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We investigate a class of resonating-valence-bond wave functions on the triangular lattice which
interpolate between the v 3x ~3Neel state and a dimer state according to the range of the bonds and
the similar two classes of resonating-valence-bond wave functions on the kagome lattice constructed
from the ~3 x ~3 and q = 0 Neel states. Numerical calculations show that a v 3 x v3 wave

function gives for the triangular lattice a variational energy and spin-spin correlations in very good
agreement with diagonalization results on 12- and 36-site systems. Rather low variational energies
are also obtained with trial functions of the v 3 x v 3 and q = 0 type for the kagome lattice but
spin-spin correlations beyond first neighbors are not in good agreement with diagonalization results
on 12- and 36-site systems. For the 12-site system, the spin-spin correlations of the best q = 0 wave
function most resemble those of the first excited state. The q = 0 and perhaps the v3 x ~3 wave

functions may describe excited states close to the ground state in the case of larger systems.

I. INTRODUCTION

The two dimensional spin 1/2 antiferromagnetic
Heisenberg model (AFHM) has generated much interest
in recent years. Its Hamiltonian reads

where the sum is over all nearest neighbor pairs. A vari-

ety of numerical techniques have demonstrated that the
ground state of the AFHM on the square lattice has Neel
long-range order (LRO) with a staggered magnetization
reduced by quantum fluctuations to about 60'%% of its clas-
sical value. The nature of the ground state, especially
the existence of LRO, for the AFHM on triangular and
kagome lattices, which are both systems with geometric
frustration, is still controversial.

The classical (S = oo) ground state on the triangular
lattice has LRO. It is a three-sublattice Neel state where
neighboring spins (labeled A, B, C in the following) are
oriented 120' relative to each other (v 3 x v 3 order) but
it was not clear if Neel order survives quantum fluctu-
ations which could be larger than in the square lattice
case. Quite some time ago, Anderson postulated that
the ground state of the triangular AFHM is a resonating-
valence-bond (RVB) state of short-range singlet bonds,
which is a disordered spin liquid. Large-n expansions pre-
dict a disordered ground state for suKciently small S.
Several numerical studies by means of exact diagonaliza-
tions on finite clusters or quantum Monte Carlo cal-
culations at finite temperature ' were interpreted in fa-
vor of this picture. However, spin-wave and Schwinger
boson mean 6eld calculations, an analysis of the low-

lying levels obtained from exact diagonalizations on fi-

nite clusters, and most recent high temperature series
expansion support the existence of Neel LRO. Contrary
to the finite size scaling analysis of the exact diagonal-

izations data, which leads to a sublattice magnetization
of about 50% of the classical value (in agreement with
spin-wave calculations), numerical series expansionsi4 is

suggest that antiferromagnetic order may be small. A
particular kind of RVB state, without magnetic LRO
but with chiral symmetry breaking was also proposed by
Kalmeyer and Laughlin as the ground state of the trian-
gular AFHM. Huse and Elser~ found variational states
displaying Neel LRO with a significantly lower energy
than the Kalmeyer and Laughlin state and no evidence
of chiral symmetry breaking has been obtained in exact
diagonalizations. i

Unlike the triangular lattice, the classical Heisenberg
model on the kagome lattice has an infinite number of
continuously degenerate ground states, continuous lo-
cal distortions of the spin configuration from a ground
state being possible keeping the energy constant, but
such a degeneracy may be lifted by thermal or quan-
tum fluctuations. The nature of the ground state of
the quantum model is highly speculative. The two
simplest Neel-like classical ground states are the three-
sublattice planar states q = 0 and v3 x ~3 displayed
in Fig. 1. It has been argued that quantum fluctua-
tions could select one of these planar states. Other
kinds of ground state have also been proposed: spin
nematic, 2 chiral spin liquid, or dimerized. ' For
the classical model, thermal fluctuations select all the
coplanar solutions while high temperature expansions
favor the v 3 x ~3 structure. 2s Large-n expansions based
on the group Sp(n) predict the ~3 x ~3 state at large S
(Ref. 4) (but a disordered ground state when S is small).
For half-odd integer S, this state may survive down to
a smaller value of S than that for integer spin. How-

ever, most recent work concludes to the absence of Neel
order. ' ' ' In particular, series expansion indicate
the magnetization of such a state should vanish and no
evidence of a Neel type of symmetry breaking has been
found in the low-lying states computed from exact diago-
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q=0

FIG. 1. The two classical planar Neel states (q = 0 and

~3 x ~3) on the kagome lattice.

nalizations on small clusters, which show that the spectra
of excited states of the kagome and triangular AFHM are
qualitatively different.

