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A second-quantization description is given for Andreev reflection. We introduce an effective interac-
tion Hamiltonian for the interface between the superconductor and. the normal metal, which enables us

to treat transmission and reflection consistently. The interaction Hamiltonian couples quasiparticles in

the normal region (N) and Bogoliubov quasiparticles in the superconducting region (S). It facilitates the
description of the elementary excitations of the S¹oupled system, that are generated by Andreev
reflections. Moreover, it naturally brings us to the description where the effect of macroscopic quantum
fluctuations of the superconducting state on Andreev reflections is considered. This provides a powerful
tool for investigating of the mesoscopic aspects of Andreev reflection.

I. INTRODUCTION

In superconductor —normal-metal (SN) coupled sys-
tems, Andreev reflection, ' which occurs at the SN inter-
face, plays the most important role in determining the
electronic properties of the system. Analyses of this
effect, however, have been done in the wave equation
description, by using the Bogoliubov-de Gennes
equation and by ignoring the effect of quantum fluc-
tuations of the macroscopic phase of the superconducting
state on the quasiparticles. In such a treatment, Andreev
reflection is seen as a result of a boundary condition for
the waves across the SN interface.

The most interesting aspect of Andreev reflection is the
interaction between the microscopic quasiparticles and
the macroscopic phase of the superconducting state. For
example, Kummel analyzed the effect of Andreev
reflection on the superconducting state and derived the
phase-shift of the superconducting order parameter in-
duced by Andreev reflected quasiparticles (see also Refs.
3 and 4).

Ignoring the quantum fluctuation of the macroscopic
phase in the solutions of their wave equations was very
reasonable because usually the superconducting region is
big enough to ignore. However, the quantum fluctuation
has become more important in light of mesoscopic phys-
ics. Wave equation approaches, which ignore the fluctua-
tion, are becoming inadequate for analyzing some
quantum-mechanical phenomena at the SN interface,
e.g., the effect of a very small superconducting electrode
or the effect of dissipation in our recently proposed quasi-
particle interferometer.

In this paper, we formulate Andreev reflection in a
second quantization manner. This enables us to treat the
phase shift caused by Andreev reflection as an operator
that presents quantum fluctuations of the superconduct-
ing state. It also shows clearly that Andreev reflection is
the manifestation of the virtual transfer of quasiparticles
through the interface. The paper is organized into sec-
tions. Section II shows our "wave-bundle approxima-
tion" used to treat the electron transfer through a barrier

as a linear coupler. In Sec. III, we briefly explain macro-
scopic quantum fluctuations in superconducting states
and define operators that express the fluctuations. Sec-
tion IV is the heart of our paper, where we formulate An-
dreev reflection in a second quantization manner both for
the excitation energy above the superconducting gap and
for that within the gap. The results of this formulation
are discussed in Sec. V. Section VI is the conclusion and
offers some future perspectives for our results.

II.BARRIER AS A LINEAR COUPLER

For simplicity, we limit our analysis to a one-
dimensional, i.e., single-mode, case. Our theory can easi-

ly be expanded to higher dimensionality. In conventional
transfer-Hamiltonian treatment of the tunneling barrier
problem, the whole Hamiltonian is given by

&=&L +&a +&r,

where %z,&„arethe unperturbed left and right elec-
trode Hamiltonians, and %r is

(a„kaL,g +H. c. ) .
k, q

and

ekck~ck~, JV& = g E&d«d«,
k q~=t, l o.= f, l

(3)

Since the unperturbed states, created by aLk and azq are
localized in the left and right electrodes, neither state has
momentum. Therefore, the eigenstates of %, obtained as
the superposition of the unperturbed states relative to the
transfer Hamiltonian, do not propagate either. This
means that conventional treatment cannot provide a con-
sistent description of both transmission and reflection.

Here, we propose a Hamiltonian to treat the barrier
problem, %=&L +%~ +%;„„with
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t(ck dq +H. c. )
k, qo= T, L

+ g r(c k ck +H. c. )
k)0

~=T, l

+ g r(d d +H. c. ) .
q)0

O=T, l

(4)

-qo

FIG. 2. Coupling between four wave-bundle states across the

tunneling barrier.

