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Effects of fiuxon dynamics on higher harmonics of ac susceptibility in type-II superconductors
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Measurements of fundamental and higher harmonics of ac susceptibility of polycrystalline low-T, and

high-T, superconductors show a failure of the critical-state model in describing the higher harmonics

dependence on temperature at fixed dc and ac magnetic fields. The results of measurements at different

frequencies suggest that an effect of the fluxon dynamics could take place. Indeed simple considerations

lead to the conclusion that thermally activated flux flow, flux creep, and flux flow (FF) should have an

important role in determining the higher harmonics of ac susceptibility. A simplified critical-state mod-

el, only including pinning and FF, seems to explain part of the experimental results.

I. INTRODUC. IlON

ac magnetic susceptibility is perhaps the most used ex-
perimental technique to study the electrical and magnetic
properties of superconductors. The fundamental in-
phase y" and out-of-phase y' components are measured
as reported in the complete review paper of Goldfarb. '

Some authors ' measure the wide band susceptibility,
which also contains information about higher harmonics.
In some cases measurements of higher harmonics of
the ac susceptibility are reported. The authors stress the
agreement of results with predictions of the Bean or
Kim-Anderson critical-state model. ' ' We developed
an experimental method, '3 which allows to measure at
the same time the fundamental and the higher harmonics
as a function of the temperature. In order to simplify the
interpretation of the experimental results, the measure-
ments, on a variety of type-II superconducting materials,
were carried out at a fixed dc magnetic field much higher
than the ac magnetic field. In this case the simple Bean
model would describe the field penetration inside the
sample. A further advantage of using this technique is
that the field penetration is symmetric with respect to the
external dc field, so that only odd harmonics are mea-
sured. The results show a disagreement with the
critical-state model of the third and fifth harmonics, de-
pending on the frequency of the ac field. This occurrence
suggests the idea of a strong e8ect of the fluxon dynamics
on the higher harmonics. In this paper, after a review of
the expected behavior of the first three odd harmonics vs
temperature according to the Bean model and Kim mod-
el, some experimental results are shown, followed by a
discussion on the elects of fluxon dynamics.

the sample, a signal proportional to the derivative of
magnetization is obtained u(t)=u, (t)—uz(t) ~dM/dt,
where u, (t) is the signal in the pickup coil containing the
sample and u2(t) the signal in the other one The. signal
u (t) can be developed in a Fourier series as

u (t}=g (a„cosntot+b„sinntot} .
n=1

The coeScients a„andb„areobtained as

foa„=— u t cos ncot t,
tp p

tob„=—f u (t}sin(ncot)dt,
tp p

(2a)

(2b)

where tp is the period of the oscillation. The ac suscepti-
bility components usually measured are g=b, /C and
y", =a, /C, where C is a factor depending on both fre-
quency and experimental setup.

The coefficients a„and b„canbe analytically calculat-
ed if the field penetrates a cylindrical sample according to
the Bean model

B(r,t)=B (R, t)kpg, (r R), —

8p
(4a)

where r is a position inside the sample, R is the sample
radius, and J, is the critical current density. The + sign
means that fiuxons are entering into the sample (increas-
ing field); the —sign for fiuxons leaving the sample (de-
creasing field). Setting

the radius at which the field penetrates the sample, and

II. HARMONICS OF AC SUSCEPTIBII.I'I Y
VS TEMPERATURE 2poR J,( T)

0=arcos 1—
Bp

(4b)

On applying an ac magnetic field B(t}=Bocos(cot) to a
superconducting sample and detecting the fiux variations
through two pickup coils, one of which is surrounding

we obtain for the three odd coefficients, as function of the
critical current density:
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Bo—Boto( r ' —R )( r *+R ), if J,( T) ~
p

1 BoB—OR c0(cos8 1—)(cos8+3), if J,(T) &

p

(Sa)

b, =

m8o Bo(r' —R) +4(r*+R), if J (T) ~

Boy 2
Bo

(128cos 8+38—13cos8sin8 —2sin8cos 8), if J,(T)~
12(cos8—1) p

(5b)

Bo——Boco(r' —R)(r'+R), if J,(T) ~
p

Q3-
BocoR 2 Bo

(cos8—l)(4cos 8+12cos 8+9cos8 5)—, if J,(T) &

p

(5c)

