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Tight-binding calculatoins are performed which include both Cu-0 and O-O interactions in the Cu02

plane. These calculations reconcile inconsistencies in observed behaviors of the thermopower S and the

Hall coefficient RH. the sign of Sof high-T, cuprates at room temperature becomes negative in the over-

doped regime, while RH remains positive. A striking feature of the Cu02 antibonding band is that a

holelike Fermi surface is formed even when the band is less than half-filled. This brings about an unusu-

al electron state in which the Hall (cyclotron) mass parallel to the Fermi surface is holelike ( & 0) but the

transport mass perpendicular to it is electronlike (&0). This electronlike transport mass contributes to

negative S, while the holelike Hall mass results in positive R&. In such a state, the electron on the Fermi

surface has complete duality: it is holelike in one direction, but electronlike in another. In the over-

doped regime, where RH &0 and S &0, the hole doping increases the carrier concentration defined as
~ RH ', but it decreases the carrier concentration defined as (n /m *)D in Drude's formula. This qualita-

tively explains the recent muon-spin-rotation (@SR) results that the superconducting carrier concentra-

tion n, /m -(n /m *)D decreases with hole doping in the overdoped regime.INTRODU�CTION

Transport properties of high-T, cuprates in the normal
state have been considered very puzzling. ' In optimally
doped high-T, cuprates with maximum T, s, the resistivi-
ty p and inverse Hall coefficient RH have linear relation-
ships to temperature T, but the T dependence of the ther-
mopower S is very weak. These results are different from
those expected for a simple Fermi liquid, namely, T
dependence of p, T-independent RH, and T-linear S.

However, recent studies on the doping dependence of
these transport properties revealed two features which
might offer a key to the solution of the puzzle. One is a
T law of the inverse Hall mobility pH' —T (or
cotHH: pH'/B, whe—re OH is the Hall angle and B is the
applied field} observed in a wide doping range from the
underdoped to the overdoped regime. " This is very
surprising because the T dependence of p shows large
variation from sublinear to superlinear with increasing
doping level. Outside of the optimal doping range, p is
no longer T linear. However, RH' shows complicated
nonlinear T dependence so as to hold the relation
p&'-T . This universal relation, observed in a wide

doping range from the underdoped to the overdoped re-
gime, clearly demonstrates the close correlation between

p and R&. The most straightforward interpretation of
the relation p~'- T is that pH' represents the isotropic
scattering rate ~ ' as in the usual expression
pH'=m*/e~ for a parabolic band. This is consistent
with the band calculation which predicts a nearly para-
bolic hole band arising from the Cu02 plane. ' In this
case, the scattering rate of the high-T, cuprates is always
—T, which is consistent with the Fermi-liquid picture.

Another remarkable feature is a general trend observed
in the doping dependence of the thermopower S.'
Plots of S at room temperature versus doping level for

various high-T, cuprates fall on a universal curve which
decreases with doping and crosses S =0 at around op-
timal doping with maximum T, . Thus the sign of S
changes from positive to negative on going froin the un-

derdoped to the overdoped regime. However, this
behavior appears to be inconsistent with that of the Hall
coefficient RH, which maintains positive values even in

the overdoped regime. If we use a parabolic hole-band
model to explain the T2 law of pH', the sign of S must be
positive over the entire range of doping. Thus it is
difficult within a simple Fermi-liquid picture to explain
both the facts of positive RH and negative S observed in
the overdoped regime.

On the other hand, the existence of the large Fermi
surface predicted from the band calculation has been
confirmed by photoemission experiments for both hole-
doped' and electron-doped' systems. This strongly sug-
gests that the Mott-Hubbard picture at half-fillin is des-
troyed by a small doping and that the band picture with
near half-filling is appropriate for the doped metallic
phases. However, it is noted that the observed band-
width is only about half of that calculated, which is prob-
ably due to the strong correlation eff'ects. Therefore the
band calculation correctly predicts the Fermi-surface
morphology, while it fails in predicting the details of the
band dispersion.