As shown in Fig. 1, the operators ck and d create trav-
eling waves with excitation energies sk =iil k /2m —

pL
and s =i' q /2m —pz and spin cr, where m is the
electron's effective mass, and pL and pz are the chemical
potentials in the left and right electrodes. As pointed out
by Bardeen, the eigenstates of &L and &„arenot exact-
ly orthogonal. However, we ignore this fact because it is
not important in the following discussion.

Because the electrode states on both sides extend semi-
infinitely, the energy levels are continuous. This makes
analysis difficult. Suppose a wave bundle, having an exci-
tation energy around c.k and energy width b,c, comes
from the left-hand side. We identify the operator annihi-
lating this wave bundle as Ck, and similarly the opera-
tors C k 0 Dq, and D

q
. This situation is illustrated

in Fig. 2. In addition, we take the summation only for
k =q in the first term of Eq. (4) when considering the
coupling between these wave bundles. This invokes no
serious error. The interaction energies between the wave
bundles are

t p
=hsN (0)ta, r p

=b eN (0)ra,

where N(0) is the density of states per unit length of the
electrode and a is the length of the electrodes. Having
this length value is significant because, when only a bar-
rier is given, we cannot determine the absolute value of
the coupling energy t or r. For example, consider a bar-
rier sandwiched by two quantum wells each with the
length a. We can estimate the coupling energy t by calcu-
lating the energy splitting between the bonding and anti-
bonding states. The resulting t value is inversely propor-
tional to a. Namely, the determination of the coupling
energy requires information about not only the barrier
but also the states on both sides of it. A barrier itself al-

ways gives the value of ta. Although the physical mean-

ing of the length a is unclear in cases where the states on
both sides extend semi-infinitely, it is natural to think
that ta and ra are physical entities rather than t and r.

The Heisenberg equation of motion for the operators,
D —q, is given by

Ck (~)

C „(q)
Dqq(q')

q
(q)

0

ro

ro to 0

0 0 to

0 0 ro

to ro 0

Ck (q. )

C k (v)

D (~)

D (q)

(6)

Ck (0)= 1, C k (0)=Dq (0)=D (0)=0,
we get the time evolution of these operators as follows:

C„(q.) =cos(tpq-/iri)cos(rpq/iri),

C „(q.) =cos(tpq. /A)sin(rp'T/irt),

D (q. ) =sin(tpq. /fi)cos(rpq. /A),

D
q

(q ) =sin(tpq. /R)sin(rpq /irt) .

The interaction time ~;„,is estimated as

(8)

int

based on the uncertainty relation. The small argument
approximation for Eq. (8) gives the transmission probabil-

ity T and the reflection probability R as

T=(t p~,„,/A')'= q'rN(0)' a't',
R =(rpq;„,/A) =qr N(0) a r

The probability conservation law,

T+R =qr N(0) a (t +r )=1,

(10)

where the overdot means 8/Bq. Equation (6) expresses of
the barrier as a linear coupler.

By solving this equation under the initial condition

R
d

must be satisfied. These results consistently fall directly
between ordinary time-dependent perturbation treatment
and Landauer's formula. In the following sections, we

will use this wave-bundle approximation.

III. PSEUDO-SPIN REPRESENTATION
OF SUPERCONDUCTING STATES

AND MACROSCOPIC QUANTUM FLUCTUATIONS

FIG. 1. Representation of the barrier problem. Forward and

backward waves are considered in order to consistently treat
transmission and reflection.

When the right-side electrode is superconducting, the
Hamiltonian of the electrode becomes the so-called re-
duced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian:
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a= f, $

sqdq d —,'V—

ee p
o,o'= f, $

dq+n~ q' p—~' q'o' q~ '

(12)

S,~m &=m~m &,

Im & =&(J+m)(J+m+1)1m+I &,

(20a)

(20b)

One of the most convenient ways to treat superconduct-
ing states is using pseudospin representation, which also
enables us to consider macroscopic quantum fluctuations
of superconducting states.