Bo Bo
16

(r —R), if J (T) ~

Bo~R' Bo
(
—26 sin8 cos 8+ 8 sin8 cos 8—158+33 cos8 sin8), if J, ( T) &

12(cos8 —1) p

(5d)

a5= '

Bo
Boca(r' —R)(r'+R), if J,(T) ~

p
2BocoR

5 4 3 2 Bo
42

(cos8—1)(8cos 8+24cos 8+20cos 8—4cos 8—13cos8—7), if J (T) &
C

(Se)

Bo0, if J (T)~
P

4 BocoR
7 , 80

cos8sin 8, if J,(T) &
21 (cos8 —1) p

The higher harmonics of ac susceptibility can be calculated as function of the temperature if the J,(T) curve is known.
Supposing the critical current density to be a function of temperature as

J, =Jo 1—
T"

C

we obtain a temperature behavior for the Srst three odd harmonics as shown in Fig. 1, where the components y'„and g'„'
are shown as well as the module g„=c„/C=(Qa„+b„)!C,which is of interest for a later discussion.

Using the Kim model, the critical-state equation can be written as

aB . P
a. +—"~' P+[B[ '

where J, and p are pinning parameters. In this case the fiel penetration is much more complex than the simple result
given by Eq. (3). Setting a =poJ, p, we obtain in the time interval 0 & t & to /4

0, if O~r ~ro

B(r)= . —P+QP +Bo+2PBO 2a(R r), if ro &—r & r, —
—p+Qp +Bocos eot+2pBocoscot+2a(R r), if r, &r &—R,

where

(Sa)
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Bo(Bo+2P)
r =R-

2Q

Bo(1—costot)(Bo(1+ cosset)+2P)
r, =R

4a

In the time interval to /4 & t & to/2

'0, if 0 & r ~ rp

P+—QP +B2o+2PBo 2a—(R r)—, if ro &r &r2
B(r)=

p+—Qp Bo—cos cot+2pBocostot+2a(R r), i—f r2 & r & r3

P+QP +Bocos cot 2PB—ocostot —2a(R r), if—r3&r &R,
P
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FIG. 1. Calculated odd harmonic components of ac suscepti-
bility vs temperature according to the Bean model. (a) funda-
mental, (b) third harmonics, (c) fifth harmonics.

FIG. 2. Calculated odd harmonics using the Kim model. {a}
fundamental, (b) third harmonics, (c) fifth harmonics.
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where

Ba(1+cos cot)+2PBo(1 —cosset)r2=R-
4a

Bocoscor (Bocoscot —2p)r3=R-
2cx

In the time interval tol2 & t & to B(r t)= B(—r t —to/2).
In this case the integration of Eq. (2) can be carried out
numerically. The results for the harmonic coeScients
and the modules are shown in Fig. 2.

III. EXPERIMENTAL RESULTS

In order to measure the harmonic coeScients as func-
tion of the temperature, we used two experimental setups.
In the basic setup' [Fig. 3(a)] the signal u (t) is sent to a
signal analyzer, which performs the fast Fourier trans-
forms and measures the first 20 in-phase and out-of-phase
components. In a further setup [Fig. 3(b}] used for com-
parison, the signal u (t) is sent to a lock-in amplifier, hav-
ing as reference a signal oscillating at a frequency neo. In
this case only the nth harmonics are measured. The mea-
surements were performed on different samples, described
in Table I.

The results were very similar for all the samples. Fig-
ure 4 shows the first three odd harmonics components vs
temperature as measured for the sample NT1, placed in a
dc magnetic field of 1 T and an ac magnetic field of 5-G
peak value. As before remarked, a dc magnetic field

B~,=1T))BO was applied in order to have both a field
penetration as predicted by the Bean model and the pres-
ence of only the odd harmonics. The measurements were
carried out at different frequencies, in the figure the re-
sults obtained in the range (0.7—7.7 Hz) are shown. At
increasing frequencies the following features were ob-
served:

(1) The first harmonic components have identical
shape. A light shift towards higher temperatures takes
place. This is a typical behavior of the fundamental com-

ponent of the ac susceptibility vs temperature. '

(2) The third harmonic components approximate the
Bean model [Fig. 1(b)] only at lower frequencies. At 7.7
Hz the curves are completely reversed with respect to the
expected ones.

