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%e solve numerically the dissipative I.andau-Lifshitz-Gilbert equations to consider hysteresis in
Sne magnetic particles. Finite-size effects are studied for two models with uniaxial anisotropy-
bulk random axis and surface anisotropy only. It is demonstrated that the latter model introduces
considerable efFects for sma11 enough particles when the coupling to the anisotropy is equal or
greater than the coupling to the isotropic Heisenberg exchange. We show that some features of
magnetization reversal are associated with spins at the surface of 6ne particles.

I. INTRODUCTION: FINE PARTICLE
MAGNETISM

There is now ample experimental evidence about devi-
ations from bulk behavior in finite systems such as small
magnetic particles. In addition to the purely geometric
constraint of finite volume, these deviations are caused
by the surfaces or interfaces due to the different envi-
ronment of atoms there compared to those in the bulk.
That is, there is likely to be an anisotropy as a result
of the lower coordination number there. These effects
can lead to interesting spatially varying magnetization
on atomic length scales within the particle, especially
during magnetization reversal. At the same time, ther-
mal Buctuations may be either amplified or diminished
at the surfaces, and this may influence the process of
magnetization reversal. An understanding of these kinds
of finite-size effects for magnetic materials will be useful
for controlling coercivity, susceptibility, and other mag-
netic properties, as well as improving our understanding
of basic magnetic interactions.

Studies of models for semi-infinite systems have been
made2 to understand how such an extended surface can
inHuence phase transitions and critical properties. Beny-
oussef et al. studied a spin-1 Ising model with exchange
and single-ion anisotropy strengths that are different at
the surface compared to the bulk. We use this idea of
spatially varying anisotropy strength, but in a finite par-
ticle rather than a semi-infinite system. The emphasis in
this paper is to consider how the surfaces can inHuence
the hysteresis in the magnetization versus applied field
of a small magnetic particle.

We consider the effect an a small particle due to two
different types of uniaxial anisotropy, and how these
anisotropy interactions compete with exchange and ap-
plied field. In the first case, magnetic ions on a lat-
tice with randomly directed bulk uniaxial anisotropy are
considered, this being one of the sixnplest models that
produces hysteresis. This model has been suggested
by Harris et al. to describe the magnetic properties
of rare earth alloys. Since then the models for disor-
dered magnets have been studied extensively. For ran-
dom field ferromagnets Imry and Ma showed that the

ordered state is unstable against an arbitrary weak cou-
pling to the random field for spatial dimension d ( 4,
continuous order parameter with dimension n ) 2 and
a large enough system. In the case of random uniax-
ial anisotropy two regimes have been consideredii —weak
and strong anisotropy. For weak anisotropy, at d = 3 and
n = 3 the correlation length is large but again there is
no ferromagnetic state at H = 0. In the case of infinitely
strong random anisotropy a nonmagnetic ground state
is predicted from Monte Carlo simulations. Although
coercivity and remanence properties have been treated
already, Saslow and Koon published new results re-
cently, some of which are compared with our results on
this model in the last section of this paper.

The second type of anisotropy to be considered is
one that acts only on the atoms near the surface, as-
sumed to be caused by the different surface environment
there compared to the bulk. In addition to the finite-
size efFects caused by the restricted system volume, the
anisotropy interactions are assumed to be diferent for
the atoms near the surface compared to those in the bulk.
This model also produces hysteresis, even without a bulk
anisotropy. We would like to see what efFects these kinds
of interactions can have on the magnetic hysteresis and
susceptibility.

A goal is to understand whether it is possible to distin-
guish purely finite-size effects &om effects due to the dif-
ferent environment of atoms at the surface compared to
those in the bulk, how the finite system size can influence
the hysteresis behavior, and how the smaller coordination
number of the surface sites modifies their magnetization
compared to the bulk magnetization, even in the absence
of any different interactions associated with the surface.

A very small single magnetic particle [up to 45 x 45
atomic spins in two dimensions (2D) and 10x 10x 10 spins
in (3D)j is considered, such that magnetic dipole-dipole
interactions are negligible. Such systems are important
to study since the modern state-of-the-art technology
already allows production of particles with a diameter
as small as 20 A..is The Landau-Lifshitz-Gilbert equa-
tions with damping are used to obtain zero-temperature
metastable states. The calculations are similar to mi-
cromagnetics calculations, however, each element of

50 3077



3078 D. A. DIMITROV AND G. M. LYSIN 50

the system represents a single magnetic ion, rather than
a finite crystal volume. Features in the magnetization
curves are found to be related to reversals of groups of
spins. Several difFerent geometries are considered, includ-
ing square, rectangular, and circular particles in 2D, and
cubic and spherical particles in 3D. Since we have not
carried out a systematic study of the 3D particles due
to computational time restrictions, most of the results
presented here are for the two-dimensional (2D) models.
These simulations were all performed for spins on square
or cubic lattices.