A. Pseudospin for superconducting states

Anderson introduced the pseudo-spin treatment of the
superconducting ground state of the BCS-reduced Hamil-
tonian. ' Consider pseudospins given by

sk, =
—,'(1—dkdk —d kd k ),

S*lm &=Jim+I & . (21)

Now we have S+S =S+S =J; therefore, we can
define operators

St= —S+=exp[ i/—],J (22a)

are obtained. In the case of a superconducting state be-
cause m ((J even at absolute zero temperature, Eq. (20b)
becomes

sk =dkd k, sk =d kdk,+ (13) S =—S =exp[i/] .1

J (22b)

[Sk ~Sk ]=2$kg 5kk
+

[Skz~sk' ] +Sk 5kk

Is„+,sk ] =1 .

(14a)

(14b)

(14c)

Using these operators, macroscopic operators for a super-
conducting state are obtained by

where, dk (dk ) is the creation (annihilation) operator of a
single electron in the state k. k includes the electron spin
indices that k has up spin and —k has down spin. This
follows the commutation relations

It should be noted that the phase P is an operator, not a c
number. S~ adds exactly one Cooper pair to the super-
conducting electrode, and S annihilates one without caus-
ing any change in the quasiparticle occupancies.

B. BCS ground states

As described above, the BCS Hamiltonian determines
the mean value of S, and P, except for the arbitrariness of
the origin of the phase P. In the so-called BCS ground
state

S =g sk, S+=g sk, S,= —g sk
k k k

(15) @0 ilk(uk +vke'~dkd' k )10 & (23)

[s„s*]=~s*,
[S+,S ]=2S, .

(16a)

(16b)

These operators satisfy the angular-momentum cornmu-
tation relations:"

uk, vk, and p are merely the mean values. From the
quantum-mechanical viewpoint in the preceding section,
they are operators that have quantum fiuctuations. In
fact, uk and vk can be represented by a pseudospin opera-
tor such as

The square of the total angular-momentum operator

s' =-'(s+s-+s-s+)+s' (17)

uk =COS~Hk

vk =sin —,
'

Hk

(24a)

(24b)

has the eigenvalue J(J+1). Angular momentum, i.e., a
superconducting state, is characterized by this J and the
eigenvalue m of S„where

—J&m &J .

where

COS8k Ski (24c)

The total angular momentum J corresponds to the num-
ber of the states that Cooper pairs can occupy; therefore,

J=N(0)akcoD, (19)

where co& is the Debye frequency. This value J can be re-
garded as a constant in the following discussion. The
value m means the number of the condensed Cooper
pairs, whose "mean" value is determined by the (reduced)
BCS Hamiltonian, that is, by the parameters, the electron
energy sk of the state k, and the attractive interaction
V. ' By introducing the eigenstates

~
m & of S„relations

Without the restriction by the BCS Hamiltonian, state
Eq. (23) can cover from the phase-definite state to the
number-definite state.

The so-called BCS state is the state where uk, vk, and p
are regarded as c numbers having the mean values given
by the Harniltonian. It should be noted that the BCS
state is not the phase-definite state.

These kinds of discussions on the macroscopic
quantum-mechanical aspects cannot be carried out by
conventional wave equation treatments using the
Bogoliubov-de Gennes equations because they regard
the above operators as c numbers in the light of the
mean-field approximation.



3142 HAYATO NAKANO AND HIDEAKI TAKAYANAGI 50

C. Phase-number uncertainty

(25)

where

2(J+1) (26)

and A is a normalization constant and n is an integer.
Because J»1, P is effectively a continuous number.
From Eq. (25), we obtain

S~P) =exp[i/]~P) . (27)

Therefore we can express the operator S as

(28}

Let us make a real "phase-definite state" and a
"number-definite state. " The number-definite state is the
eigenstate of S„that is, ~m ). Under the approximation
J»1, a phase-definite state ~P ) is given in terms of

~
m )

RS

1y be written down. Electronlike Bogoliubov quasiparti-
cles are given by

—Qkdk't Vkd k $S

kg
—Qkdk)+Vkd ktSt

(32a)

(32b)

where vk, vt„and S are the operators defined by Eqs.
(24a), (24b), and (22b). ' They are operators which act in
the Cooper-pair subspace. Therefore, the elementary ex-
citations has not only microscopic operators but also
macroscopic operators, and change the quasiparticle
state and the superconducting state at the same time.

