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In this work, we continue the study of the supersymmetric t Jm-odel with 1/r hopping and
exchange without translational invariance. A set of Jastrow eigenfunctions are obtained for the
system, with eigenenergies explicitly calculated. The ground state of the t-J model is included in

this set of wave functions. The spectrum of this t-J model consists of equidistant energy levels which

are highly degenerate.

In recent years, there have been considerable interests
in study of low-dimensional electronic models of strong
correlation, due to the possibility that the normal state of
the two-dimensional (2D) novel superconductivity~ may
share some interesting feature of a 1D interacting electron
system (non-Fermi-liquid behavior). The one-band two-
dimensional Hubbard model reduces to the t Jmodel -in
the large on-site energy limit. The Hubbard model and
the t Jmodel h-ave been under intense study through var-
ious approaches. For these strongly correlated electron
models, few exact results may be obtained in two dimen-
sions. The high-dimensional versions are much harder to
study than their one-dimensional ones. In one dimension,
however, the Bethe-ansatz technique may allow us to ex-
actly solve Hamiltonians in some special cases, such as
the Lieb-Wu solution~ and the ordinary t-J model at its
supersymmetric point. 3 In particular, the 1D long-range
exactly solvable electronic models have attracted a lot
of attention, since they display interesting physics with

I

solutions of simple mathematical structure.
Recently, we have been able to explicitly construct all

the constants of motion for the translational invariant
long-range supersymmetric t-J model, by mapping the
system to a mixture of fermions and bosons, with the su-

peralgebra representation for the electron fields. More-
over, we have introduced a one-dimensional supersym-
metric t Jmodel -with I/r~ hopping and exchange with-
out translational invariance. This system has also been
shown by us to be completely integrable, with infinite
number of conserved quantities explicitly constructed. ~s

In this work, we continue the study of this t-J model. A
set of Jastrow eigenfunctions, as well as their eigenener-
gies, are obtained explicitly. The ground state of the t-J
model is included in this set of wave functions. We also
briefly discuss the structure of the full spectrum for the
system.

The Hamiltonian for the one-dimensional t-J model is
given by

N

Ht j = (1/2)PG — ) ) t z(c, cj~) + ) Jy [P~ —(1 —n)(1 —n~)j P&,
1&i+j&L ~=1 1&i+j&L

where we take the hopping matrix and the spin ex-
change interaction to be t;~/2 = J,z ——I/(r; —rj)2.
L is the number of sites on the chain. In this model,
the positions of the sites (r,j are given by the roots
of the Hermite polynomial HL, (x), and the spin com-

ponent cr takes values from 1 to N. The operator c,.
is the the creation operator for an electron at site i
with spin o", ci is the corresponding annihilation op-
erator. Their anticommutation relations are given by

(cicr; ~
c' j+ —hijbo, cr~ & (cin; ~ cjoy~ j+ 0~ {c' . ~

c j+
0. The Gutzwiller projection operator Pc; projects out
all the double or multiple occupancies, P~ = Q, z P~(i),
and P~(i) = bo „,. + b'q „,, with n; = g ~ c, c; . The
operator P;~ =P ~ P, ~ c, .c; c. , cj exc.hanges the
spins of the electrons at sites i and j, if both sites are
occupied, and is zero otherwise. At half-filling, our
t-J model becomes the long-range spin model, intro-
duced first by Polychronakos on such a nontranslational-
invariant lattice.

I

In terms of the b and f fields, the eigenequation of the
t-J model can be written as

). (q'-q) 'M* &((qj ( j) =E4((qj { j),
1&i&j&L

(2)

where P((qj, (o j) = P(q, o„q2o2, . . . ,

q~. o'~. ~q~. +q, q~. +2, . . . , qL, ) is the amplitude for the
f fermions to be at qq, q2, . . . , q~, while the spin-
less b bosons are at qN +q, qN +2, . . . , qL. Here,
(oj = (o'g cr2, . . . , o~, ) and (qj = (qg q2, . . . , qL, )
(xl q