II. MODEL FOR MAGNETIC PARTICLES

Classical spins S„ofunit length, after normalization,
are considered to be interacting with Heisenberg ex-
change constant J, in an applied Geld H, where n la-
bels sites on a lattice. Each site has a single-ion uni-

axial anisotropy of strength K„, whose axis k is taken
along some particular direction, depending on the type
of anisotropy. Generally, the total energy is written

E = —J) S„S„p
n, a

—) gpss SS„.H + K„(k„S„)
n

where the real magnitude of the spin S is included in the
term of the external Geld only while h S is absorbed in J
and K's. The factor gp~ is the Lande' g factor times the
Bohr magneton. The exchange sum is only over nearest
neighbor pairs, and the set of vectors (a) are the lattice
displacements to the nearest neighbors of a given site.
The unit vectors k are the anisotropy axes associated
with the sites.

In the Grst case studied, we assume that all the
anisotropy axes are pointing in random directions. This
random bulk anisotropy model provides a test of the
simulation method by comparing with known results for
random uniaxial anisotropy magnets (i.e., Stoner and
Wohlfarth ). The finite-size effects due to a small num-
ber of random axes and the lower coordination number
of the surface sites are seen to lead to features in the
hysteresis curves, especially to differences in the bulk and
surface magnetization curves. Values of the coupling con-
stants obtained from experiments and mean field calcu-
lations for amorphous rare earth alloys are reported by
O' Shea and Lee.

In the second model studied, we assume that the phys-
ical efFects due to the surfaces appear primarily as an
anisotropy at the surface only and no anisotropy as-
sociated with the bulk sites. In the simplest surface
anisotropy model, the uniaxial anisotropy K is included
only for surface sites, with the anisotropy axes pointing
outward, normal to the surface. This phenomenological
assumption is based on the symmetry of the sites at the
surface. A difFerent kind of surface anisotropy has
been suggested by Aharoni to account for the mag-
netization reversal of acicular p-Fe20q particles, surface
treated with Co, modeled as infinite circular cylinders.

He has assumed that a cylindrical particle has a uniaxial
anisotropy, parallel to the surface, only in a cylindrical
shell on the surface.

III. METHOD OF CALCULATION:
GENERATION OF HYSTERESIS LOOPS

We use the Landau-Lifshitz equations with damping to
obtain the hysteresis loops. It is convenient for the pur-
pose of the numerical simulation to rewrite the quantities
in these equations in dimensionless form. In the simula-
tions we hold the average strength of the anisotropy K
to be fixed, which sets an energy scale, and then vary
the exchange and applied Geld strengths. Scaling the
Landau-Lifshitz equation by this energy scale, leads to
the definitions of dimensionless time ~ and dimensionless
field 6:

7. = 2Kt/hS, h = gpgy SH/2K. (2)

Then the reduced Landau-Lifshitz equations with damp-
ing are given by

" = —S„xh'„—o.S„x (S„xh„' ),d'T

where o. is a phenomenological damping constant, and
the reduced effective Geld acting on site n is

h'„= h+ (1/2K) ) S„+ + (K„/K)k„(k„S„). (4)

In all cases, free boundary conditions are used, and the
sites on the boundary of the system have less neighbors to
which they are exchange coupled. The equations in terms
of xyz spin components are integrated numerically, using
a fourth-order Runge Kutta scheme, with a time step
chosen according to the exchange, anisotropy strength,
and applied Geld as follows:

A~ = 0.01/(1+ h+ J/2K).

In this way, the time step adjusts to the higher natural
frequencies of the system that result &om a stronger ap-
plied field or exchange. A damping constant a = 0.5 is
used in these simulations.

Starting from some initial configuration and applied
field, the integration with damping tends towards a con-
Gguration that is a local energy minimum or metastable
state. As the time integration proceeds, the total energy
in Eq. (1) smoothly decreases, and some criterion must
be used to decide to stop the integration for the chosen
applied field and proceed to the next applied field. In
some situations, the energy can be changing very slowly
while there are still substantial changes occurring in the
spin configuration. Therefore, we proceed to the next
applied field when (1/N) g ~dS /dw~ ( 0.0001, where
N is the total number of spins in the system. When
this condition is met the spin configuration is very close
to being stationary. After relaxing in this way at one
field, the final configuration is used as the initial state
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for the next Geld, and iteration of this process over a
sequence of applied Gelds gives the hysteresis loop. Con-
sistent results are obtained with a magnetic Geld step size
of 0.0005 & Ah & 0.01.