Because uk+vk =1 is always satisfied, the excitation
Eqs. (32a) and (32b) annihilate the exact charge e. There-
fore, they are gauge invariant.

Similarly to the mean-field approximation, Hz can be
diagonalized with these operators of Bogoliubov-
quasiparticles, but not those of pure electrons or holes.
In order to satisfy the charge conservation requirement,
we distinguished between an electronlike Bogoliubov
quasiparticle and a holelike Bogoliubov quasiparticle.
This leads to

Contrarily, the number-definite state is expressed in
terms of the phase-definite states

~ P ) as

~
rn ) = —f exp [ i Pm

—] ~ P )d P .
&2m

(29)

To reproduce the commutation rule expressed by Eq.
(16a), we require that

(33)

where Wo is a constant energy shift.
Here we discuss quantum fluctuations of uk and vk for

the BCS state. For the BCS state, Hk in Eqs. (24a) and
(24b) is given by'

(30)
sin8k =

gh +sk
(34a)

This gives an uncertain relation between the phase P and
the Cooper-pair number N, resulting

cos8k =
Qb, +sk

(34b)

5$5N& —,
' . (31)

D. Elementary excitations of quasiyarticles

From the preceding preparations, the quasiparticle ex-
citations from the superconducting ground state can easi-

For the BCS states at the absolute-zero temperature, 5N
is on the order of QN(0)ab, on, where b,o is the mean
value of the superconducting order parameter. In the
case of a small metal particle (1-pm radius), 5N-10.
This value is large enough to ignore the quantum fluctua-
tion of the phase. However, near the superconducting
critical temperature, 5N becomes so small that the phase
fluctuations cannot be neglected. Suppose another case,
where superconductivity is induced in a degenerated
semiconductor island by the proximity effect. In this
case, 5X—10 and the phase fluctuations become
significant. Moreover, in the case of a
superconductor —normal metal —coupled system, because
the small capacitance at the interface strongly suppresses
the charge transfer through the interface, i.e., the Quctua-
tions of the number, the phase fluctuation is emphasized.

where 6 is the superconducting order parameter. There-
fore, quantum fluctuations of uk and vk come from the
quantum fiuctuation M, of b. From Eqs. (34a} and (34b)
the quantum fluctuations of uk and vk are on the order of

ck55
(si, «bo),

+2
(35a)

(35b)

(E„»b,,), (35c)

where 60 is the BCS mean value of b, . Equations (35a),
(35b), and (35c) show that in the cases of ek «b, o and

ck &&40, the quantum fluctuations are negligible, and the
fluctuation has its maximum value when c,k -50. In the
pseudospin treatment, because the superconducting order
parameter 5 is given by
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5=—,
' Vg sin8k,

k'

we obtain

(36) Eq. (39) becomes

VgN (0)a /iricoD sinh
VNOa

(40)

54- VN(0)alcoD5$ .

D

sinh(1/VN(0)a) ' (38)

As the result,

1—VN(0}a sinh 5$ .
VNOa

From Eq. (31), 5$ is on the order of I/QN(0)ah~, so

On the other hand, the mean-field theory gives the mean
value 50 as

This shows the natural fact that when VN(0)a gets small,
the quantum fluctuation of the superconductivity be-
comes large and the superconductivity breaks. However,
when VN(0}a becomes large, fluctuations of uk, vk be-
come negligible more rapidly than those of the macro-
scopic phase P.

Therefore, we hereafter regard uk, Uk as t." numbers, and

S,S as operators.

