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The efFect of a magnetic field on Mott-Hubbard systems is investigated by studying the half-

filled Hubbard model in the limit of infinite dimensions. A first-order metamagnetic transition
between the strongly correlated metal and the Mott insulator is found for a critical value of the
applied field. The field and temperature dependence of the magnetization, one-particle properties,
and susceptibility are studied and compared to the Gutzwiller approximation. The experimental
relevance for transition-metal oxides and liquid He is discussed.

I. INTRODUCTION

Systems that are close to a Mott-Hubbard transition
between a paramagnetic metal and a paramagnetic insu-
lator display local magnetic moments interacting through
a residual antiferromagnetic exchange. Hence, the re-
sponse of such systems to a magnetic 6eld is an interest-
ing physical problem in which a competition takes place
between the exchange and the alignment of the local mo-
ments with the external 6eld. On the metallic side of
the transition, the problem is even more involved, since
an additional energy scale exists (the local Kondo tem-
perature, or effective Fermi energy), associated with the
quenching of local spin Huctuations at low temperature.

Up to now, the only available quantitative de-
scription of this problem has been the Gutz wilier
approximation. The susceptibility of the strongly cor-
related metal is predicted to increase with the field in this
approach, and a first-order localization transition (meta-
magnetic transition) is found for a critical value of the ap-
plied 6eld. ' The Gutzwiller approximation has limita-
tions, however. The main one is that it neglects the resid-
ual exchange altogether, so that it cannot account for the
physics of the above competition. The Mott insulator
is caricatured as a collection of independent local mo-
ments, which has infinite susceptibility at zero temper-
ature, and the susceptibility also diverges as the metal-
insulator transition is reached from the metallic side. Fi-
nally, this approximation is restricted to zero tempera-
ture (although some finite-temperature extensions have
been attempted ).

Recently, an approach to the Mott transition has been
proposed ' and extensively studied, based on the
Hubbard model in the controlled limit of infinite spa-
tial diinensionality (d j oo). 4 is The exchange is (at
least partially) taken into account in this limit, and fi-

nite temperature effects can be addressed in a consistent
manner. The aim of the present paper is to study the ef-
fect of a magnetic field on the Mott transition (as well as
on the correlated metal or deep into the insulator) within

this approach. Some earlier attempts have appeared in
the literature, ' but have not been able to solve the
problem in the low-temperature or low magnetic-Geld
regime because of limitations in the numerical method
employed. We find that at very low temperature a mag-
netic 6eld does drive the strongly correlated metal closer
to localization and that a 6rst-order metamagnetic tran-
sition to the Mott insulator takes place for a critical value
of the applied field. This is our main new result, which
is in qualitative agreement with the predictions of the
Gutzwiller approximation (even though the magnetic ex-
change significantly modifies the quantitative results of
this approximation). We establish that, near this transi-
tion and at 6nite temperature, the magnetic susceptibil-
ity is an increasing function of the magnetic 6eld. We also
provide further evidence that the zero-field Mott transi-
tion is 6rst order at 6nite temperature and show that the
magnetic properties of both the weakly correlated metal
and the Mott insulating phase can be understood quan-
titatively in a simple manner.

There are several experimental motivations to our
work. It has been demonstrated in previous studies '

that the d = oo approach to the Mott transition agrees
qualitatively (and, for some properties, quantitatively)
with many observed features of the paramagnetic-metal—
paramagnetic-insulator transition of transition-metal ox-
ides. There have been some investigations of magnetic
properties close to this transition [e.g. , for (Vi Cr )203
in Ref. 18], with which our results are in satisfactory
qualitative agreement. The recent experiments on the
field dependence of the magnetization of liquid sHe (Ref.
19) provide another important motivation. There are
two competing descriptions of this strongly correlated
Fermi liquid. The Stoner and paramagnon approach
views the system as close to a ferromagnetic transition,
while the "almost localized" approach2 views it as a
strongly correlated liquid close to Mott localization and
relies on a Hubbard model lattice description. Quanti-
tative predictions in the latter approach have up to now

relied on the use of the Gutzwiller approximation. These
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two approaches have led to very difFerent predictions for
the response to an external field: the Stoner approach
predicts a smooth magnetization (Bg/Bh ( 0), while
the Gutzwiller approximation exhibits a first-order meta-
magnetic transition, with By/Bh ) 0 close to the transi-
tion. One of the main purposes of the above experiments
has been to discriminate between them. Our results on a
well-controlled limit of a specific model provide a test of
both approximation schemes and confirm that a descrip-
tion of liquid He by a lattice Hubbard model rigidly
maintained at half filling is inappropriate.

This paper is organized as follows. In Sec. II we de-
fine the model, explain the numerical methods and brie8y
summarize previously established results on the zero-field
Mott transition in the d = oo limit. In Sec. III, we give
an overview of our numerical results for the field depen-
dence of the magnetization and of the phase diagram as
a function of field and temperature. In Sec. IV, some
aspects of the Gutzwiller approximation for the model
under study are summarized. Section V is devoted to
a detailed description and discussion of our results, and
Sec. VI to some comparisons with experiments and con-
cluding remarks.