The purpose of this paper is to give a consistent ex-
planation of the doping dependences of both RH and S in
terms of a tight-binding band model of the Cu02 plane.
The observed universalities in the transport properties
strongly imply that the transport properties of high-T,
cuprates are determined only by a single band, namely,
the dpo. antibonding band arising from the common
Cu02 plane, which exists in all cases. According to the
band calculation, ' this band has a free-carrier-like wide
dispersion and gives rise to a large holelike Fermi surface
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enclosing the zone corner. The band calculation, howev-
er, often yields additional Fermi surfaces arising from
other bands such as Bi-0 or Tl-O. ' If these bands
significantly contributed to the transport properties, the
transport properties would vary from system to system
and hence the universality would be lost. Thus these
small electron pockets seem to have little effect on the
transport properties. Moreover, since the crystal struc-
ture of high-T, cuprates are not ideal, but include various
local defects and distortions, these electron pockets pre-
dicted on the basis of ideal structures might not actually
exist. In any case, the universal behavior of the transport
properties observed in experiments strongly suggests the
predominant role of the common Cu02 band. Therefore
we believe that the essential features of the transport
properties are well described by the model-band calcula-
tion of the Cu02 plane.

Allen, Pickett, and Krakauer' previously calculated
the transport properties of La2, Sr„Cu04 and
YBa2Cu 307 based on local-density-functional theory.
They predicted "holelike" RH ( & 0) and "electronlike" S
( (0) for underdoped and optimally doped regions,
which is inconsistent with the experiments, but reminis-
cent of the behavior in the overdoped region. Although
they devoted little discussion to the origin of this ap-
parently unusual behavior, their results clearly demon-
strate that the band picture may naturally result in
opposite-sign Rz and S for high-T, cuprates. The

disagreement between their results and experiments
might be due to the omission of the La +/Sr + random
potential (virtual-crystal approximation} or to the effect
of the CuO chain band. As mentioned above, since the
electron correlation makes the band dispersion results
less reliable, the full calculation including minor bands
may include additional errors. Furthermore, a series
problem in the transport calculation including all bands
obtained from the band calculation is that it is diScult to
get an insight into the phenomenon.

Therefore, in this study, we analyze the tight-binding
band model~o ' for the Cu02 plane, which is known to
reproduce the Fermi-surface morphology consistent with
both the band calculations and the photoemission experi-
ments. A striking feature of the Cu02 antibonding band
is that a holelike Fermi surface is formed even when the
band is less than half-filled. Thus R& is always positive.
However, as a result of the small band filling, the band
dispersion becomes electron!ike In other wo. rds, the elec-
tron on the Fermi surface has an unusual effective mass
state in which the "Hall (cyclotron) mass" parallel to the
Fermi surface is holelike, but the "transport mass" per-
pendicular to it is electronlike. This electronlike trans-
port mass contributes to the negative thermopower.

E(k)= —2t&(cosk„a+cosk~a )+4t2cosk„acosk a

or

E=E—/2t, = —(cosk„a+cosk a)+2t cosk, a cosk a,

where t, and t2 are the nearest-neighbor and next-
nearest-neighbor interactions, t =t2/t„and a is the lat-
tice parameter. Not only t„butalso t2 are necessary to
describe the Cu02 band. Although only the Cu-site or-
bital is considered in Eq. (1), the next-nearest-neighbor
interaction t2 should arise mostly from the O-O direct in-
teraction in the actual Cu02 plane.

In this study, we use a more realistic tight-binding
model in the Cu02 square lattice consisting of both the
Cu d (x —

y ) orbital and the 0 po orbital, as shown in

Fig. 1. The near-neighbor Cu-0 and O-O interactions
t& and t are taken into account. This model band has
been analyzed by Markiewicz. ' The band structure de-
pends on the relative values of tpp tpp and
AE=Ec„—Eo, the energy difference between d and p
oribtals. For hE && t& and t, the antibonding band has
the same form as Eq. (1), with t, = t& /b, E and

t2 = t, 2t /KE. In the opposite limit hE =0, the
constant-energy surface of the antibonding band is given
b 21

s(2s —1+cosk a }

s+P(1—cosk a )
(2)

Cll dx~ y"-

where e=E/2t&z, P=f(1+sf /2), and f=2t /t& .
Hereafter, we call the energy bands expressed by Eqs.