(3) The fifth harmonic components approximate the
Bean model at higher frequencies (the out-of-phase com-
ponent better than the in-phase component).

Other measurements performed in the frequency range
(7.7—100 Hz} show few changes with respect to the 7.7-
Hz measurements. Similar behavior was observed on the
NTTZ1 and BISCC01 samples. Figure 5 shows some re-
sults of the third harmonics for these samples. For the
NbTi samples the higher harmonic components were also
measured at fixed frequency (0.7 Hz) and difFerent ac
magnetic field peak amplitudes. In this case no anoma-
lous behavior was observed.

The experimental results show that the frequency of
the ac magnetic field strongly affects the higher harmon-
ics vs temperature curves. This occurrence suggests that
the fluxon dynamics should be included in the critical-
state model. In the next section we wi11 try to introduce
some dynamic mechanisms like flux flow. Before con-
cluding this section we stress three points:

(1) Some authors measured the module of higher
harmonics c„=Qa„+b„.In these cases the information
coming from the sign of each component are fully lost, so
that the experimental results seem to agree with the Bean
model. As an example Fig. 6 shows y~( T)=ci( T)IC, i.e.,
the module of the third harmonic, obtained from the
components as given in Figs. 4(c) and 4(d). Though a
light frequency dependence is observed, the Bean model
seems to be confirmed [see Fig. 1(b)].

(2) We were able to observe the deviations from the
Bean model because, using the network analyzer, we
measured the harmonic components vs the temperature
at the same time. This technique allows to detect im-
mediately anomalous behavior. As an example, the Bean
model predicts that the in-phase harmonics g&' and y3'

TABLE I. Characteristics of the used samples.

Sample

NT1

NT2

Composition

NbTi alloy

NbTi alloy

Structure

bcc
polycrystalline

bcc
polycrystalline

Tco
(K.)

9.29

9.31

Shape and
dimensions

(mm)

Cylindrical
diameter 1

length 10

Parallelepiped
1X2X10

NTTZ1 Nbo 4Tio 45Tao.075ZI 0.075 bcc
polycrystalline

9.16 Tape
0.1x2x10

BISCCOl Bi2Sr2CaCu208
melted

Orthorhombic
polycrystalline 86.7

Cylindrical
diameter 0.6
length 10

HISCCO2 Bi2Sr2CaCu20g
melted

Orth orhombic
polycrystalline

86.4 Parallelepiped
0.5X1X10
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have opposite sign. We observed on the contrary the
same sign of these harmonic components down to very
low frequencies, as discussed before. On performing mea-
surements of a single harmonic, the anomalous behavior
could not be observed due to the characteristics of the ex-
perimental setup.

A central experimental problem is the phase of the sig-
nals at the pickup coils u, (t) and u2(t), with respect to
the oscillating field. For a correct measurement this
phase should be adjusted at 90' when the sample is in the
normal state. Using the setup shown in Fig. 3(a), the
phase adjustment is made monitoring the signal u2(t) in
the pickup coil not containing the sample. The phase is
regulated so that the network analyzer measures the max-

imum value of u2(t) out-of-phase (90') and zero value in-

phase.
The measurement of the nth sing1e harmonic is made

by using, as reference for the lock-in amplifier, a signal
oscillating at the frequency neo as shown in Fig. 3(b). In
this case the phase procedure depends on the harmonics.
For the fundamental one the phase is regulated with the
method before described, i.e., uz(t) must be maximum,
out-of-phase, measured using the lock-in. For higher
harmonics the phase procedure is different. Since no
higher harmonics can exist when the sample is in the nor-
mal state, the field must oscillate according to a square
wave for the phase adjustment (not for the measurement).
In this way we can select the higher harmonics of u2(t)
[let us call uz(t)] to control the phase. Using this
method for harmonics measurement, the phase is
different for each harmonic so that the correlation of re-
sults of different harmonics can be ambiguous. Further-
more, in the range of frequencies normally used (10-100
Hz or more), the third harmonic components are exactly
reversed with respect to the Bean model, so that a not
identified phase error can lead to wrong conclusions.
This is the main reason for using the multiple harmonics
measurements with the network analyzer.