II. MODEL, METHODS,
AND ZERO-FIELD MOTT TRANSITION

A. The Hubbard model in in6nite dimensions

We consider in this paper the Hubbard model in a
uniform magnetic field at half filling (p = U/2):

H = —) (t(,c+ c, + H.c.)
('i) ~

+U ) n;tn, g
—) (p + br')n;

i'
witht nearest-neighbor hopping on a lattice of connec-
tivity z, in the limit z -+ oo. The hopping must be
scaledi4 as t;z ——t/~2z to keep the problem nontrivial
in this limit. For simplicity, we consider in the following
a Bethe lattice, for which the free (U = 0) density of
states (DOS) D(e) = P&6(e —ei, ) takes a semicircular
form in the limit z ~ oo: D(e) = —

~ g2 —(e/t) 2. Unless
explicitly stated, we set t = 1 in the following.

Following Ref. 15 (cf. also Refs. 22 and 23), all the
local properties of the model can be obtained via a single-
site impurity problem supplemented by a self-consistency
condition. The effective action of this impurity problem,
in the presence of a magnetic Geld, reads

P P
dr' ) c+(r) [Go (r —r')] c~ (r')

0 0

tion G (r —r') = —(Tc(r)c+(r'))g through a self-
consistency equation. For the Bethe lattice, it reads

g2
G i(i(u„) =i(u„+y, + ho ——G (iur„).

The self-energy of the lattice model reads E (iu„)
Go (i~„)—G (i~„) and is independent of momentums
in the z -+ oo limit. Because of the magnetic field, these
equations depend on spin, but at half filling (p, = U/2),
the symmetry property F (—i~„) = —F (iu„) holds,
where E is any of the functions G, G0 —p, or Z —p, .

It is usefulis to view the effective action 8 as that of
an Anderson model with a spin-dependent hybridization
function b, (u), where the conduction-electron "bath"
has been integrated out:

Go'(i(u„) =i(u„+ p+ ho — W . . (4)
b, ((u)

Md~ —(d

For the Bethe lattice, the self-consistency condition (3)
specifies the hybridization function in terms of the inter-
acting local spectral density p (~)—:——ImG (ur + i0+)
through b, (~) =

z p (~). Although highly simplified,
this coupled problem remains unsolvable analytically:
numerical methods are necessary to obtain a full solu-
tion.

In this work, we follow the paramagnetic solutions of
these coupled equations, even though the model actu-
ally has a transition to an antiferromagnetic phase below
some Neel temperature for arbitrary U (the Bethe lat-
tice is a bipartite lattice). This is possible, since z i oo
is a mean-field limit in which the continuation of a so-
lution of the mean-field equations in an unstable region
has a well-defined ruathematical rueaning. Alternatively,
one may wish to consider a model that does not display
antiferromagnetic ordering and for which the solutions
studied in this paper describe the actual ground state.
As discussed in Refs. 25, 9, and 11, an example of such
a model is a Hubbard model on a fuLLy connected cluster
of N sites, with randomness on the hopping parameters
t,g ~

N t2
H = — ) t;~c+c, + U) n;tn;g with t,

cr;i,j=1

It can be shown that the single-particle Green's function
of this random model coincides with the same quantity
for the parumagnetic phase of the Hubbard model on the
z = oo Bethe lattice, with no randomness and hopping
parameter t;~ = t/~2z It is clear, h.owever, that the
phase diagram of the two models differ: the disordered
one has a highly degenerate singlet ground state for large
U at half filling and n, o antiferromagnetic phase.

+U drnt(r)ng(r),
0

(2) B. Numerical method: exact diagonalisation
for a fixe magnetisation

where, in the paramagnetic phase, the "bare" Green's
function t 0 is related to the interacting Green's func-

For a given value of the interaction strength and tem-
perature, and a given magnetic field h, the above set of
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coupled equations can be solved following the usual two-
step procedure: (i) calculation of G~, G~ for a given pair
of Gpt Gpg and (ii) calculation of Gp&, Gg using the
self-consistency relation. Step (i) involves the solution of
the Anderson model with a given conduction bath. This
can be achieved by two possible algorithms: the quan-
tum Monte Carlo Hirsch-Fye algorithm, used in this con-
text in Refs. 16, 7, and 8, and the exact diagonalization
method. 2s As shown in previous work, the exact diago-
nalization method is far more efficient for the problem
at hand than the quantum Monte Carlo method, against
which it has been carefully checked, and we shall use it in
the present work. Step (ii) updates the conduction bath
self-consistently. An iteration of this procedure indeed
converges for not too small magnetic fields that are not
too close to the metal-insulator transition. In order to
investigate these ranges of parameters, a modification of
this procedure must be used, which seeks convergence
for a fixed value of the magnetization, as described below.
This is the main technical point that allows us to obtain
the results described here.

The continuous conduction-electron bath is param-
etrized by a finite number of parameters ((ei, , Vi, },
k = (2, . . . , n, ), o =f, $ ). The Hamiltonian of the corre-
sponding Anderson model reads

HA~& = ) edged~ d~ + ) Eknai ~aka

+Ungtnd~+ ) (Vi, aq d +H.c.).
cr, Je=2

The Green's function Go of the impurity site d is then
represented by

us to calculate directly zero-temperature properties up
to n, 10. At zero temperature, P is used as a ficti-
tious temperature serving as a cutoK at small frequen-
cies. The difference between G0 and G0 " provides a
test of the accuracy of the method (which is exact in the
limit n, -+ oo). In practice, a good accuracy is obtained
already for n, = 4 for a temperature as low as P 100.