(1) and (2) as bands A and B, respectively. The more real-
istic solution of the present tight-binding model shown in

Fig. 1 appears to lie between these two limits, because the
"bare" values of t&, t, and hE are estimated to be
1 —1.3, 0.5 —0.65, and 1.5-3.6 eV, respectively; hence,
AE tpp tpp Both bands are shown in Fig . 2 together
with the Fermi surfaces for various t and f values and
band filling n. Both bands show the Van Hove singulari-

ty, at e= 2t for ba—nd A and e =1 for B. When n is at
the Van Hove singularity, the Fermi surfaces of both
bands are exactly the same if

2t /(1 —2t) =f (1+f /2)

TIGHT-BINDING MODEL AND CALCULATION

In early stages of the study of high-T, cuprates, Yu,
Massidda, and Freeman pointed out that the Cu02 anti-
bonding band calculated by the full-potential linearized
augmented-plane-wave (FLAPW) method is well repro-
duced by a simple tight-binding band in a two-
dimensional (2D) square lattice expressed by FIG. 1. Tight-binding band model of the Cu02 plane.
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O-O direct interaction term t .Thus the present tight-

binding model shown in Fig. 1 can well reproduce the
Fermi-surface morphology predicted from the band cal-
culations and detected in the photoemission experiments.

On the contrary, it is noted that the band dispersions
for the two bands are rather different. This difference
mainly affects the thermopower S as described below.

Although the detailed band structure has not yet been
determined by experiments, the actual band dispersion
probably lies between those for the two bands. The band-
width is St, = Stdy /b, E for band A, while it increases with

both 2tdy and f =2tyy ltdy for band B. Using the above

values, one can obtain a bandwidth of -4 eV, which is
consistent with the band calculation. However, as men-

tioned above, the actual bandwidth may be as small as 2
eV. In the present model, one can fit the bandwidth by
adjusting t, or td . In any case, it is noted that the band-

width does not change the qualitative results of either S
or RH.

RH and S are calculated based on the conventional
Boltzmann transport equations. The energy derivative of
the Fermi-Dirac function ( Bf/BE—) is approximated by
a 5 function. Thus, considering the square symmetry, T-

independent Ryr =cr„,/(cr, „o„) and T-linear

S=S, =S» are obtained using

o„„=o„=(e2/Qiri)f~(k}v(k)dA, (4)

o„,=(e'/QA') f [~(k) v(k) /r(k)]dA,
FIG. 2. (a) Band dispersions of band A for t =0 and 0.4. The

inset shows the Fermi surfaces for t =0 at n =1 (dotted line)
and for t =0.4 at n =1, 0.8, and 0.6 (solid lines). (b) Band
dispersions of band 8 for f=0, 1, and 2. The inset shows the
Fermi surfaces for f =0 at n =1 (dotted line) and for f=2 at
n = 1, 0.8, and 0.6 (solid lines).

is satisfied. Even for other n values, it is noted that the
Fermi surfaces of both bands are almost identical if Eq.
(3) is satisfied, as shown in Fig. 2. At half-filling (n = 1),
the Fermi surface is straight lines if the O-O interaction
is ignored (t =0 or f =0). However, by turning on the
O-O interaction, it becomes a holelike rounded shape
centered at the Brillouin-zone corner (M}, which is simi-
lar to that of the band calculation. Such a holelike Fermi
surface is formed even at n =0.6 for t =0.4 or f =2.
Indeed, a striking feature of the Cu02 antibonding band
is that a holelike Fermi surface is formed even when the
band filling is much less than half. According to Yu,
Massidda, and Freeman, the Fermi surface from the
band calculation is well reproduced with t =0.45 for
band A, which corresponds to f =3.36 for band B. For
these values, the holelike Fermi surface is formed even at
the smaller n value of 0.5