In this article, we do not address the question of the ex-
istence of LRO, but try to assess Rom variational Monte
Carlo calculations, whether states with the ~3 x v3
structure in the case of the triangular AFHM or states
with either the q = 0 and v 3 x ~3 structure in the
case of the kagome AFHM are viable candidates to de-
scribe the short-range correlations of the ground state
of these AFHM. For this purpose we consider RVB
wave functions36' 1 which interpolate between a three-
sublattices planar Neel state and a disordered state with
the same three-sublattices pattern according to the range
of the bonds taken as variational parameters and com-
pare the results obtained for systems of 12 and 36 sites
with those of exact diagonalizations.

This paper is organized as follows. Section I describes
the classes of trial wave functions and the Monte Carlo
method used. Section II presents the results for the tri-
angular lattice and Sec. III those for the kagome net.
Section IV summarizes our results and conclusions.

II. TRIAL WAVE FUNCTIONS

The RVB trial wave functions we study, are weighted
combinations of valence-bond states ~c):

lc) = (51 ~N/2+1)". (5N/6 ~2N/3)

(5N/6+1) k2N/3+1) ~ . (5N/3) k5N/6)

(2N/3+1~ k5N/6+1) ~ ~ ~ (2N/2~ kN)r

where N is the number of lattice sites, while i, jp,
and k~ label the A, 8, and C sites, respectively, and
(ij) =

~ t;$~ —$;gz) denote a singlet bond between the
two sites i and j. The singlet bonds connect sites on
different sublattices, one half of the A (i ) sites are con-
nected to B (jp) sites and the other half to C (k~) sites,
the B sites left being connected to the remaining C sites
(this requires N to be a multiple of 6). In (2) the sum is
over all valence-bond states obtained from distinct per-
mutations of the i, jp, and k~ among themselves. For
the triangular lattice, we consider the assignment of the
sites to the A, B, and C sublattices which leads to the
~3 x ~3 Neel state. For the kagome lattice, we focus on
the two assignments which give the q = 0 and 1/3 x v 3
Neel states. The weights of the ~c) states are given by
the product of the weights of each bond

~( ) ~(11 iN/2+1) /1( N/6 22N/3)

~(1N/6+1) 2N/3+1) ~( N/ )3k5N/6)

&(iN/3+1 k5N/6+1)" &(iN/2 kN)

where the weight of a bond connecting two sites is a pos-
itive function h(i,j) = h(r;~) of the vector r;~ = r; —r~
joining the sites, having the symmetries of the lattice. As
shown by Ma, 1 the wave function ~Q) describes a three-
sublattice Neel state projected into the singlet subspace
when h(i, j) is a constant independent of the relative po-
sition of sites i and j. In the other limit where h(i, j)
is only nonzero between nearest neighbor sites, ~g) rep-
resents a disordered dimer state. As the energy is most
sensitive to the short-range behavior of h, the weights
h(r) of bonds between sites at separation r ( ~7 (in
unit of the nearest neighbor distance) are taken to be
&ee variational parameters. For the kagome lattice, in
the case of the wave function with the +3 x ~3 pat-
tern, we allow the weights of the bonds between third
neighbor sites along a full row h(21) and across an empty
hexagon h(22) to be different (third neighbor sites are on
the same sublattice in the case of the q = 0 pattern).
At larger distance we choose the power law parametriza-
tion h(r) = h(~7)(y 7/r) with an integer exponent p
being a variational parameter. The wave functions will
describe either a state with LRO if h(i, j) decays suff1-
ciently slowly with distance, or a disordered state. Two-
sublattice RVB wave functions for the AFHM on the
square lattice, similar to (2) have been investigated by
Liang, Douqot, and Anderson who found variational
energies extremely close to the ground state energy ei-
ther with wave functions having LRO or wave functions
describing disordered states.