IV. SECOND QUANTIZATION FORMULATION
OF ANDREEV REFLECTION

Bogoliubov transformation of Eqs. (32a) and (32b)
transforms the interaction Hamiltonian into

%;„,=t g (a,c„y,+H. c.)+t g(v,'S c „iy,t+H. c. ) t g—(v,'S c key, i+H. c. )
k, q k, q k, q

cr='t, l

+r g (ct k ck +H. c )+r g. (lu l

—lv l )(y y +H. c. )+2r g(u v SyttyIi+H. c. ) .
k&0 q&0 q0=7, l 0=t, l

(41)

A. Above the superconducting gap

In order to apply our wave-bundle approximation to the superconducting electrode, we must introduce the operator

(42)

For Ev » lhl, I s
——y . However, generally it is given that II &i i, I zz 2I =5 i z5 i zN, (E )/N(0), where

N, (Ep)=N(0)/(up2-vp). Therefore, rq. is not a real Fermion operator but a pseudo-Fenian one. In terms of these
operators, %;„,is expressed as

gf;„,=t g (u C„I +H. c.)+t g (v*S C „iIt+H. c. ) t g (v'S C „—tl i+H. c. )
k=q k=q k=q

+ra g (C k Ck +H c )+ra g. .(Iuzl —
lv~l )(I

&
I'& +H.c. )+2ro g(uzv&SI ~tl &i+H.c. ),

k&0 q&0 qo=f, l o=t, l

(43)

where gk &
represents the summation of the states in which ek =Eq. Consequently, the Heisenberg equation of

motion for a set of operators, Ckt, C kt, Cki, C ki, I ~t, l ~t, I i, I ~&, is [see Eq. (44))
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under the approximation that E, s, and
~
5

~
are negligi-

ble compared to pz
The elementary excited states are obtained by solving

Eq. (44) as an eigenvalue equation. Here we will show
some important elementary excited states. First, let us
consider a case of perfect transmission (i.e., there is no
normal reflection at the interface). When r =0, we can
choose a smaller set of the linearly independent opera-
tors, Ck&, C k& I qt I

q&
The operators for elementary

excitations are given by

ak, += (u Ckt+u SC kiter„),q
(45)

+-

4 4
lak2~=,—(Uq S Ckt uq C k)+7 i)q (46)

O O ~o
V+4

I

O z P Oo

Q Q 4 ~ Q
O

O

Oo

O
L.
O

o
L.

I

I

O Q

o
I

O O
o

IO ~ +~ O

o
L

where F =1+[Re(+u —v )]2. Therefore, F =2 when

sk » ~b, ~. ak& corresponds to the processes in which an
electron comes in, a hole is Andreev reflected, and the
hole goes out. ak2 corresponds to those in which a hole
comes in and an electron goes out.

As described above, since the operator S is nearly a c-
number e'~ for the negligible phase fluctuation of the su-
perconductor, Eqs. (45) and (46) reproduce the
phenomenon in which an Andreev-reflected particle is
phase-shifted by the macroscopic phase of the supercon-
ductor P. If the superconductor is not in a phase-definite
state, S causes the side effect of Andreev reflection on the
superconductor and changes from a c number into a q
number.

When normal reflection occurs at the barrier, the expli-
cit expressions of the solutions for elementary excited
states are a little complicated. Here, we restrict ourselves
to commenting on the important characters of the ob-
tained elementary excited states. The quantum-
mechanical character is the same as in the previous nor-
mal reflection-free. case. Every excitation consists of the
linear combination of the eight operators in Eq. (21).
When the probabilities for transmission and reflection are
calculated as described in Sec. II, they are the same as
those obtained by conventional calculations.

o
O O O g O O

I o Veah

I
B. Within the superconducting gap

O 0 Q O o
o

o

'4 .r ~ I

~4

o
O O O O o o O

I

When the excitation energy ck is smaller than the su-

perconducting gap energy ~
6 ~, the density of states in the

superconductor vanishes. This is quite important for An-
dreev reflection because an incident quasiparticle (elec-
tron or hole) must be either normally reflected or An-
dreev rejected at the interface and is never transferred
into the superconducting region. If one extrapolates the
above formulation to include the region in which Eq is
within the superconducting gap (Eq ( ~b,