We now describe in more detail the precise algorithm
used at a fixed iialue of the magnetization.

(i) For a given set (eq, Vq },we find the magnetic
field 6 = —p —egg, which gives the desired magnetization
m. Then we calculate the Green's functions G and G0'
for this field h.

(ii) The new set (ez', V&"' } is obtained from Gp'
with the y2 fit.
The convergence is obtained for a fixed value of the inter-
action U and the magnetization mi when both (ei, , V~ }
and 6 are stabilized.

m = (ng —ng) = Gg(r = 0 ) —Gg(r = 0 ), (10)

uniform susceptibility y, calculated by numerical differ-
entiation,

m(h+ Ah) —m(h)
Ah

(note that the susceptibility can also be calculated from
an evaluation of a two-particle Green's function for the
impurity model2s'is), local susceptibility yi, is the re-
sponse of the system to a local magnetic field applied on
a single site (taken as the impurity site),

Using the above method, we are interested in computing
the following physical quantities: uniform magnetization,
defined as

where iw„= (2n + 1)zr/P and with the symmetries at
half filling:

'
eg —— —(U/2+ her)

&ag = &ag.
2 = 2

(8)

In practice, a conjugate gradient method is used to per-
form the minimization. On a workstation, complete di-
agonalization of the Hamiltonian is possible for n, & 6
at all temperatures, and the Lanczos algorithm allows

An exact diagonalization of HA„~ is performed to ob-
tain the Green's function G, and a function G~' is de-
duced &om the self-consistency condition. Then, the new
Green's function Go "~ "' is calculated. This is done
by minimizing with respect to (ez', V&"' }the following
cost function, on the imaginary axis,

~max

) lGp
' (i(u„)

G
—1And neer(

P
dr(T([ng (0) —ng(0) l

—m}
0

x ([(ng(r) —n~(&)l ™})
~ - l(olS' ™I&)I'( pz. pz,)--

E~ —E

and the local density of states p (ur) = ——ImG (a+i0+)
can be computed from the spectrum and matrix ele-
ments. For finite n„ it is a sum of 8 functions, which
nevertheless give a satisfactory account of the main spec-
tral features.

C. The Mott transition in zero field

We bneHy summarize in this section the understand-
ing of the Mott transition for zero external field that has
been reached in previous work and that is further
extended by the present study. The coupled equations
(2) and (3) for the zero-field Green's function have two

types of solutions at zero temperature. Metallic solu-
tions have the characteristic low-frequency behavior of a
Fermi liquid: ReZ(w + i0+) = U/2+ (1 —1/Z)u +
ImZ(~+ i0+) = —I'id2+ . Z is the quasiparticle
residue, which is related here to the eg'ective mass by
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m*/m = 1/Z. 4 A plot of Z as a function of U is given in
the inset of Fig. 1. In contrast, insulating solutions have
ReZ(v + i0+) = C/ur + . at low frequencies, while ImZ
and p(~) vanish [except for a b(ur) piece in ImZ] inside
a finite frequency range [—As/2, b,s/2]. As is the Mott
gap to charge excitations, and the efFective mass is in6-
nite (Z = 0).

In the metal, a local moment exists at high tempera-
ture (with the local susceptibility yi, following Curie s
law) but is quenched at low temperature, so that yl,
is finite at T = 0. This quenching is associated with
the Kondo effect of the associated impurity model, since
for metallic solutions the conduction-electron bath has
a finite density of states at the Fermi level [p(0) g 0].
The spin-fluctuation energy scale corresponding to this
quenching is the local Kondo temperature T~, of the or-
der of Zt. The conduction-electron bath DOS of insulat-
ing solutions has zero spectral weight at low &equency,
so that the Kondo effect does not take place and an un-
quenched local moment exists down to zero temperature.
As a result yi, follows Curie's law and diverges at T = 0.

A plot of the local susceptibility y~, vs interaction
strength is displayed in Fig. 1 for a finite but low tem-
perature T = 0.01. It is immediately apparent on
this plot that a regime of coexisting solutions exists for
U, i(T) & U & U,z(T) and thus that the Mott transi-
tion is a first order tru-nsition at finite temperature (as
in a liquid-gas systein), as previously suggested in Refs.
9 and 11. (The study of the coexistence interval with
n, =3,4,5,6 gives the stabilized values, U, q 3.3 and
U,z 3.8 at T = 0.01 ). At finite temperature en-
tropic effects strongly favor the "insulator" (which has a
ground-state entropy X ln 2 in this model) and the first-
order transition line must therefore be close to U, i(T).