(3) The harmonics vs temperature curves, shown in
Figs. 1 and 2, were calculated for cylindrical geometry.
Similar curves are obtained for infinite slab. Only NT1,
NTTZ1, and BISCCO1 samples correspond to these
geometric conditions. Indeed the Aux penetration could
be not uniform unless dependent upon the micromor-
phology of the materials. ' In this case the Aux penetra-
tion would be so complex that no trivial corrections to
the harmonic coeScients, as expressed by Eq. (5), are re-
quired. Though this efFect does not account for the
strong frequency dependence of the higher harmonics vs
temperature curves, it remains an open question for fur-
ther developments.

reference

U2

u1

Ch2

LOCK-IN

p0jg
I I

COMP LfllER

, fj(s)

FIG. 3. Experimental setups. (a) multiple harmonics mea-
surement: 1, wave generator; 2, flux transformer; 3, primary
coil; 4, pickup coil containing the sample; 5, balancing pickup
coil; 6, signal selector; 7, network analyzer; 8, dc magnet; 9, con-
troller. (b) signal harmonic measurement. The components
difFering from (a) are 6, band-pass filter; 7, lock-in amplifier.

IV. EFFECTS OF FLUXON DYNAMICS

We restricted our attention to the dynamic effects,
which causes the generation of an electric field. The
reason for this is that the appearance of fundamental and
higher harmonics of susceptibility can be related to an ir-
reversible magnetic behavior. In fact the measurements
clearly show that, on cooling the sample, the variation of
the in-phase harmonic y", , which has the meaning of dis-
sipated energy related to a magnetic irreversibility, is the
first evidence of a superconducting behavior. This means
that the higher harmonics are different from zero in a
temperature range dominated by irreversible phenomena.
Fluxon movements also can occur at temperatures higher
than the y&' onset without energy dissipation. These dy-
namic effects, related to the melting of the Abrikosov lat-
tice, ' ' do not cause irreversibility and cannot have
effect on fundamental and higher harmonics.

Figure 7 shows the E-J characteristics of a supercon-
ductor at different temperatures. Three different regimes
exist with three different resistivity behaviors

8
flow

& PFF P (9a)
e2
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hermally activated Aux How, pTAFF-P„e" 8,2

(9b)

(9c)
(I/J )(UlkT)

Sux creep, PFc ~ e

where U is the pinning energy. For low-T, typical values
arePFF-10 Qm; PFc 10 ' Qm; PT~FF-10 ' Om.

On performing an ac magnetic measurement, we im-
pose an oscillating electric field of maximum amplitude
E 8pcoR. From Fig. 7 we see that moving from higher
to lower temperatures, i.e., from lower to higher critical
current densities, the Quxons can experience all the three
dynamic regimes, starting from the FF very close to the
normal to superconducting transition. Depending on the
amplitude of the electric field we can have FF and then

FC (high amplitude —hne a in Fig. 7) or FF and TAFF
(low amplitudes —line b).

%e can understand which is the dominant dynamic re-
gime at some temperatures through the analysis of the
in-phase component yl' as function of temperature and
frequency as shown in Fig. 4(b). From the values of fre-
quency and of yl' is possible to calculate the resistivity in
the temperature region from the peak of yl' to the critical
temperature.

Let us define the resistivity through the relation
p-b, E/hJ, the value of the electrical field being the
maximum external one: E=BocoR, so that, on perform-
ing measurements at different frequencies, we obtain
curves with different electrical fields. The critical current
density can be calculated applying the Bean model:
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FIG. 4. Measured odd harmonics in the frequency range 0.7—7.7 Hz on the sample NT1 ( T, =S.S K at B= 1 T). (a) fundamental

out-of-phase; (b) fundamental in-phase; {c)third harmonic out-of-phase; (d) third harmonic in-phase; (e) fifth harmonic out-of-phase;

(f) fifth harmonic in-phase. The critical temperature is defined as the onset of y&'.
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At a fixed temperature we have different values of g' de-

pending on the frequency. Calculating E and J, for each
g", value, we can obtain the resistivity. For the NbTi
sample in the temperature rangle 8.4—8.6 K we obtain
Iv=10 Qm. This value of resistivity is intermediate be-
tween FC and FF, closer to FF. Since the FF seems to
dominate in proximity to the transition, we can try to in-
clude this effect in the critical-state model and to calcu-
late the efFects on the first three odd harmonics.