~ ), q becomes a
complex number. Formally, I creates an evanescent
wave that exponentially decays into the superconductor.
This appears in the conventional approach. In the
second-quantization description, however, evanescent
waves are not physical entities. Therefore, the wave-
bundle approximation is no longer applicable to the su-
perconducting electrode.
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Here, we show a difFerent approach appropriate in the
situation. In the superconducting gap, all Bogoliubov-
quasiparticle excitations in the superconductor are virtu-
al. These virtual Bogoliubov-quasiparticle excitations are
the true character of the evanescent Bogoliubov-
quasiparticles that appear in the wave equation approach.
As shown in Fig. 3, there are two types of processes for
taking these virtual excitations into account as intermedi-
ate states. One is the process by which an electronlike
Bogoliubov quasiparticle is excited and then annihilated.
In the other, an electron like Bogoliubov quasiparticle is

ff'=&L +%„,. (47)

Here

excited, but a holelike Bogoliubov quasiparticle is annihi-
lated. In the latter case, one Cooper pair is created in the
superconducting electrode.

We can renormalize these virtual excitations by unitary
transformation. The unitarily transformed whole Hamil-
tonian is given by

X X
1 1

E &6k)k2 ty q k,
+ E (~"q~ ~vq~ }(ck ck p+c —k nc k-1

Eq
—

&k,

+ t' g— g ttqvq
E &5 k, ,k2&0 q

q

+ [S (ck tc k ~
+c k hack t)+H. c. ]

1

E —ck

+ g r(ct k ck +H. c. ) .
k&0

O=t, l

(48)

The first term in Eq. (48) represents the self-energy correction to the electron energies in the normal region. It results in
a change in the electron density of states at the edge of the superconducting gap. Nevertheless, we ignore the infiuence
of this term because it is not significant in light of our wave-bundle approximation. The second term in the equation
represents Andreev reflection itself.

Applying the wave-bundle approximation in ways similar to the above analysis, we get the interaction Hamiltonian
for wave bundles in the normal region:

%I„,= —
—,'tf QXCk~Ck~+t( g Y[S (CktC kg+C tkC gk)+H. c. ]+rp g (C k~Ck~+H c ), . .

ko k&0 k&0
(49)

where

and

N(0)X= N, (E )dE = — 1n(b, —ek)+const.E —c ' ' q 2
q k

(50)

uq vq' hN (0)Y N (Eq)dEq arccos

1/2
k

2h
(51)

and

t, =[6 Ns( 0a}]'~ t . (52)

Ckt(q)

Guinea and Schon gave a Hamiltonian similar to Eq. (49) by phenomenological intuition. ' We derived the Hamiltoni-
an microscopically and determined the dependences of the coemcients on the energy.

We can get the elementary excitations by solving the eigenstates for the Heisenberg equation of motion for a set of
operators, obtained from Eq. (49}:

Ckt(r) 0 r0 —t) FS 0

C I )(r)
iA

C kt(q)

Ckg(q')

Tp

—S,2YSf

—t, 2rSt rp

—t, 2 YS

P0

C kt(~)

C kt(r)

Ckg(q')

(53)

For example,
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Normal metal Superconductor

electron

electronlike
Bogoliubov-quasiparticle

annihilation of
electronlike

& Bogoliubov-
quasiprti'cle

annihilation of
holelike
Bogoliubov-
quasiparticle

electron
0

hole
Coo mr pair

Renormalization in diagonal y+ndreev reflectio

FIG. 3. Two renormalizing processes of Bogoliubov-
quasiparticle virtual excitation. One gives the renormalization
for the one-body electron energies. The other gives the Andreev
reflection.

l r
P = — C — C~ 4Y2+ 2

Y

'ter Y +r
1 r

~k2 ~ C —kt ~ 4 Cktv'2 ~'t4Y2+r2

+ SCkt
t Y+r

~k3 kt 4 2 p ki
r

2 t Y+r

+ 5 C
t'Y

r4Y2+ r2

(54)

Pk4= C —k&+ Ckt
r

2 Y'+r'
2

+ ' Y S&C„
4Yr'+r'

The first one corresponds exactly to the process in which
an electron comes in, is normally reflected, and Andreev
reflected.