At zero temperature, a locally stable metallic solution

xloc
100- I

exists for U & U,2(0), while an insulating solution is
found for U & U, i(0). Whether U,z(0) is actually differ-
ent from U, i(0) has not yet been entirely clarified. Ev-
idence that U,i(0) U,z(0) has been provided by the
I anczos results of Ref. 26. Another recent study» con-
cludes that U, q & U 2, and that the T = h = 0 transition
is second order at U,2(0), for reasons of energetics. These
critical points are a priori associated with quite difFerent
physical phenomena, however. U,2(0) is a second-order
critical pointio is at which m'/m, yi, and the inverse
compressibility diverge, much as in the Brinkman-Rice
scenario. This refiects the continuous disappearance of
coherent low-energy excitations (quasiparticles) in this
almost localized Fermi liquid. On the other hand, the dis-
appearance of the insulating solution as U is lowered be-
low U, i(0) occurs when the gapped conduction-electron
bath can no longer sustain an unquenched local moment.
Whether this happens abruptly or with a gap closing
continuously at U, i(0) has not yet been settled in this
model.

The response of these phases to a small magnetic field
has been discussed in previous work (cf. Refs. 9 and
11). The inset of Fig. 1 displays numerical results for
the uniform magnetic susceptibility y as a function of
U, obtained at P = 100. g is finite down to T = 0 in
both phases and does not diverye as U,z(0) is approached
within the metallic solution, in contrast to yi„. The
reason is that the energy scale for residual antiferromag-
netic exchange entering local response functions [such as

y(q)] is the exchange between two fixed sites

J;~ = tz /U = O(l/d), while the scale entering uniform
response functions [such as y = y(q = 0)] is the sum of
J,~ over all neighbors: J = tz/2U. Hence the former scale
disappears &om the physics as d -+ oo, while the latter
remains O(l): the exchange is not treated on equal foot-
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FIG. 1. yI, vs U at zero field, for pg = 100
('+~ = 5). A coexistence region between
U, z

——3.3 and U,z ——3.8 is clearly apparent.
Top inset: Z vs U, numerical solution (dots
and curve) (Ref. 26) and Gutzwilier approx-
imation (full line). Bottom inset: uniform
susceptibility y vs U for p = lpp (n, = 4).
Note the linear dependence for large U, with
slope i/J = 2U/t
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ings in uniform and local quantities in this limit. This
explains also why the d = oo Mott insulating phase has
a finite ground-state entropy N ln2 but a finite uniform
magnetic susceptibility (y = 1/J for large U).

III. OVERVIEW OF THE RESULTS FOR FINITE
FIELD
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Figure 2 displays our numerical results for the field de-
pendence of the magnetization, for various values of U
and a fixed temperature T = 0.01. Three different be-
haviors are clearly seen. For the smaller values of U, a
unique metallic solution is found in which the magneti-
zation smoothly saturates as the field is increased. For
the larger values of U, a unique insulating solution is
found in which the magnetization quickly saturates [cor-
responding to a large g(h = 0)j, and a rapid crossover
from the Mott insulator to the fully polarized band insu-
lator is found. The most interesting behavior arises for
intermediate values of U, an example of which is U = 3
on Fig. 2. There, two difi'erent solutions are found, one
at lower field is "metallic" (for a more precise charac-
terization, see Sec. V), and disappears at some critical
field h,z(U, T) and the other is "insulating" and only ex-
ists at fields larger than h, i(U, T). We find for U = 3
and T = 0.01 that a coexistence region exists, i.e., that
h, q 0.13 ( h, q 0.17. Note that the value U = 3 is
below the critical value U, i(h = 0, T = 0.01) above which
an insulating solution is found in zero field (this is why

h, i ) 0 in this case). Hence a magnetic field drives the
strongly correlated metal to a first-order metal-insulator
transition at some critical field at which the magneti-
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0.00-
0.0 0.05 0.10 0.15 0.20 0.25

FIG. 3. m vs h for U = 3, P = 5, 10, 20, 30, 40, 100 (from
below), snd n, = 4. The magnetic-field-induced phase tran-
sition occurs only at low temperature (P ) 50).

IV. MAGNETIC PROPERTIES
IN THE GUTZWILLER APPROXIMATION

zation jumps discontinuously (metamagnetic transition).
It plays, in this respect, a role similar to temperature,
which also drives the Mott transition to become first or-
der. We have also calculated magnetization curves for
U = 3.5, which lies inside the zero-Geld coexistence re-
gion at T = 0.01, so that both a metallic and an in-

sulating solution exist for small fields. Based on these
findings, we can draw an estimate of the phase diagram
in the (U, h) plane at T = 0.01, as shown in the inset of
Fig. 2.

One can also follow the temperature dependence of
these solutions, as shown in Fig. 3 for U = 3. It is only
at the lowest temperatures studied that the coexistence
sets in. For temperatures T above roughly 1/50 in this
case, a single solution is recovered. For this reason, a
detailed investigation of this phenomenon is beyond the
reach of present Monte Carlo methods and has escaped
previous studies. '

0.2—

0.1—

0.0—
0.0 0.1 0.3 0.4 0'g h

FIG. 2. Magnetization curves m(h) for, from below,
U = 0, 1, 3, 5, 10 (Pt = 100 snd n, = 4). Note the three
regimes: metallic at small U (U = 0, 1), insulator st large
U (U = 5, 10), snd the transition region (U = 3). Inset:
schematic phase disgrsm in the (U, h) plane for T=0.01.