2'2 ) ~ ~ ~ ) z~ q yy ) y2 ). . .
q yq) . The wave function

is symmetric in the b boson positions (yj, while an-
tisymmetric when exchanging x;o.; and xjo.j. The
operator M;j exchanges only the position variables
q; and qj, that is, M;~P((q j, (o.j) = P((q'j, (o j),
with (qj = (qq, q2, . . . , q, , . . . , qj, . . . , qL, ) and (q'j
(qq, q2, . . . , q~, . . . , q;, . . . , ql, ) In this app. roach, the f
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fermions and the 6 bosons occupy the whole chain;
i.e., (q} and (q') are permutations of the sites
(ri, r2, . . . , rI, ), and we work in the Hilbert space where
at each site there is exactly one particle. Q, the number
of the 6 bosons, is also the number of holes in the orig-
inal problem; N„ the number of the f fermions, is also
the number of the c electrons on the lattice. N, with
n = 1, 2, . . . , N, the number of the f fermions with spin
component o., is also the number of the c electrons with
spin component o. on the chain.

The Hamiltonian in the 6rst quantization, as given by
Eq. (2), is

Hi ——
(
—1) ) (q; —q, ) 'M...

1&i&~&N,

H2 ——(—1)
1+N, &n&P&L

(q —qp) 'M p,

where (z) and (y} span the whole lattice. We would
like to show that this wave function is an eigenstate of
the system. The Hamiltonian in Eq. (2) can be broken
up into three parts: The first part Hi exchanges the f
fermions, the second K2 exchanges the b bosons, and the
third H3 exchanges the bosons and the fermions:

H = — ) (q; —
q~) M~

1&i&j&L H, =(—1) ) (q- —
q~) 'M-~.

N, +1&cx&L 1&j&N,
It commutes with the permutation operator T,~

= P; M;~
exchanging the f fermion spin and position simulta-
neously. Let us work in the Hilbert space where the
number of fermions of each Havor is fixed, i.e. , N,
0 = 1, 2, . . . , N, is fixed. Consider the following wave
function in Jastrow product form:

4(zial z2o2 ~ ~ zN oN ~yl y2, yg)

(z. z.)~-;-, e*= s ( ' — ) (4)
~ h ~I

i&j

We then calculate the e8'ects of these three parts when
acting the Jastrow wave function given by Eq. (4). The
contribution &om K2 is immediate:

H24 = —).(y —yp) '4.
n&P

(6)

The contributions from H1 and H3 are harder to deal
with since many particle terms are involved. Using a
similar trick introduced in Refs. 8, 19, we have

Hs&= —).):(*'—y-) '
,'(q, )

(, z' zi )

where

= —) ) (z, —y) +) *'
P —rest,

(y- —**)(*' —z, )i a ~(w')

N N,

rest = ) ) ) ) ) (y —z, )"
cx can=1 v =3 &(:» i6~

J
J(=r

g g
~~ 6Xg/z,

with p = (k C (1,2, . . . , N, ); rg = 0), Xg = (z~; j E J). Then using the fact that for any set X = (zi, z2, . . . , z„),
we have the identity (see Appendix A)

( i 2)
(9)

for all t = 0, 1, 2, . . . , n —2, we conclude that rest = 0.
The contribution from H1 is calculated in a similar manner:

i(j ('~,') *"

=) S..(z, -z, ) 'y )(*, --
=) S..(z, z, ) 'y )(*,—-z,)--

K, (-(1,a, ...,N. )jij I GK1
K2 C (1,2)...,Ne ) /iZ

K1UK2 QO

I J
( $ )P

&A; & &I(:kgK2 2
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Using the sum rule Eq. (9), and the fact that P,.&.&&(zr, —z, ) (xi, —2~) b, .6, „=0, the last term in the above
equation becomes

In the end, we have

Using the properties of the roots of the Hermite polynomial

I

T$ P$ Fg

i(wi)
) (r; —rz) = L(L —1)/4,

1&i&~&L

we thus conclude that the wave function P is an eigenstate
with eigenvalue

N

E = L(L —1—)/4+ (1/2) ) (N —1)N . (i4)

Although it is expected that this wave function
is the lowest-energy state in the subspace of fixed
N1, N2, . . . , NN, we were not able to prove it. However,
in the case of SU(2), the small lattice diagonalization up
to eight sites confirms this conjecture. Moreover, the dis-
cussion below will also confirm this idea for the general
case. For fixed number N, of the electron number, the
minimum of the energy is obtained when [N —N [ is
as small as possible for each pair rr g cr'.