V. DISCUSSION

A. Comparison with the conventional approaches

If we compare the results of this unitary transforma-
tion to those from the extrapolation of the expression for

waves above the gap, we can clarify the relationship be-
tween the conventional wave equation approach and our
approach. The amplitudes are the same. The phase shift
by the macroscopic phase is completely the same when
the superconductor is in the phase-definite state. Howev-
er, a phase shift like the GoosHanchen shift, which ap-
pears in the extrapolation, does not exist in the unitary
transformation approach. The role of the operator S is
the same as in the case above the superconducting gap.

Because the so-called BCS state is not the phase
definite state, S always has quantum fluctuations. In
cases as discussed in Sec. III, it is not negligible. Al-
though, of course, the phase shift itself by Andreev
reflection is not an observable quantity, it becomes ob-
servable, for example, in the geometry of our proposed in-
terferometer and in the superconductor-normal-
metal —superconductor (SNS) Josephson junction. In the
case of our interferometer, the quantum fluctuation of the
phase appears as quantum noise in the current through
the wave guide. In the proceeding subsection we discuss
more concretely the effect in an SNS junction.

The conventional approach shows the imperfection of
the time-reversal characteristic of Andreev reflection,
that is, the wave numbers of the incident electron and the
Andreev reflected hole are not exactly inverse to each
other when the excitation energy c.k is finite. In our ap-
proach, however, the time-reversal characteristic is al-

ways perfect. This is a fault in our formulation due to the
fact that the operator S does not express the momentum
of the Cooper pair. The most important advantage of the
unitary-transformation approach is the fact that it clearly
shows that Andreev reflection is the manifestation of the
virtual transfer of quasiparticles through the interface
and that the virtual excitations of Bogoliubov quasiparti-
cles are the true image of evanescent Bogoliubov quasi-
particles. It enables us to treat both the macroscopic and
microscopic degrees of freedom at the same time.

In this paper, we consider only the transfer of quasi-
particles and ignore the transfer of Cooper pairs in get-
ting the Andreev reflection. If the virtual transfer of
Cooper pairs is taken into account, it induces the super-
conducting proximity elect." Namely, Andreev
reflection and the proximity effect are different aspects of
the same physical phenomenon. In reality, both occur at
the same time at the SN interface. If you concentrate on
the quasiparticles, you see the Andreev reflection at the
interface. Contrarily, if you pay attention to the super-
conducting order parameters, you see the proximity
effect. An analysis of the proximity effect, considering
the virtual transfer of Cooper pairs will appear else-
where. ' A new scheme for analyzing the superconduct-
ing proximity effect will be given there.

B. One application example
of the formulation: Josephson current

One formulation application is presented with the
Josephson current in a superconductor —normal-
metal —superconductor (SNS) coupled system. A more
detailed analysis including the effects of finite tempera-
tures will be published elsewhere. '
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An easy analysis can be done with a Hamiltonian after
the wave-bundle approximation, i.e., Eq. (49). However,
our present formulation limits the applicable case in
which L (gN, where L is the length of the normal region
and gN is the superconducting coherence length in the
normal region.

In the case of a symmetrical SNS system, the Hamil-
tonian for the normal region is given by

go

g gol(kL)

go

g 2rycos(kL)

go,:6~

where

~0+~Lint+~Rint ' (55) FIG. 4. Dyson's equations for Green functions in the normal
region from the Hamiltonian Eq. (33), where gn

= 1/(ie„—ek ).

0
—g ek Ck~Ckcr

k

+ro g (e '" C k Ck +H. c. )
k&0

~=1', l iPL S iPR (64)

Note that gk in Eq. (59) means the summation of the
wave-bundle states.