For further comparison with our results, we review
in this section some aspects of the response to a mag-
netic field of the Hubbard model within the Gutzwiller
approximation. The Gutzwiller method is a zero-

temperature variational approach, which relies on the
ground-state wave function: g ~I" S), where ~I" S) denotes
a free Fermi sea, D is the double occupancy operator
D = P,. n;~n;g, and 0 & g & 1 is a variational parameter.
In the limit of infinite dimensions, average values com-
puted with this wave function coincide with the results
of the "Gutzwiller approximation, " so that no distinction
needs to be made between the two approaches.

At half filling and for finite h, the variational ground-
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state energy reads (using d—:(ntng) as a variational pa-
rameter instead of g):

1 —2d + g(l —2d)2 —m2
E, =4d ep m +Ud, 14

1 —m2

where

~o(~~) ~o(~4.)
ep(m) = de eD(e) + de eD(e). (15)
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The corresponding applied field is obtained &om h =
BEg
8~ '

For zero external field, the solution of this varia-
tional problem predicts a second-order Mott transition
at the Brinkman-Rice point UisR = s 4, 8 between
a metallic phase for U ( UBR and an insulating phase for
U & UBR. This transition is characterized by the diver-
gence of the effective mass [Z = m/m' = 1 —(U/Ugg) j,
the susceptibility (y/yp oc m'/m) and the inverse of the
compressibility. The gap of the insulating solution opens
up continuously at UnR'. b,g oc (U —UBR) ~ . Because
the exchange is neglected in this description, the insu-
lator is just a collection of independent local moments:
the ground-state entropy is N ln2, and both the local and
uniform magnetic susceptibility are infinite at zero tem-
perature (in contrast to the d = oo description which has

yi, ——oo but y finite). Finite-temperature extensions of
the Gutzwiller approximation, following, e.g. , the four-
slave-boson scheme, predict a first-order transition for
T &0.4

The effect of a uniform magnetic field h within the
Gutzwiller approximation has been addressed in detail
by Vollhardt3 and by Nozieres. 4 For small U, the magne-
tization of the metal smoothly saturates with By/Bh ( 0.
But, for U & 0.44UBR, the metal becomes metamagnetic
with By/Bh ) 0. Furthermore, close enough to UnR,
Z decreases upon increasing h: the field drives the sys-
tern closer to localization. A general thermodynamical
identity ("Maxwell relation" ) relates the specific-heat en-
hancement to the low-temperature behavior of the sus-
ceptibility:

B& BC,/T 2x
D(0)

1 BZ
(16)BT' Bh2 3 Z(h=0)2 Bh2'

where all derivatives are taken at 6 = T = 0. This
implies that any consistent finite-temperature extension
of the Gutzwiller approximation would yield By/BT ) 0
close to UBR.

Furthermore, for suKciently large U, the variational
equations have three solutions in a certain range of values
of h, one of which is unstable thermodynamically. A
mixture of the two stable solutions may lower the energy,
and a Maxwell construction must be made to find the
Geld at which a Grst-order transition takes place. The
resulting magnetization curves m(h) are depicted in Fig.
4 for various values of U. Hence, a line of first-order
phase transition is found in the plane (U, h), as shown
in the inset of Fig. 4, ending at a second-order point
(U„h ). Correspondingly, a coexistence region can be
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FIG. 4. Magnetization vs h in the Gutzwiller approxima-
tion for U/UsR = 0, 0.1,0.2, . . . , 0.9 and also U = 2, 3, 4 for
comparison with Fig. 2. The Maxwell construction has been
done for U ) 0.44Usa. Inset: (U, h) phase diagram at T = 0
in the Gutzwiller approximation; phase coexistence region
[U(h, r), U(h, 2)] (dotted lines), and first-order line (full curve)
ending at second-order points (UsR, h = 0) and (U„h,).

drawn in the (U, m) plane: phase separation takes place
for m, i(U) ( m ( m, 2(U) when U ) U, .

V. RESULTS AND DISCUSSION

A. The weakly correlated metal

We consider first the metallic phase with moderate cor-
relation effects (U much smaller than U,i). There, the
effect of a magnetic field is to drive the system &om the
unpolarized to the fully magnetized Fermi liquid, which
at half filling is actually a band insulator. This process is
a smooth crossover. Because of the Pauli principle, the
polarization of the spins makes the interaction term ntn~
less and less effective as the field is increased. Accord-
ingly, the interaction-enhanced effective mass decreases
smoothly towards m' = m as h increases, as depicted in
the inset of Fig. 5, where Z = m/m' is plotted vs h for
U = 1. The crossover scale is the effective Fermi energy
or spin-Buctuation Kondo scale T~. The Fermi-liquid
(metallic) character of the solution all the way to the
fully polarized state is demonstrated by checking that
the solution always satisfies Luttinger theorem. In the
presence of h, the latter reads:

ReZ (i0+) —p = ha. —pp(n ), (17)

where po denotes the chemical potential of the noninter-
acting system. This condition expresses that the Fermi
surface for each spin species accomodates exactly n elec-
trons.
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1.0—