In the SU(2) case, the above result becomes

E = (—1)L(L—1)/4+(I/2)Ng(Ng —I)+(I/2)Ng(Ng —1),

(»)

E~ = (—1/4)L(L —1) + N, /4 —N, /2,

while for an odd number of electrons it is

where Nt and N~ are the numbers of the up-spin elec-
trons and the down-spin electrons respectively. For fixed
number of electrons on the chain, i.e., for fixed N„ the
minimum of the energy given in Eq. (15) is obtained when
S, = 0 for even N„or when S, = kl/2 for odd N, .
Therefore, the ground state is a spin singlet (respectively
spin 1/2) state for even (respectively odd) nuinber of elec-
trons on the chain. In particular, for an even number of
electrons on the chain, the ground state energy is

concentration. Very unexpectedly, the charge suscepti-
bility is also finite at half-filling N, = L, in spite of the
existence of a metal-insulator phase transition at half-
filling for this system. This is in contrast to the case of
the periodic 1/r2 supersymmetric t Jmodel-, where the
charge susceptibility is divergent at half-filling, at which
the metal-insulator phase transition occurs.

To study the spectrum of the system away from half-
filling, we follow the idea introduced in Ref. 14. Let us
define the operators

or~ = i ) (q~
—qr, ) M~r, = z,

&(~~)

az ——xz —xq~,

which satisfy the following commutation relations:

(is)

[n;, H] = —iq,. (20)

and

[a'. H] = —a'-

[a-, H] = a. . (21)

Therefore the operators At(v) = a)S,.",i = 1, 2, . . . , N„
where v = 0, +, z for the SU(2) case with S,. = 1, will
act as raising operators, while their Hermitian conjugate
A;(v) will act as lowering operators. It thus follows that
the wave function

[z.„nr,] = 0,

[q;, H] = iz„
[~~, H] = 2i ) (q~

—qr, )—
A:(W~)

Then using the property of the roots of the Hermite poly-
nomial we have

E/ = (—1/4)L(L —1)+
~

/N, —Ii N,

O'I I,I }= ). [&,(v*)]" '& (22)

The charge susceptibility of the ground state y is given
by y, = O E~/ON, = 1/2, independent of the electron

with (n) = ( , zn, i. .n. , ~)n, n; ) 0, (v)
(vi, v2, . . . , v~, ), is either an eigenstate with energy
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E(„)= E+) n; (23)

or zero.
Moreover, it is shown in Appendix B that the opera-

tors P,. 'i A, (v;) with v; = 0 or z and a annihilate the
wave function P, and also g, i A;(k)P~ = 0, confirm-
ing the conjecture that P is the lowest-energy state in
the subspace. We then arrive at the conjecture that the
excitation spectrum of the system is of the form

E(s) = E+ s,
s & ( &». ~ max)I (24)

i.e., the spectrum of this t-J model consists of equal-
spaced energy levels. Since the model is on a 6nite chain,
s „ is finite. In the special case of SU(2), the small
lattice diagonalization up to eight sites suggests that the
highest-energy level is given by

E ~ (q) = L(L —1)/4 —&(q —1)/2

i.e., for an even number of electrons,

E „=E~ + (1/4)N, (4L —3N, ),

L L

II = (—1/2) ) c) /Bq, + ) l q, /2
i=1 i=1

+) l(l —M;, )/(q, —q, )', (27)

where Q is the number of holes on the chain and N, =
L —Q is the number of electrons. For N, = 1 or N, = L
(half-filling), this formula gives right results; moreover,
at half-filling, this corresponds to all spins polarized in
one direction.