We rewrite the operators SL,Sz as

+r0 g (e+'" C k~Ck +H. c.),
k&0

(56) In the presence of the time-reversal symmetry, Eq. (59)
reduces to

&Lnt=t, g Y[SL(CktC kl+C ktCkl)+H. c.], (57)
k&0

(j,);„,=j0(T,ti, ro, L)sin(pL ttttt ),— (65)

&j,);„,= '
2 g g ~b, (ek)~ [K( k;E„)SLSg

e„&0 k

K(k;e„}SiiS—L ],
(59)

where T is the temperature and e„=2m(n +1)ks T are
thermal frequencies, and

K(k;E„)=G, (k;e„)G,( —k; —e„)
—Gb(k; e„)Gb( —k; —e„) (60)

is the two-body Green function that expresses the propa-
gation of the Cooper pairs through the normal region.
Moreover,

bN(0)a ~—
&kh(s„)= t, arccos

QS' —s„'
1/2

(61)

G, (k;e„)and Gb(k;e„)are the Green functions in the
normal region derived from the Hamiltonian &0 of Eq.
(56},by solving the Dyson's equation in Fig. 4. They are
given by

l E'„Ek
G, (k;e„)=(iE„—ek ) —4rocos kL

(62)

Sf';nt=ti g Y[Sz(CktC kt+C ktCki)+H. c. ] . (58)
k&0

In order to derive the Josephson current, we follow the
method by Kresin. ' The Josephson current density
(j,);„„bytaking the average of the microscopic de-

grees of freedom, is given by

0. 5&-
-2josin2$ sin (66)

where jo(T, t„r0,L) is the c-number coefficient that in-
cludes the effects of the transfers and the normal
reflections across the superconductor-normal-metal in-
terfaces and the length of the normal region. Note that
in our formulation, pL and pz are not c numbers, but are
operators because SI and Sz are q numbers. here, the
phase-current relation is sinusoidal because we took only
the lowest-order contribution of Cooper-pair transfers
through the interfaces. This is justified in the case where
normal reflections at the interfaces are intense.

There are two quantum-mechanical degrees of freedom
in Eq. (65): p =pL pz and p+—=pL+ptt. p is the
canonical conjugate quantity for the difference of the par-
ticle number between the left and the right superconduct-
ing electrodes, and P+ is that for the particle number in
the normal region. Both P and P+ are quantum
mechanical quantities in a small SNS junction. If the
quantum fluctuations of these degrees of freedom are ig-
nored, Eq. (65) is a classical Josephson current. Here,
however, the quantum fluctuations of (t are closely re-
lated to phenomena such as macroscopic quantum tun-
neling and macroscopic quantum coherence. On the oth-
er hand, the quantum fluctuations of P+ work as a dissi-
pation for the phenomena.

An effect of the fluctuation, which is easy to under-
stand, is the quantum noise in the Josephson current.
From Eq. (65), the quantum fluctuation 5j, of the current
is given by

(5j,)'.„,=j0[(sin'p ) —(sing )']

2rocoskl.
Gk(k;e„)= (te„—Ek) —4rocos kL

(63)

where P is the mean value of P and 5$ is its fluctua-
tion. This is a kind of quantum shot noise that comes
from the particle aspect of Cooper pairs.
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VI. CONCLUSION

We formulated the Andreev reflection in a second
quantization manner. In this formulation, the Andreev
reflection is explained in terms of the elementary excita-
tion of a superconductor —normal-metal (SN} -coupled
system. The description of the excitation includes opera-
tors for both the quasiparticles and the superconducting
state. Operators for the superconducting state enables us
to consider the effect of macroscopic fluctuations on An-
dreev reflection. Therefore, this allows us to treat both
the microscopic and macroscopic quantum-mechanical
aspects of Andreev reflection. In our formulation, the
Andreev reflection involves operators that do not com-
mutate with the operators for the superconducting state,
thus affecting the equation of motion for a macroscopic
variable in a system with an SN interface. For example,

our formulation is needed to analyze the mesoscopically
quantum-mechanical aspects of the quasiparticle inter-
ferometer we recently proposed: a Josephson junction
with normal metallic branches. Thus, our formulation
has opened a door to the mesoscopic physics of Andreev
reflection.
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