FIG. 5. Magnetization of the weakly cor-
related metal U = 1 (P = 100, n, = 4)
(dashed curve). The Stoner prediction (full
curve) obtained by adjusting the Stoner fac-
tor S = x/y&& is in excellent agreement with
the infinite-d result. Inset: Field-dependence
of the quasiparticle residue Z(h) showing the
crossover from the unpolarized to the fully
polarized metal (band insulator). Low-Beld
comparison to Eq. (20) (dashed curve).
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In this regime of weak correlations, the Stoner approx-
imation provides a good description of our results for
m(h). It is based on a Hartree-Fock decoupling of the
interaction with respect to S„ leading to the random-
phase-approximation formula for the uniform suscepti-
bility y/yp ——[1 —

2 ypj
i = S (S is the so-called Sioner

enhancement factor), and the magnetization is given, at
T=O, by

TAStori~r Uj2
m atoner —2 de D(e).

0
(18)

This is compared to our results in Fig. 5, where the nu-
merically obtained value of the ratio y(h = 0)/gp(h =
0) = S 1.74 has been used as the input parameter of
the fit. Within this approximation the low-temperature
dependence of the susceptibility reads

tempted to compare our results with partial resumma-
tions of spin-Buctuation diagrams beyond Hartree-Fock
theory (as in the paramagnon approachzo).

B. The Mott insulator

As in the above case, the magnetization smoothly sat-
urates for large U ())U,2) with By/Bh ( 0 (Fig. 6), but

m
I
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0.60—

est, „„(T)/yp ——S 1+ — ST' +

(= S 1 ——ST'+- .

kom which a low-6eld dependence of the quasiparticle
residue can be inferred using Maxwell relation (16):
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0.00—
0.00 0.05 0.10 0.15 0.20

Zs. ..(h) = Z(k = 0) 1+ —S'Z(h = 0)+. - . (20)

This agrees very well with our results as shown on the
inset of Fig. 5.

Since the physics at larger U is not that of a ferro-
magnetic instability (y remains finite), we have not at-

FIG. 6. Magnetization of the Mott insulator for U = 5

(P = 100, n, = 4) (small dashes with squares). A Stoner fit
(S = X/Xo) (lower curve) is very poor with saturation of the
magnetization too slow. Conversely, a Curie-Weiss law with
J = t /2U and U = 5 (big dashes with circles), is in excellent
agreement with the infinite-d result.
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the crossover between the Mott insulator and the band
insulator is now governed by a different scale: the anti-
ferromagnetic exchange J = t /2U. Because the scale
involved in uniform magnetic properties is the magnetic
exchange between one spin and a shell of z antiparallel
nearest neighbors, this scale survives the z —+ oo limit.
This scale is absent in the Gutzwiller approximation,
which yields m(h) = 1 for all h at T = 0.

The Mott insulator has ReZ(~+ iO+) 1/ur at h = 0,
but h cuts ofF this divergence, and a 6nite slope at zero
frequency is recovered for h g 0:

the way &om h = 0 to saturation is evidenced by checking
that the Luttinger theorem is violated.

As expected, the magnetization curves are very poorly
described by a Stoner fit in this regime [adjusting the
value of S, saturation is found at a much smaller field

J in the actual results than in the Stoner curve (Fig.
6)]. A quantitative understanding of the results can nev-
ertheless be reached by studying the large U limit of the
fully connected model (5), along the lines of Ref. 11. For
large U and at half filling, (5) reduces to a Hamiltonian
for spin degrees of freedom, which reads

ReZ(ur + i0+) = Z(i0+) + (1 —1/a) u +

g2
ReZ (~ + i0+) = ~ + p, + ho ——ReG (~ + i0+)

2
—ReG '((u+ i0+) (21)

with

(see Fig. 7). This can be simply understood from the
low-frequency limit of the self-consistency relation (3):

H=) JiS; S, ,

where J;~ are independent random variable with
2J,~ = J/N and J2 —J,~ oc J /Nz. Since the variance

is of order 1/N (not 1/N), the randomness becomes ir-
relevant in the thermodynamic limit. The partition func-
tion of the pure model is easily obtained by the steepest-
descent method, and the magnetization is simply given
by the Weiss mean-field equation:

I

ReG (~+iO+) = —f da —sr de +
—:Px + P2 + '''

~ (22)

g2
m = tanhP[h —Jm] with J =

2U
(24)
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Since, in presence of a finite field, the DOS p (~) is not
symmetric, the integral p1 does not vanish, leading to the
linear slope of ReZ(re+ iO+), with 1/a = p2/pt —p1t /2.
a is a convenient measure of the crossover between the
Mott insulator at h = 0 (a = 0) and the band insulator at
large h (a = 1), and is depicted in the inset of Fig. 7. The
insulating (non-Fermi-liquid) character of the solution all

The uniform susceptibility also reads simplyt~ g(h =
0) = 1/(T + J), while y~, = 1/T.

Figure 6 shows the excellent agreement of expression
(24) with the numerical results for U = 5. This empha-
sizes the dominant role of the exchange scale J in the
Mott insulator, and the simplicity of its magnetic prop-
erties in the d = oo limit.