The Fermi-surface morphology for a given band fi1ling
n is solely determined by t =2fpp/LakE for band A or
f =2tyy Itdy for band B. As mentioned above, the Fermi
surfaces for both bands are almost identical if Eq. (3) is
satisfied. Therefore we can probably obtain an almost
identical Fermi surface as well for the realistic condition
IsaEE tdp tpp by tuning a similar parameter including the

Sxx(T)=Syy(T) = n ksT Blno„„(E)
BE

Figure 3 shows the band-filling dependence of the cal-
culated 1/nH= eRH/a —and S at 300 K for both bands,
where nH is the Hall number per unit cell. In the S cal-
culations, the bandwidth for each band is assumed to be 2
eV. The S value is inversely proportional to this value.
In Fig. 3, the parameters (t,f)=(0,0), (0.3,1), and (0.4,2)
satisfy Eq. (3), and their Van Hove singularities occur at
n =1, 0.73, and 0.58, respectively. S diverges at the Van
Hove singularity. The behavior of 1./n& for both bands
is very similar. This is because R~ is mainly determined
by the Fermi-surface curvature, which is nearly identical
in both bands. As n decreases from 2, the simple hole
picture n~=2 —n holds until near the Van Hove singu-
larity where the Fermi surface touches the Bxillouin-zone
boundary. Then the shape of the Fermi surface changes

Here Q is the normalization volume, v(k) is the electron
group velocity, 1/r(k) is the curvature of the Fermi sur-
face, and integrals are carried out on the Fermi-surface
area. In the calculation, the relaxation time r(k, E) is as-
sumed to be constant. This assumption seems to be
reasonable for the RH calculation because the Fermi sur-
face has a symmetrical, rounded shape. In this case, ~ is
canceled out in both Rz and S. Then Rz is expressed as

'2

RH=(Q/e) f [v(k) /r(k)]dA fv(k)dA .
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to an electronhke one enclosing the zone center (1 ), fol-
lowed by the rapid decrease and sign change of RH.

On the other hand, the band-filling dependences of 5
for the two bands are considerably diferent, rejecting the
difFerence in the band dispersions. Equations (4) and (6)
show that the sign of 5 is determined by the sign of
[A (Bv/BE)+v(BA/BE)] with a constant r approxima-
tion, where v is averaged v(k).
Since

2
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the sign of the first term is determined by the sign of the
eSecti 've mass m'=i)i /(B E/Bk ). As n increases from
the band bottom, m ' )0 gradually increases and diverges
at some inBection point, where m ' changes sign, becom-
ing negative (holelike), and approaches the values at the

FIG. 4. Band-filling dependences of the inverse Hall number
1/nH and the thermopower S at 300 K for band 8 with

f=3.36. The bandwidth is assumed to be 2 eV (tz~ =0.258 eV).
The dashed line indicates the simple hole picture
1/nH = 1/(2 —n).
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band top. This sign change of m* occurs at half-Slling
(I'-rn direction) for band A with r =0, which is con-
sistent with a simple band picture. However, it occurs at
a much larger n value of —1.6 for t =0.4. For band 8
whose fermi surface is similar to band A, this sign change
occurs at a rather smaller n value. The details will be dis-
cussed in the next section. The sign of the second term
appears to change near the Van Hove singularity where
the Fermi-surface area A is close to the maximum.
Therefore the sign change of S could occur between the
Van Hove singularity and the mass singularity where m '
diverges. This is clearly demonstrated in Fig 3(b), whe.re
the sign change of S for band A occurs at larger n values
than for band B.

Qualitatively similar results are obtained even if anoth-
er approximation of a constant mean free pass 1 =rv is
used in the S calculation. In this case, since S is deter-
mined by BA /BE, the sign change of S occurs at n near
the Van Hove singularity. Then, however, RH still
remains positive for reasonable t or f values, as shown in

Fig. 3(a). Thus the sign change of S upon doping occurs
earlier than that of RH.