A. DifFusion equation
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For simplicity we will study the problem related to a
superconducting slab of thickness 2xo, with the magnetic
field applied parallel to the slab. It is well known' that
the viscous force can be represented as a term depending
on the fiuxon velocity v and the viscosity
F„=I/7@ o=vB,2lpnv:
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FIG. 5. Third harmonics of the BISCCO1 sample (a) in-
phase; (b) out-of-phase with T,(B=1 T) = 85 K, and for the
¹IZ1 sample (c) in-phase; (d) out-of-phase with T,(B=1 T)= 8.55 K. To be noted that in the Bi-based sample the onset of
harmonics is the irreversibility temperature T. ,=0.7T, =59.5
K.

TAFF

FIG. 7. E-Jcharacteristics of a pinned superconductor at de-
creasing temperatures T, & T2 & T3 &. . ., with evidence of the
three dynamic regimes: TAFF, FC, and FF.
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B,2 is the upper critical field and p„is the normal-state
resistivity.

Since E=vB and BE /Bx =BB /Bt, we have

BB BB
Bx

BB Pp8, 2 BB
P e Bx p„ Bt

This equation cannot be solved analytically, but interest-
ing information comes from some approximations. In
fact supposing the viscous force to be much higher than
the pinning force, ' Eq. (11)can be written as

B BB PpB z BB
Bx Bx p„Bt

B=B (x,t) + B
Uc ext

+B

B
de ext

- B
0

This is a nonlinear diffusion equation similar to the equa-
tions obtained for the TAFF (Ref. 20) or for the FC. '

Using these equations a numerical solution could be
found for the field penetration and then for ac susceptibil-
ity. Nevertheless a simple analysis shows that this ap-
proach does not explain the higher harmonics behavior in
the case of a small ac field superimposed to a constant dc
field.

Figure 8 shows that, using the Bean model, in the re-
gion from x, where the ac field penetrates, to the surface
xp the magnetic field can be written as the sum of a con-
stant field (the external dc magnetic field B~, ,„,} plus the
ac field 8„:8 =Bz, ,„,+B„(x,t) In th. e region
0&x &x the field is given by 8=8&,(x)+Bp. Since the
latter region gives no contribution to the ac susceptibili-
ty, we can write BB/Bx =BB„/Bx.Furthermore since
the dc field is not time dependent, we have
BB /Bt =BB„/Bt,so that Eq. (13) can be rewritten as

PpBcz BB«BBac B BB«
(14}

In our case 8 ««8&, so that the right side of Eq. (14)
can be set to zero, obtaining a linear diffusion equation.
Solving this equation with the boundary conditions
B«(xp, t)=Bpcos(cot) and 8«(O, t)=0, i.e., at the com-
plete field penetration, we obtain

Xp Xo

FIG. 8. Flux penetration in a slab using the Bean model.
The shadowed area represents the ac magnetic flux penetration.
The thick line is the dc field presentation.

be seen solving Eq. (14} for half the plane, defined by
x &0 with the boundary condition 8„(x=O, t)
=8pcoscot. The solution can be written as

X cos( +cop„B&,/—2p pB,zx + tot ) (17)

and P„are the higher-order approximations defined by
the recurrent equation

8„(x,t) =g P„(x,t)
1

where Pp is the solution of the linear diffusion equation
obtained setting to zero the left side of Eq. (14),

Pp(x t)=Bpexp (/top„Bs,/—2pp8, 2x

8„(x,t)= A i(x) costot+ A2(x) sincot . (15) Each P„canbe obtained through

The meaning of Eq. (15) is that the internal field can be
completely described in terms of the fundamental fre-
quency, so that no higher harmonics could be expected
for the ac susceptibility. The higher harmonics come
from the irreversibility due to the pinning force. The
theories, which analyze a single dynamic regime neglect-
ing the pinning term, result to be incomplete.

We stress again that this result is valid only in the ap-
proximation 8„&(8~,. It could be interesting to show
that for a dc field value approaching to zero, we have in-
stead a strong generation of higher harmonics. This can

P„(x,t)= Jdy G(x,y, t) g P„BP„„,
B B

(19)

G(~,y, t)=g(x, y)e' ',
PpBc2 Bg B g

p, Bt Bx
—B~, =5x —y) .