Finally, the evolution of the local density of states
p(~) = ——ImG(~ + i0+) obtained by exact diagonal-
ization is consistent with the above scheme: as the field
is increased, the gap is practically unaffected, but there
is an asymmetric redistribution of spectral weight (con-
trolled by J) between the high-energy peaks correspond-
ing to the upper Hubbard band.

C. The Mott transition
and the strongly correlated metal

0.0 0.5
U.UU U.UD U. I U U. I &

I I I

1.0 1.5 2.0 2.5 3.0

FIG. 7. ImZ(iu„) vs u at (U = 5, P = 100, and n, = 4)
for various values of h (0 & h & 0.2) At h g 0, the divergence
at ~ = 0 is cut off, leading to a finite slope [1 —1/a(h)] at
smaQ &equencies. Inset: crossover from Mott insulator to
band insulator (fully polarized) characterized by a(h).

We studied intensively the U = 3 case both (i) at T =
0.01 (by complete diagonalization with n, = 4, 5, 6) and
(ii) at T = 0 (by the Lanczos method with n, = 4, 6, 8).
We also studied the value U = 3.5 which lies inside the
zero-field coexistence region [U,1, U,2] at T = 0.01.

The central result is that two coexisting solutions are
found in the interval h, 1(T) & h & h,2(T) (see Fig. 8):
one obtained by decreasing the field adiabatically from
the saturated, high-6eld regime, and one obtained by in-
creasing h adiabatically &om the 6 = 0 solution. An un-
ambiguous way to discriminate between these solutions is
to compare the value of ReZ (iO+) for each of them with
the one predicted by Luttinger theorem. This is done in
the inset of Fig. 9 for the exact diagonalization results
with n, = 5 at T = 0.01. Clearly, the solution obtained
&om the low-6eld one follows Luttinger theorem in all the
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FIG. 8. Magnetization vs Beld at U = 3 (P = 100 and
n, = 5, 6). Middle curve: d = oo solution, exhibiting
Bm/Bh & 0, and coexistence region (two solutions exist in the
field interval 0.13 & h & 0.17). Stoner (S = y/yo) (lower)
and Gutzwiller (U = 3) (upper) curves for comparison.

region where it exists. On the contrary, the high-field one
violates Luttinger theorem. Thus, two difFerent phases
are present: a metallic (Fermi-liquid) one obtained from
the low-field regime and an insulating (non-Fermi-liquid)
one obtained &om the high-field regime.

For the finite temperature results (T = 0.01, n,
4, 5), the coexistence region [h,i, h,2] at U = 3 is found
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FIG. 9. Comparison of numerical solution with Luttinger
theorem prediction: ReZt(iO+) —p = h —po(nt). The Bgure
shows the two curves, m[h —ReZt(iO+) —p] (dashed line)
and m[po(nt)] (full line), which coincide when the Luttinger
theorem is satisfied. The two curves differ for the insulating
solution. Inset: Evolution of (1 —BZ/Bu) vs h [Z(h) in the
metal (full line), n(h) in the insulator (dashed line)]. Note
the small decreasing tendency of Z(h) on the metallic side
close to the transition.

to be stabilized at the values h, q 0.13,h 2 0.17 at
U = 3. For U = 3.5, 6 q is lowered to 6 q

——0 as expected
from the zero-field results. The situation is not so clear
for the T = 0 (Lanczos) results: as noted in Ref. 28, a
strong Buctuation of the field coexistence interval with
the number of sites n, is found.

Our results allow us to draw a rough estimate of the
phase diagrain in the (U, h) plane for a fixed Iow tem-
perature (e.g. , T = 0.01) (see inset of Fig. 2). A coex-
istence region [U,i(h, T), U,2(h, T)] is found, which be-
comes narrower with increasing 6eld. The finite field,
6nite-temperature Mott transition is thus first order: the
precise location of the transition requires a calculation of
free energies (Maxwell construction), which has not been
attempted in this work. The recent results of Ref. 12
suggests that the first-order transition "surface" U, (h, T)
ends at a second-order critical point at h = T = 0:
U, (h = 0, T = 0) = U,2(h = 0, T = 0). Thus, the qual-
itative features of the phase diagram are in rather good
agreement with the predictions of the Gutzwiller approx-
imation: the Mott transition is indeed lowered and driven
to first-order when a magnetic field is applied.

Finally, we characterize the physical properties of the
strongly correlated metal in a magnetic field (see Fig. 8).
The magnetization curve m(h) starts linearly at U = 3,
and it shows a metamagnetic curvature (Oy/Bh ) 0)
close to the transition. This result has been obtained at
P = 100 and confirmed as a function of the number of
sites of the exact diagonalization procedure.

In comparison, the Stoner prediction (with 8 fitted
from the h = 0 slope) has an appreciably larger down-
ward curvature [faster saturation of m(h)], while the
Gutzwiller approximation yields too large an upward cur-
vature (thus predicting a stronger metamagnetism at low
field than what we find), and a first-order transition at
a lower magnetic field than what we find. Similarly, the
quasiparticle residue Z(h) at U = 3 is practically con-
stant in the metal with a small decreasing tendency (in-
crease in m*) near the coexistence region (see Fig. 9).
Again, the Gutzwiller approximation would predict too
large an increase of the effective mass upon increasing
the 6eld at low 6eld. However, most of the qualitative
predictions of the Gutzwiller approximation are in good
agreement with our results.

