.VS junction. To
conclude this section, let us mention another kind of
Josephson coupling by MES's; we call that an open SNS
junction. Schematically, the device is shown in Fig. 2.
The MES's of sample 1 are located far enough from that
of sample 2 so that the direct tunneling between them is
strongly suppressed. The transitions can proceed by the
superconducting leads only. The tunneling distance has
to be of the order of or smaller than the coherence length
of the superconductor; otherwise, the coupling will be
small. We may use perturbation theory. Estimations
show that the current is proportional to sin8, and its
dependence on the distance in a long junction has the
form

I~T g exp
N )0

being proportional to R ' for ZT &R and exponentially
small otherwise. R is the sum of paths along the MES's
of samples 1 and 2.

There are several reasons why the open SNS junction
could be interesting, First, this type of junction may
prove useful in the case of MES's of spin-polarized elec-
trons. Spin-flip-assisted coupling between the supercon-
ductor and MES's has to be included in consideration in
this case. The proximity efFect in a closed system is very
weak due to the condition that the orbital wave function
of the pair constructed from MES's must be antisym-
metric al. It turns out that the latter condition is much
less restrictive in the geometry of Fig. 2, and consequent-
ly, the Josephson coupling through spin-polarized MES's

eVg sin8 . (15')
NlES 2

Many levels contribute to the current in this case. It
can be easily seen for cos(s+L/V) = —1. The solution of
(16) is

EL . 8
V

=+2rf sin —k(21+ 1)n. .
2

A shift of the energy levels for small 8 is proportional to
g; therefore, only the cancellation of the contributions of
many individual levels leads to (15').

Let us point out that at the resonance pair amplitude
F(x) is nonzero in the limit g~O for T=O.

If the temperature is large, the coherence length is
smaller than L; in expression (13), the term with the
smallest frequency dominates and the current is equal to
I=8evPT exp( —L/Zz )sin8. The dependence of the
current on L is determined by the amplitude F(x).

For the sake of completeness, let us mention the results
for a short junction: V/L & h. In the nonresonant case

ES 2

FIG. 2. Schematic picture of the open SNS junction. The
electrons of the pair tunnel from (say) the upper superconduct-
ing lead to the magnetic edge states of sample 1 (MES&) and
sample 2 (MES&), from which they finally tunnel to the second
lead, thus providing the Josephson coupling. The thickness of
the superconducting barrier is of the order of or less than the
coherence length of the superconductors.
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may be stronger in an open than in a closed system.
Second, this type of junction may prove useful in the in-
vestigation of the dependence of I-V characteristics on
the electron states in the region of the junction. For in-
stance, one can consider the effect of the interaction of
Josephson oscillations with edge magnetoplasmons. The
frequencies of magnetoplasmon modes can range from far
infrared to radio frequencies, ' depending on the magnet-
ic field and system size. The system size can be easily
varied in the open geometry which allows for an easy ad-
justment of the resonance between the Josephson oscilla-
tions and magnetoplasmon modes.

V. JOSEPHSON COUPLING
BY BULK MAGNETIC STATES

for

voit i'
I(p, ,pz, H e

I i

v2D(sF, H),
IP) P2

QD(sF )/b, & ip, —
p~i & QD(st, )/T .

(17)

Here v2D(sF, H) and D(sF) are the density of states and
diffusion constant of 2D electrons. We assume that 6 & T
and that the Fermi level is close enough to the center of
the Landau level, and so ip, —

pz i
is less than the localiza-

tion length.

It is natural to consider the system where supercon-
ducting contacts attach the bulk states of a 2D system. It
is necessary to take into account the scattering of elec-
trons on the impurities. The most reliable estimation of
the current can be made in the case of short-range
scatterers. Transport is diffusive on scales less than a lo-
calization length, and it happens by the hopping of the
centers of the cyclotron orbits of electrons. We may ap-
ply a conventional diagrammatic approach. 's 's For the
mean-square value of the current, it shows that the super-
current may be represented the form

I=I(p„p„H)»n[y,—y, +(()(p„p„H)],
where y, —

yz is the phase difference of the superconduct-
ing leads, located at the points p, and pz, and P(p„p2,H )

is an additional random phase which appears in the mag-
netic field. At the large distance ip, —

p2i this random
phase becomes of the order m, and so after averaging of I
over the impurity configurations, the current becomes ex-
ponentially small. On the other hand, a typical value of
the current is

In (17) all the dependence on the magnetic field enters
only through the density of states. This is because we
neglect Zeeman splitting, which suppresses the current
when the splitting becomes larger than the broadening of
Landau levels due to the disorder.

Equation (17) predicts Shubnikov —de Haas oscillations
and the enhancement of the current in a magnetic field.
It can be real only for a system where the cyclotron fre-
quency is much larger than the Zeeman splitting. '

The MES's of those energies that coincide with the
bulk Landau level may have a strong coupling to the bulk
due to impurity scattering. In this case Eq. (17) describes
the current of the devise considered in the previous sec-
tions in the case where the Fermi level coincides with the
bulk Landau level. At low temperature, when
QD(cF)/T is larger than the geometrical size L of the
system, one must substitute L for ip,

—
p2i in (17). Com-

paring the coupling by MES's, given by Eq. (15b) and
(15'), and the bulk, we see that the first is likely to be
larger.

VI. CONCLUSION

This paper deals with the proximity effects and SNS
supercurrent in a magnetic field which is extremely large
for weak superconductivity. Equations (10), (13), and (17)
constitute the main results of this paper.

We consider two limiting situations.
First, the case when the Josephson coupling proceeds

by edge magnetic states. We show that the proximity
effect forms a thin paramagnetic superconducting strip
near the boundary of the N region. We consider multiple
Andreev scattering of MES's, which allows us to obtain a
nonperturbative expression for the supercurrent. A de-
tailed analysis of the current at low temperature in paral-
lel to the properties of the Adreev spectrum is given.

Second, we consider the coupling by bulk magnetic
states. We calculate the supercurrent in the case of the
short-range scatterers and show that for a small Zeeman
energy the coupling undergoes Shubnikov —de Haas oscil-
lations and increases with magnetic field.
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