Figure 4 shows a typical calculated result for band B
with f =3.36, which reproduces the transport experi-
ments as well as the Fermi-surface morphology obtained
from the band calculation. R~ is positive at n &0.20,
whereas S changes sign at n -0.80, which coincides with
the optimum hole doping of -0.20.

DISCUSSION

FIG. 3. (a) Band-filling dependences of the inverse Hall num-
ber 1/nH for band A with t =0, 0.3, and 0.4 (solid lines) and for
band B with f =0, 1, and 2 (dots). The dashed line indicates the
simple hole picture 1/nH=1/(2 —n). (b) Band-filling depen-
dences of the thermopower 5 at 300 K for band A with t =0,
0.3, and 0.4 (solid lines) and for band B with f =0, 1, and 2
(dashed lines). The bandwidth is assumed to be 2 eV [t, =0.25
eV for band A; t„r=0.707 eV (f=0), 0.5 eV (f= 1), and 0.376
eV (f =2) or band B].

As noted above, the AH value is almost entirely deter-
mined by the Fermi-surface morphology. Ln particular,
the sign of AH depends on the sign of the Fermi-surface
curvature 1/r(k) as indicated by Eq (7). On .the other
hand, the sign of S is largely affected by the sign of the
effective mass m *, i.e., the curvature of the band disper-
sion. In the parabolic-band model, both signs should be
the same: An electronlike band has a positive m ' as we11
as a positive Fermi-surface curvature, while a holelike
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band has negative ones. On the contrary, the observation
of positive RH and negative S in the overdoped regime
implies the existence of an unusual region in which m ' is
electronlike ()0) but the Fermi-surface curvature is
holelike ( &0). This can be understood more clearly in
terms of the anisotropic effective-mass tensor. The in-
verse effective-mass tensor (1/m'), 1—=R (8 E/Bk, Bkj. )

on the 2D Fermi surface can be diagonalized with the
principal axis perpendicular to the Fermi surface. The
above-mentioned effective mass m ' is thus defined as the
"transport mass" perpendicular to the Fermi surface,
(1/m')„=St (8 E/Bki ), which determines the electron
motion along the velocity direction Another component
of the tensor is the "Hall (cyclotron) mass" parallel to the
Fermi surface, (I/m')H =—iri (8 E/Bk~~ ), which governs
the electron motion perpendicular to the velocity (cyclo-
tron motion). Here k~ and k

ii
are the lr-space coordinates

perpendicular and parallel to the Fermi surface, respec-
tively. It is noted that the sign of the Fermi-surface cur-
vature corresponds to the sign of the Hall mass mH.

Therefore the observed anomaly with RH & 0 and S & 0
is accompanied by an exceptional electron state in which
the Hall mass parallel to the Fermi surface is negative but
the transport mass perpendicular to the Fermi surface is
positive. This is clearly demonstrated in Fig. 5, where
the regions with mH &0 and m,', &0 are "painted" with
large dots. The half-filled Fermi surfaces are also shown
in the figure. When t =0 or f =0, such a mass anomaly
appears only in the vicinity of the Van Hove singularity
at X. The areas of smaller dots in the figure indicate the
reverse anomaly, with ma &0 and m,*, &0. The symme-
trical pattern of Fig. 5(a) is a result of the complete
particle-hole symmetry of this band. As t or f is in-
creased, the thickly dotted area rapidly spreads. For
band A, the mass anomaly appears in a wide area includ-
ing the entire half-filled Fermi surface, as shown in Figs.
5(b) and 5(c). For band B, the area develops rather more
slowly, but covers the entire half-filled Fermi surface at
f &2, as shown in Fig. 5(f). It is especially noteworthy
that the Fermi surface with the band filling n ranging
0.6—1, which corresponds to that of the high-T, cuprates
in the present model, is completely included in the mass-
anomaly area for both bands with realistic parameters
(t &0.4 or f ~2). Apparently, this unusual effective-
mass state is due to the O-O direct interaction d in the
Cu02 plane, which deforms the Fermi surface to a hole-
like one even at less than half-fiHed. Generally speaking,
the discrepancy in sign of m,*, and mII may occur some-
where in the Brillouin zone near half-filling where an
electron picture changes to a hole picture. However, it is
a rare case that such a mass anomaly occurs euerywhere
on the Fermi surface as demonstrated in the present mod-
el. It is very diScult to make such a Fermi surface in a
3D system. The two-dimensional nature of the CuO2
plane should be significant in this regard.