Here also, we have found it diKcult to reliably estimate
the low-temperature dependence of the zero-field suscep-
tibility (i.e. , the sign of the T correction). However,
the trend of the complete diagonalization results with
n, = 4, 5, 6 and the Lanczos converged values are com-
patible with a very flat y(T), consistent with the flatness
of Z(h) and Maxwell identity (16).

Finally, the local density of states obtained in the co-
existence region is consistent with the characteristics of
the two phases: the metallic solution still has spectral
weight at the Fermi level, while the other one displays a
gap.

VI. CONCLUDING REMARKS
AND EXPERIMENTAL RELEVANCE

We have studied in this paper the effect of a uniform
magnetic field on the paramagnetic solutions of the half-
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filled Hubbard model in the limit of infinite dimensions.
Depending on the interaction strength, three regimes can
be identified (cf. Fig. 2).

In the weakly correlated metal at small U, the mag-
netic field reduces the effect of the interaction because
of the Pauli principle. A smooth crossover is found be-
tween the unpolarized metal and the fully polarized band
insulator, with a mass enhancement m'/m decreasing
smoothly to unity. The field dependence of the magne-
tization at zero temperature is reasonably described by
the Stoner formula.

The uniform magnetic response of the Mott insula-
tor at large U is controlled by the antiferromagnetic ex-
change J t2/U, while the local susceptibility follows a
Curie law. The field dependence of the magnetization is
described very well by a simple Curie-%eiss mean-field
expression.

The most interesting magnetic properties are found at
intermediate values of U, close to the zero-Beld Mott
transition. The applied magnetic field induces a first-
order metamagnetic transition between the strongly cor-
related metal at low field and the high-field Mott insula-
tor, forcing a jump in the magnetization curve. Sim-
ilarly, the temperature drives first-order the zero-field
metal-insulator transition. This is in qualitative agree-
ment with the predictions of the Gutzwiller approxima-
tion. Quantitatively, however, this approximation does
not describe our results very well because it neglects the
magnetic exchange. For example, the critical field is pre-
dicted to be too low, and the upward curvature of the
m(h) curve at low field much too large. Finally, we dis-
cuss the experimental relevance of the present study for
the magnetic properties of transition metal oxides and
liquid 3He.

Reference 18 reports measurements of the tempera-
ture dependence of the susceptibility for (Vi Cr )20s
for various Cr concentrations x. Sample 2 of this pa-
per (z = 0.008) displays two phase transitions as the
temperature is raised: &om an antiferromagnetic insu-
lator to a paramagnetic metal (at TN 175 K), then
form the metal to a paramagnetic Mott insulator (at
TMi 250 K). The measured y(T) is reproduced in part
in the inset of Fig. 10. Both transitions are clearly vis-
ible on this curve, even though the second one is much
broadened for reasons explained in Ref. 18. The Mott
transition is signaled by an increase of the susceptibility.
Interestingly, y(T) decreases with temperature both in
the metal and in the insulator above the transition region.
Our treatment of the Hubbard model can account qual-
itatively for this behavior, as shown on Fig. 10 display-
ing the uniform susceptibility vs temperature found for
U = 3.4. The metallic solution must be followed at low
temperature, until the first-order transition to the Mott
insulator is reached. Note that the temperature scale for
the disappearance of the metal is considerably lowered as
compared to a typical electronic scale of t 10 K, and
indeed falls in the range of 10 K. Quantitatively, how-
ever, the typical increase of y through the Mott transition
is found to be larger than the experimental values even
after correcting for the observed broadening.

Regarding liquid He, the main conclusion of our work
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FIG. 10. Uniform susceptibility y vs temperature for
U = 3.4 (in the T = 0.01 coexistence region) calculated with
n, = 4. Lower curve (dotted): metallic solution. Upper
curve (full): insulating solution. A first-order metal-insulator
transition between the two branches takes place upon heat-
ing. Inset: Results of Ref. 18 for (Vi Cr )20' (sample 2,
z = 0.008). The first sharp rise corresponds to the Neel
temperature, followed by the (rounded) metal —Mott insula-
tor transition.
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is that the metamagnetic transition of the half-filled Hub-
bard model is not an artefact of neglecting the exchange
in the Gutzwiller approximation but is indeed present
in the more refined d = oo treatment. In spite of the
fact that we would predict an appreciably larger critical
field for this transition, our results for m(h) are hardly
compatible with experiments. This means that a lat-
tice description of liquid 3He by a Hubbard model rigidly
maintained at half filling is not satisfactory. Introducing
vacancies, m while keeping U close to the half-filled Mott
transition might avoid metamagnetism, but will still be
faced with a much too small susceptibility enhancement,
of order 1/ J (not I/T~) as soon as the exchange is cor-
rectly taken into account. A lattice description, if at all
possible, must find a way of suppressing the exchange to
restore the properties of a liquid (e.g. , by working at very
large U as a function of vacancy concentration).
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