We use a Monte Carlo method similar to the one
adopted by Liang, Douqot, and Anderson to calculate
the spin-spin correlations:

I@) = ).~(c)lc)
C

with

(2)

(s, . s, ) = W'ls* s'I@)
(@I@)
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Upon substitution of the wave function (2), one has

(@Is, . s, l@} = ) ~(c,)~(c,)(c,ls, s, l.,)
C1 qC2

and

C1 qC2

(d Cy 4) Cg Cy C2

As with the RVB wave functions for the square lattice,
investigated by Liang, Douqot, and Anderson, a pair
of valence-bond states Ici}, lc2) with a nonzero overlap
(cilc2) may be associated with a covering of the trian-
gular or kayome lattice with loops of alternating bonds
where each site is connected to a bond from lci) and a
bond f'rom lc2), so that the evaluation of matrix elements
is reduced to simple rules. One has

(cilc2) = +2

where N(ci, c2) is the number of loops in the bond cov-
ering of the lattice obtained from Ici) and lc2) with the
sign of the overlap determined by the relative sequence of
sublattice encountered along the loops. For this reason
we used a Monte Carlo process which samples the pair
of states (ci, c2) according to a probability distribution
proportional to the weights (d and the absolute value of
the overlap:

(d Cy (d C2 Cy C2

Cy (d C2 Cy C2

and evaluated the spin-spin correlations from the ratios:

(S, S,.)

of

(c,lc, ) (c, lS, S, lc, )

l(cilc2}I

Cy C2

l(cilc2)l
C1 qC2

The basic Monte Carlo step to generate a new pair
(c'i, cz) [or (ci, c'2)] from a pair (cr, c2) is to choose ran-
domly two nearest neighbor sites on the same sublattice,
then exchange the bonds from Ici} (or lc2}) connected
to these sites and accept the new pair with probability
P(c'i, c2)/P(ci, c2) [or P(ci, c'2)/P(ci, c2)]. As the value
of D decreases rather rapidly with increasing lattice sizes,
the Monte Carlo method used here can only deal with

(crls, S~lc2} = + 4 (cilc2),

when i and j are on the same loop with the plus (minus)
sign if there is an even (odd) number of bonds between
i and j, whereas (cols, Szlcz) = 0 when i and j are
on different loops. However, there is a notable difference
with the wave functions considered for the square lattice.
Here all the overlaps between valence-bond states are not
positive. One has instead

rather small systems. We consider clusters of hexagonal
shape with periodic boundary conditions.

III. TRIANGULAR AFHM

TABLE I. Best variatioual parameters for the v3 x ~3
state on triangular lattices of N sites.

12
36
48

0.0
0.0
0.0

0.0921
0.0928

For the triangular AFHM, we report results for
12-, 36-, and 48-site systems. The most extensive search
for the optimum RVB wave functions with the v 3 x ~3
structure was carried out on N = 12 and N = 36 sys-
tems for which diagonalization results are available. For
the N = 48 system we only search for the best RVB
wave function with an exponent p = 5 (corresponding to
the optimum value of the +3 x ~3 trial function for the
kagome lattice) in the bond weight function h as calcu-
la.tions become rather time consuming for this size. In
Table I, we display the values of the parameters of the
bond weight function h, which optimize the trial wave
functions. For N = 12 there is only one variational
parameter, h(2), while for N = 36 and N = 48 there
are two: h(2) and h(~7). Not unsurprisingly, the best
wave functions have vanishing weights for bonds connect-
ing third nearest neighbor sites, h(2) = 0 (one would
expect such bonds to decrease antiferromagnetic corre-
lations between nearest neighbors). Consequently for
N = 12 the optimum lg} is a dimer wave function.
However the energy is only rather weakly changed by a
moderate amount of third nearest neighbor bonds (but
not spin-spin correlations beyond nearest neighbor). The
lowest trial energies obtained for N = 12 and N = 36 are
E(12) = —0.6096(3), E(36) = —0.5579(3). They are
very close (respectively, within 0.1'%%up and 0.4'%%up) to the
ground state energies obtained from exact diagonaliza-
tions: Ep(12) = —0.6103 and Ep(36) = —0.5604 (Ref. 8)
and significantly lower than those previously reported
with other variational functions. ' ' As shown in Ta-
ble II, very good agreement is also found for the spin-
spin correlations. This suggests that the RVB wave func-
tions considered here have a very strong overlap with the
ground state wave function and shows that the factorized
form of the weight u(c) is an excellent approximation for
the AFHM on the triangular lattice. Nevertheless, this
form is not exact since the magnitude of the variational
results for the spin-spin correlations beyond Grst nearest
neighbors sites are slightly higher than the diagonaliza-
tion results. Also displayed in Table II are our variational
results for the 48-site lattice. Unfortunately, because of
the sign problem we have been unable to obtain accurate
results for larger systems which precludes discrimination
between wave functions with or without LRO. Neverthe-
less, as the energy is most sensitive to short-range behav-
ior of the bond weight function h, it is not unlikely that
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TABLE II. Spin-spin correlations (So S„) at various separations r in the triangular AFHM.