It is interesting that such a mass anomaly endows the
electrons on the Fermi surface with a completely two-
faeed character: They are eleetronlike along one direc-
tion, but holelike along another direction. This dual
character of the electrons may give an answer to a serious

xg(

X X

t =0.3
M X M

(c'

X M

FIG. 5. Mass-anomaly regions with m„&0and m& (0 are
indicated by larger dots, while the reverse regions with m „(0
and mH &0 by smaller dots. (a)-(c) are for band A with t =0,
0.3, and 0.4, and (d)-(f) are for band B with f =0, 1, and 2, re-
spectively. The half-filled Fermi surfaces are also shown by
solid lines.

question concerning the nature of the so-called "overdop-
ing. " Recently, Niedermayer et al. and Uemura
et al. i4 have measured the muon-spin-rotation (@SR) re-
laxation rate n for overdoped TlzBaiCu06+s (Tl-2201)
and found that rr(T~O) decreases with doping 5. This
means, in the framework of the clean-limit London model
a(0)-A, -n, /m*, where A, is the magnetic penetration
depth and n, is the superconducting carrier concentra-
tion, that n, /m' decreases with carrier doping in the
overdoped regime. This apparently contradictory result
raised a question about the reaI role of the "overdoping. '*

Now we consider the "carrier concentration" in our
model, in which the electrons are two faced. At first, the
Hall measurement is mainly governed by the Hall mass,
which is holelike. Thus the carrier concentration defined
as nH ——a /eR~ represents the holelike aspect of the car-
rier. The "hole doping" expands the holelike Fermi sur-
face area; hence, it increases nH as if a simple hole pic-
ture holds, as shown in Fig. 3(a). On the other hand, the
carrier concentration defined from Drude's formula
o =(n/m')De r shows a much different behavior, be-
cause the conductivity o is governed by the transport
mass and represents the electronlike aspect of the carrier.
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From Eq. (4), (nim')D ~ jv(k)dA with the constant r
approximation. The electronlike mt'„()0) means that
the electron velocity v(k)=A 'BE/Bk decreases as the
band filling decreases (hole doping). Thus (nim*)D
tends to decrease with hole doping while it also depends
on the Fermi-surface area. Here it is noted that the sign

change of S occurs at the band filling where
( n /m '

)D ~ cr becomes maximum, because the energy
dependence of o means the band-filling dependence of o
in our model. Indeed, the sign change of S is the manifes-
tation of the changeover between the hole picture and the
electron picture defined from (n/m') n. As the band
filling increases, (n/m')D increases when S (0 (elec-
tronlike), but decreases when S )0 (holelike). Thus the
carrier concentration defined as (n/m")D should de-
crease with hole doping in the overdoped regime where
S & 0. The superconducting carrier concentration
n, /m* is defined from the missing area of the optical
conductivity 0 i(co), the spectral weights below the gap
frequency transferred to co=0 as a 5 function in the su-
perconducting state. In the clean limit, this missing area
is approximately equal to the whole area of o, (co); thus,

n, /m" —(n/m')D using Drude's sum rule. Therefore
the superconducting carrier concentration
n, /m'-(n/m')D should decrease with hole doping in
the overdoped regime.