It is found that G (x,y, t) has the form

(20)

(21)

where G (x,y, t) is the Green function defined by the rela-
tion

G(x,y, t)=
exp —(1+i)}l'cop„B~,/2pp8, 2~x

—y ~

—exp —(1+i)+cop„B~,/2ppB, i~x+y ~

(i + 1)+2coppB,~/p„B~,
(22)
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Replacing G(x,y, t) in Eq. (19), we can see that the higher-order components generate higher harmonics, i.e.,
P„(x,t) ~ cos(n+1)nit and that these components scale as

Bo

Bs.
(23)

Equation (23) shows that for values of the ac field comparable with the dc field value, we can have significant higher
harmonics generation. In our case the ratio Bp/Bd, =10,so that it is confirmed the previous result, expressed by Eq.
(15).

B. Constant iinxon velocity approximation

More information comes from an approximation of Eq. (12), which holds the pinning term. Supposing that the
fiuxon velocity is constant inside the sample, i.e., Bu lBx -0, it results v =BBidt ldB/dx. Replacing the fiuxon velocity
in Eq. (11)and supposing to be in proximity to the normal to the superconducting transition, so that the field inside the
sample is very close to the external magnetic field, Eq. (12) can be rewritten as
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FIG. 9. Calculated harmonics for the NT1 sample using the constant fluxon velocity approximation. (a) fundamental out-of-
phase; (b) fundamental in-phase; (c) third harmonic out-of-phase; (d) third harmonic in-phase; (e) fifth harmonic out-of-phase; (f) fifth
harmonic in-phase.
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BB
Bx

2
pocoB,2Bosi neat

Pn
(24)

Solving, we obtain

4coB,2Bo~sintot
~

B(x,t)=Bd, +Bocosrot+ —,'pP, 1+ 1+
PnPrrfc

(R —x) . (25)

Equation (25) means that the ac field shielding depends
on the ac field rate. At times t =0 and t =tol2 the field
rate is zero so that the Bean model is valid. At times
t=tol4 and t=3tol4 the field rate is maximum and
equal to coBO, so that the shielding currents assume the
maximum value. The harmonic components were calcu-
lated at frequencies 1, 5, 10, 25, and 50 Hz for a NbTi
sample with the following characteristics: B,z =o14 T,
Bd&=1 T B0=5 6 R =05 mm and p„=10 Qm. The
critical current density was assumed to be given by Eq.
(6) with n =3 and J,o=10"A/m . The results are shown
in Fig. 9. The first harmonic component y', is weakly
affected by the frequency of the ac field. The component

assumes higher values at increasing frequencies,
without changing its shape The. third harmonic com-
ponents instead dramatically change moving from low to
high frequencies. At 50 Hz the component y3' has oppo-
site sign with respect to its values at 1 Hz. The com-
ponent y3 is also changing from negative to positive
values. This behavior of calculated first and third har-
monics seems to confirm the measurements. Unfor-
tunately the fifth harmonics are not well described by the
model, specially the in-phase component.

V. CONCLUSIONS

The critical-state model does not appear to account for
the higher harmonics of ac susceptibility. Measurements
on several type-II polycrystalline superconducting sam-
ples show a strong frequency dependence of the higher

harmonics vs temperature. This occurrence led us to
suppose some effects of the fluxon dynamics. We restrict-
ed our attention to FF, FC, and TAFF because we inter-
preted the nonzero values of the real part of ac suscepti-
bility g", as indication of dissipated energy and then of an
irreversible behavior. Time-dependent effects related to
the melting of Abrikosov lattice were not considered.
The inclusion of the flux flow in the critical-state equa-
tion led to a nonlinear diffusion equation. This equation
was studied in the limit of the viscous force much higher
than the pinning force. In the case of a small ac field su-

perimposed to a constant dc field, no harmonic genera-
tion results. Since equations of the same kind can be
written also for TAFF and FC, we drew the general con-
clusion that an approach to the fluxon dynamics, which is
restricted to a single dynamic regime and neglects the
pinning force, cannot account for higher harmonics. A
simpler model, which considers the fluxon velocity con-
stant inside the sample, seems to be in agreement with the
experimental results of the third harmonics. The
behavior of the fifth harmonics vs temperature is not ex-
plained in this framework.
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