The numbers in brackets are the estimated errors. Exact results are from Ref. 8.

1
~3

~7

2~3
~is

4

N =12
RVB

-0.2032 (1)
0.2065 (4)
-0.075 (1)

N =12
exact

-0.2034
0.1930

-0.0511

N=36
RVB

-0.1860 (1)
0.166 (1)

-0.069 (1)
-0.073 (1)
0.132 (1)
0.131 (1)

N=36
exact

-0.1868
0.1535

-0.0548
-0.0664
0.1136
0.1174

N =48
RVB

-0.185 (1)
0.163 (4)

-0.065 (4)
-0.070 (4)
0.118 (4)
0.120 (4)

-0.054 (4)
-0.060 (4)

one would have found wave functions with or without
I.RO very close in energy as for the square lattice.

IV. KAGOME AFHM

Os Os

07OO9
19 21 28 30

20 29
33 22 24 31

34 36 25 27
35 26

12 1 3 10

13 15 4 6

16 18

FIG. 2. The N = 12 and N = 36 kagome systems consid-
ered showing the site labeling used in Table IV and Table V.
The hexagonal shape of each cell is shown for N = 12. For
N = 36 unlabeled sites which are redundant and related to
labeled ones via cell translation vectors are included to illus-
trate the hexagonal shape of each cell.

For the kagome AFHM, we carried out calculations on
a N = 12 system with RVB wave functions having the

q = 0 structure and on a N = 36 system with RVB wave
functions displaying either the q = 0 or the ~3 x ~3 pat-
tern (see Fig. 2). Both are allowed for N = 36, but only
the structure q = 0 for N = 12. Diagonalization results
are available up to N = 36. ' We did not carry out
calculations on the N = 18 system which allow the q = 0
pattern (but not the ~3 x v3 structure). This system
is less interesting since it lacks the 3 rotation symme-
try of the infinite lattice. For N = 12, the lowest en-

ergy obtained with a RVB wave function with the q = 0
structure E(q = 0, 12) = —0.4395(2) is 3% above the
ground state energy Eo(12) = —0.4537. For N = 36 the
best variational energies E(q = 0, 36) = —0.4199(2) and

E(~3 x ~3, 36) = —0.4181(2) are 4.1% and 4.5% above
the ground state energy Eo(36) = —0.4384.2s Note that
the N = 36 results do not provide evidence of the conjec-
tured selection of the ~3 x ~3 state by quantum fiuctua-

TABLE III. Best variational parameters for the q = 0
and ~3 x v 3 states on kagome lattices of N sites. For the
v 3 x ~3 state, h(2q) and h(2q) are, respectively, the bonds'
weights between third neighbors sites along s full row (sites
1 snd 4 in Fig. 2) and across an empty hexagon (sites 1 and
25 in the N = 36 system shown in Fig. 2).

12
36

h(~3)
0.0577
0.0 0.0668

36

h(2g)

0.0

~3x v3
h(2g)

0.0
1(+7)
0.0876

tions as E(q = 0, 36) is lower than E(~3 x ~3, 36). The
optimum parameters in the trial wave functions are listed
in Table III. Rather surprisingly, the best q = 0 trial
wave function for N = 12 is not a dimer wave function
since it contains bonds between second nearest neighbors
(longer bonds are not allowed for this size). In fact, the
best q = 0 trial wave function for N = 36 has no such
bonds. On the other hand, the best ~3 x ~3 trial wave
function for N = 36 has no bonds to third nearest neigh-
bors. The absence of third nearest neighbor bonds along
a full row is not unexpected. But the lack of third nearest
neighbor bonds across empty hexagons is more surpris-
ing. Our best variational energies are not much above
the ground state energies computed by means of exact
diagonalizations but there is not an agreement compara-
ble to the one seen for the triangular AFHM. In addition,
as shown in Table IV and Table V our trial wave func-
tions yield spin-spin correlations rather diferent &om
those given for the ground state by exact diagonaliza-
tions. A striking feature of the spin-spin correlations in
the ground state of the kagome AFHM is their very rapid
decay with increasing separation. By contrast the spin-
spin correlations in our trial wave functions decay much
more slowly [note that the spin-spin correlations of the
~3 x v 3 states on the kagome and triangular lattices
(see Table II) are somewhat similar]. This suggests that
neither of our trial wave functions are good choices to de-
scribe the ground state of the kagome lattice. In fact, the
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TABLE IV. Spin-spin correlations (So S„) between site
1 and site n in Fig. 2 at distance r in the 12 sites kagome
AFHM. The numbers in brackets are the estimated errors.
Exact results are from Ref. 29.