In the above scenario, it is noted that (n /m" )D be-
comes maximum at around an optimum doping where
S-0. However, the experiments show that the dc con-
ductivity e = (n /rn ')De r does not saturate at optimum
doping, but continues to increase with doping, even in the
overdoped regime. This increase of o might be attributed
to an increase of r with doping, because some kinds of
scattering mechanism, such as spin fluctuations, may be
suppressed by the carrier doping. This doping depen-
dence of ~ does not contradict the constant-~ approxima-
tion in the S calculation, because the latter is assumed for
energy dependence at a fixed doping level. In any case, a
greater problem in the above scenario is the fact that the
@SR results show a rather rapid decrease of n, /m ' with

overdoing, roughly scaling T, . Further explanation is
necessary to attain complete understanding of this rapid
decrease of n, /m ' - ( n /m '

)D in the overdoped regiine.
The unusual anisotropy in the effective mass may cause

significant anisotropy in the scattering process. In that
case, we should adopt Anderson's proposal ' to distin-
guish two different relaxation times, the transport relaxa-
tion time ~„and the Hall relaxation time ~&, which
represent, respectively, the relaxation time parallel and
perpendicular to the electron velocity. Here they are as-
sumed to be independent of k, as in the above discussion.
In this case, r(k) in Eq. (4) is written as r„,while r(k) in

Eq. (5) as r„r~ Thus the R&. expression of Eq. (7) is

multiplied by a factor of (rzlr„}.The inverse Hall mo-

bility is then expressed as

r~'(lie) Jv(k)dA

f [v(k)'/r(k)]dA

Hence we obtain the relations p- ~,„'and p&' -v.& ', just

as Anderson did. In this case, the temperature depen-
dence of R~ observed in the experiments can be ex-
plained as a simple result of the factor (rz lr„),if r& and
~„have different temperature dependences. Considering
the experimental results, this means that ~z' is always
—T, while vt,

' varies from sublinear to superlinear T
dependence with carrier doping. In the Anderson model,
~~' —T can be explained in terms of the spinon-spinon
scattering, but ~,, ' is required to always be T linear due
to the holon-spinon scattering. In our Fermi-liquid-like
band model, however, the scattering mechanism for both
directions should be the same, such as the electron-
electron scattering. Thus the temperature dependences
of both scattering rates should have the same form, like
—T . However, the unusual anisotropy in the effective
mass might result in somewhat different scattering mech-
anisms for both directions, although at present we cannot
specify them. Moreover, some possible deviations from
the canonical Fermi-liquid model, such as spin fluctua-
tions or weak localization effects, might vary the T
dependence of ~t, '. Further studies on the scattering
mechanism will obviously be significant in this regard.

The present tight-binding model does not explain the
anomalous T dependence of S observed in the experi-
ments. The S(T) curve generally tends to deviate down-
wards from the T-linear relation of the simple Fermi
liquid. In the underdoped region, S(T) increases linearly
with T, but tends to saturate at higher temperature. In
the overdoped region, S (T) first increases with r, but im-

mediately decreases at higher temperature, changing its
sign to negative. Such S(T) behavior is commonly ob-
served in most high-T, cuprates. However, in spite of
such peculiar T dependence of S ( T), the important
finding is that the magnitude of S at a given temperature
generally decreases with carrier doping. ' ' This im-

plies that the doping dependence of S is governed by a
different mechanism from that for the temperature
dependence of S. The present model well explains the
general trend in the doping dependence of S. The unusu-

al T dependence of S might be related to some deviations
from the canonical Fermi liquid, which do not change
the framework of the present band model, but add some
special scattering mechanisms to it. In any case, at
present it remains impossible to give a consistent explana-
tion for all the T dependences of the transport properties,
including p, R&, and S.