The feature of the t-J model spectrum consisting of
equal-distant energy levels may also be seen by taking
the strong interaction limit of the Sutherland-Calogero-
Morse quantum system for a mixture of fermions and
bosons;

equal-distant energy levels. Further work is necessary for
a fully complete proof that the t-J model full spectrum
takes the form Eq. (24).

Finally, we would like tc. point out that the states of
the t-J model in the whole Hilbert space are grouped
into a structure of "spin supermultiplets, " as indicated
by the small lattice diagonalization, similar to that of the
periodic 1/r2 supersymmetric t J-model. Such pattern of
the Hilbert space is related to the symmetries associated
with the Hamiltonian. It is highly worth while to identify
them more explicitly, and we would like to study these
aspects in further work.

In summary, a set of Jastrow eigenfunctions have been
found for the t-J model, with the eigenenergies explicitly
calculated. The expected ground state of the t-J model is
included in this set of wave functions. The full spectrum
of the t-J model is found to have equal-distant energy
levels which are highly degenerate. It would be very in-

teresting to understand the underlying symmetry princi-
ples that give rise to such simple Hilbert space structure.
It remains to study various correlation functions, as well

as the thermodynamics, for this strongly correlated elec-
tron system. It would also be very interesting to study
the effective field theory for the low-lying excitations for
this t-J model.
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las Macris for conversations. In particular, we are very
grateful to Dr. James T. Liu for his substantial numer-
ical support. We also would like to thank the World
Laboratory Foundation for the financial support.

APPENDIX A

In this appendix, we provide a brief proof for the sum
rule Eq. (9) for reader's convenience. The same argument
can also be found in previous works Refs. 8, 19. Let
X = (zi, z2, . . . , z„),X, = X/z, ; we wish to show

= 0, Vt = 0, 1, 2, . . . , (n —2).

where there are N, fermions with spins and Q spinless
bosons; M;~ permutes the positions of the particles i and

j only. The mixture gas has equal-distant energy levels
described in terms of eH'ective harmonic oscillators. In
the strong interaction limit, the elastic modes decouple
from the internal degrees of &eedom. Since elastic modes
also consists of equal-distant energy levels, we thus are
led to the conclusion that the spectrum of the internal
dynamics, which is that of our t-J model, also consists of

I

V(Xz)
....(*-*)= v(x) (A2)

where X = (xi, x2, . . . , z„),Xz = (zi, x2, . . . , z„,z).
Therefore we obtain

(Al)

Indeed, the Vandermonde deterininant V(X) has the
property

1 . , V(X))- ' -. .. ., =?'- 'v(x,.', )

V(X*) (—1)" '
**v(x)

=
v(x)

This thus proves the sum rule Eq. (9).

xi
1

t
X2
1

n —2
2

= 0.
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APPENDIX B

In this appendix, we shall show that the lowering op-
erators A;(z) and a give zero when acting on the Jas-
trow wave function P given by Eq. (4). This will yield
a partial confirmation that the wave function P is the
lowest-energy state in the subspace where the number of
particles of each spin component is 6xed. For the b boson
degrees of freedom, we have the property

a;P = 0, i c (N. y 1,N. + 2, . . . , I,), (B1)

) a&=0.

which is shown to be true using the sum rule Eq. (9) and
the property of the Hermite polynomial roots p .

l&,
.
)
(s;—

r~) ~ = r; Th.e procedure to deal with the permutation
operator M;~ in a; is very similar to that of proving P to
be the eigenenergy state of the Hamiltonian, but we do
not write the full details here. Combining the Eq. (Bl)
with the fact P,. z a; = 0, we thus arrive at the following
results:

L

) op=0,
a=N. +X

Furthermore, we realize that

N

) A (z) $ = 0.

We have been able to show this to be true, following the
similar approach to handle the effect of the permutation
operator M;z acting on the Jastrow wave function P. In
the particular case where Nt ——Nt, the wave function P
is a spin singlet and we may globally rotate Eq. (B3) in
the spin space, giving us

Ne

(B4)

In summary, we have proved that it is impossible to con-
struct nonvanishing eigenstates with the lowering opera-
tors and the wave functions P in the subspace where the
number of electrons of each fiavor is fixed.
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