1

~3
2

2

RVB

(q = 0)
—0.2197 (1)
—0.109 (1)

0.194 (1)
0.177 (1)

Exact
6rst excited state

—0.2220
—0.0949

0.1781
0.1614

Exact
ground state

—0.2269
0.0887

—0.0037
-0.1235

In summary, we have constructed a RVB wave func-
tion based on the ~3 x y 3 structure which is seen to

exact ground state of the N = 12 sample is odd under in-
version whereas our variational wave functions are even.
However, they may have strong overlap with the excited
states. Indeed, we see in Table IV that the spin-spin cor-
relations obtained &om the RVB wave function with a
q = 0 pattern on the N = 12 system are quite similar to
those of the first excited state which is also a singlet and
has the same symmetry. Low-lying excited states with
the symmetry of a q = 0 state which are singlets for N
even or doublets for N odd have been found in diagonal-
izations studies on systems up to N = 21. Unfortunately,
no data on excited states are available for N = 36 while
a singlet state with V 3 x V 3 symmetry requires at least
a N = 36 system. But it would not be unexpected if
the spin-spin correlations found for N = 36 with either
the RVB wave function with a q = 0 pattern, or the one
with the v 3 x V3 structure, were similar to the spin-
spin correlations of low-lying excited states. Hsu and
Schofield have studied projected fermionic trial wave
functions for the kagome AFHM and report spin-spin
correlations which decay faster than ours, but still are
not in very good agreement with those found for the
ground state. However, their use of an approximate clus-
ter method to evaluate these quantities makes difBcult
a comparison of the trial energies of these states with
those of our trial wave functions. Yang et al.23 studied
a wave function of the Kalmeyer and Laughlin type on
N = 12 and N = 18 systems. Their variational energy
for N = 12, —0.420, is somewhat higher than the energy
of our q = 0 trial wave function for this size. Note that
their wave function is reported to have zero overlap with
the ground state for both sizes.

V. CONCLUSIONS

TABLE V. Same as Table IV for the 36 sites kagorne
AFHM. Exact results are from Ref. 25.

2

3

25
18
5

19
10
6
7

1

~3
2

2

~v

2~3
2yS
~13

4

RVB
(~3x v3)

—0.2090 (2)
0.138 (1)
0.077 (1)

—0.053 (1)
—0.063 (1)

0.108 (1)
0.111 (1)
0.101 (1)

—0.050 (1)
—0.050 (1)

RVB
(q=o)

—0.2100 (2)
—0.077 (1)

0133 (1)
0.118 (1)

—0.057 (1)
—o.o5o (1)

0.101 (1)
0.093 (1)

—o.o46 (1)
0.089 (1)

Exact

—0.2192
0.0116
0.052?

—0.0090
-0.0048
—0.0230

0.0063
0.0032

—0.0098
0.0222

ACKNOWLEDGMENTS

Vfe thank B.Bernu and L. Pierre for useful discussions.

approximate very well the ground state of the triangu-
lar AFHM on small systems. A ~3 x ~3 like state is
a good candidate for the ground state of the triangular
AFHM. The analysis of the low-lying levels obtained from
exact diagonalization and recent high temperature se-
ries expansion support the existence of Neel LRO for
such a state. It would be very interesting if one could,
as was done for the square lattice AFHM, investigate
the ground state of larger systems using a projection
Monte Carlo method starting from this wave function,
overcoming the computational difBculties due to the neg-
ative valence-bond overlaps, in order to provide further
evidence in favor of the existence of Neel order in the
triangular AFHM. By contrast, the trial wave functions
based on the q = 0 or ~3 x v 3 structure are not ade-
quate to describe the ground state of the kagome AFHM.
But the q = 0 wave function and probably the V 3 x y 3
wave function are good candidates to represent low-lying
excited states very close in energy to the ground state in
the case of small systems. Further study of the other
low-lying singlet excited states may shed light on the
properties of the kagome AFHM. As this work was com-
pleted, we became aware of an unpublished manuscript
by Yong-Cong Chen which reports results of Monte Carlo
investigation of the triangular AFHM with a RVB wave

function derived from a Schwinger boson mean field ap-
proach describing a V 3 x V 3 state, also showing excellent
agreement with diagonalization results.
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