In this regard, it seems very important to consider the
crystal chemistry of the high-T, cuprates. Their crystal
structure generally consists of two physically different
parts: the metallic Cu02 plane and the ionic charge
reservoir (CR) layer. The carriers are at first chemically
doped in the CR layer by cation substitution or oxygen
nonstoichiometry. Then they are transferred to the Cu02
plane, becoming itinerant carriers. If the energy level of
the carriers in the CR layer is much higher than that in
the Cu02 plane, all doped carriers will be transferred to
the CuQz plane. However, if the energy levels are close,
all carriers might not be transferred to the Cu02 plane,
but some of them might remain in the CR layer as local-
ized carriers. A good example is YBa2Cu307, where
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about half of the hole carriers are believed to remain in
the CuO chain layer. The Bi-0 or Tl-0 layers in the Bi
or Tl compounds also have energy levels close to that of
the Cu02 plane. ' Moreover, the carriers in the ionic CR
layer might be trapped by various local defects or even
self-trapped as small polarons. Even in I.a2 „Sr„Cu04,
where the energy level of the La layer is much higher
than that of the Cu02 plane, some of the doped hole car-
riers might be trapped by the local distortion due to the
La +/Sr + random potential. Thus the high-T, cuprates
should be considered to be "superlattices" consisting of
both metallic (itinerant) and ionic (localized) layers, rath-
er than a physically uniform material. In that case, the
trapped carriers in the CR layer might be excited to the
CuOz plane by a change in, for example, pressure or tem-
perature. Actually, the Hall coeicient of T12Ba2Cu06 is
considerably reduced by about 10%/GPa under pres-
sure, 2s which is attributed to the charge transfer from the
Tl-0 layer to the Cu02 plane. Such a large pressure effect
of the carrier concentration is never expected for a simple
Fermi-liquid-like metal. The Cu02 plane is not just a
simple metal, but a metal existing between the ionic CR
layers. Therefore the carrier concentration of the Cu02
plane could vary with temperature, even if its electronic
structure is like a simple Fermi liquid's. Thus the T
dependences of the transport properties of the Cu02
plane would deviate from those of the simple Fermi
liquid. The possibility of such T-dependent carrier con-
centration in high-T, cuprates has also been discussed by
several researchers. If the hole-carrier concentration of
the Cu02 plane is assumed to increase with temperature,
as indicated by the RH data, the unusual S(T) behavior
can be qualitatively explained. The present calculation
shows that the magnitude of Sdecreases with hole-carrier
doping, from positive to negative, as shown in Fig. 4.
Therefore, if the hole-carrier concentration increases
with T, the S ( T) curve will deviate downwards from sim-
ple T-linear behavior at high temperature. In the over-
doped regime, S(T) will change sign from positive to
negative as T increases.

Finally, it is very interesting to consider the Coulomb
interaction between such electrons having the effective-
mass anomaly. Since these electrons have complete dual-
ity, electronlike in one direction but holelike in another,

the Coulomb interaction between them might not neces-
sarily be repulsive. Apparently, this duality of the elec-
tron is related to the specific crystal structure of the
Cu02 plane as well as the two dimensionality. However,
it is noted that the concept of the effective mass is gen-
erally derived from the conventional interaction between
the electron and periodic lattice potential. Therefore it
may be important to review the nature of the interaction
between the electron and periodicity itself.

In conclusion, the doping dependences of both RH and
S of high-T, cuprates are successfully explained in terms
of a tight-binding band model of the CuOz square lattice.
The essential point is that the band is less than half-6lled,
but the Fermi surface is still holelike. This brings about
an usual electron state in which the Hall mass parallel to
the Fermi surface is holelike but the transport mass per-
pendicular to it is electronlike. This electronlike trans-
port mass contributes to the negative thermopower, while
the holelike Hall mass results in a positive Hall
coeScient. In such a state, neither a simple hole picture
nor a simple electron picture is applicable, although RH
fits the former. The electron on the Fermi surface has a
completely two-faced character: It is holelike in one
direction, but electronlike in another. In the overdoped
regime, where RH &0 and S &0, hole doping increases
the carrier concentration defined as ~ RH ', but it de-
creases the carrier concentration defined as (n /m ')D in
Drude's formula. This qualitatively explains the recent
pSR results that the superconducting carrier concentra-
tion n, Im '-(n Im ')D decreases with hole doping in the
overdoped regime. Such an unusual, complicated elec-
tron state apparently originates in the peculiar band
structure of the CuOi plane. Thus the sign change of S
upon doping observed in experiments is strong evidence
for the validity of the band picture. It is noted that high-
T, superconductivity appears in the region with such an
effective-mass anomaly. This unusual effective-mass state
formed in the CuOz band at around half-filling might
play a role in the high-T, superconductivity mechanism.
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