At the beginning of the simulation, the initial spin con-
figuration is taken to be either all spins aligned with the
applied large negative magnetic field, or with them point-
ing in random directions. We find that they relax more
readily to a low energy state if there is some degree of
disorder in the system, such as the random anisotropy or
random initial state. For the surface anisotropy model in
a square system (Sec. V ), the high degree of symmetry
makes it necessary either to use the random initial con-
Gguration, or, apply the magnetic field at a slight angle
(about 1') to the crystal axes. This is due to the form the
anisotropy takes in the equation of motion (3), producing

spin time derivatives proportional to (S„k )(S„xk„),
which becomes zero when S„is either parallel or perpen-
dicular to k„.

In the results, we present the surface magnetization,
defined as the average of the moments S for those sites
on the boundary of the system, projected along the ap-
plied Geld. We also present the average magnetization
of the bulk sites, which are all other sites of the lattice.
The mean magnetization is the average of all the mag-
netic moments at all of the sites, bulk, and surface. All
calculations produce only local minimum energy states
for zero temperature; there are no efFects due to thermal
Buctuations included.

IV. RANDOM BULK ANISOTROPY

As described above, in this model, all sites, both
bulk and surface, have a uniaxial anisotropy of strength
K, but with randomly directed axes k„. In the limit
J —+ 0, this is equivalent to the Stoner-Wohlfarth model
for a Gnite collection of random anisotropy noninteract-
ing moments. Some typical hysteresis curves for the
mean magnetization of a 10 x 10 2D system are shown
in Fig. 1(a), for three values of J/K. For J/K = 0.1,
the exchange is weak enough relative to the anisotropy
such that the spins move more or less independently, but
with a finite collection of different anisotropy axes. The
Stoner-Wohlfarth result is recovered as expected for a
set of independent spins, provided the system is not too
small. In the opposite limit, J/K = 10, the spins are
strongly coupled and move approximately as one moment
of efFective magnitude S,g NS. In this limit the ef-
fect due to uniaxial anisotropy which varies at random
&om site to site is expected to diminish, leading to a
decrease of the area in the hysteresis loop. As J/K gets
very large, the hysteresis eventually vanishes. Finally, for
J = K, the most interesting efFects due to the anisotropy-
exchange competition occur, producing noticeable jumps
in magnetization due to small groups of spins reversing.

In such a small system, there are 36 surface (i.e. ,
boundary) sites and 64 bulk sites, making it possible to
have substantial Gnite-size efFects on the surface mag-
netization compared to bulk magnetization. For the case
J = K, the average surface moment is compared to
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FIG. 1. Magnetization per spin for the random uniaxial
anisotropy model. (a) Mean magnetization hysteresis loops
for 10 x 10 square systems, for different values of J/K. (b)
Magnetization of the bulk and surface spins, for the 10 x 10
square system with J/K = 1.

the average bulk moment in Fig. 1(b). In addition to
the small jumps due to having a finite set of random
anisotropy axes, an eKect of the lower surface coordina-
tion can be seen. The magnetization of the surface sites
tends to lag behind the bulk sites, reversing more slowly
than the bulk, and requiring greater in magnitude ap-
plied Geld to reach saturation. This can be understood
to be a result of the lower surface coordination number
and associated weaker effective exchange coupling for the
surface sites, causing those sites to be dominated more
by the local anisotropy forces.

V. UNIAXIAL SURFACE ANISOTROPY

In this model, only the sites on the boundary of the
system have uniaxial anisotropy, with equal anisotropy
strengths K, whose axes k are taken to point normal
to the surface. Some care should be taken when defining
the normal to the surface on a discrete lattice. A site
is considered to belong to the surface of the system if it
has less nearest neighbors than the coordination number
for the given lattice. For a square particle and a square
underlying lattice the normal of a given site is defined
along the direction perpendicular to the line connecting
the nearest neighboring surface sites and the anisotropy
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axes of the corner sites point outward along the [11]direc-
tions. When dealing with a circular particle and a square
lattice we have always chosen the center of the particle to
coincide with one of the lattice sites. Then the normal of
the surface site has been defined to be along the direction
&om the center site to the considered surface site.

A. Square particle

Figure 2(a) shows results for a 10 x 10 square system,
for three different values of J/K, with K fixed. The
magnetic field is along the [10] direction of the lattice.

1.0

For this system size, as long as J/K is fairly large com-
pared to 1, the eKect of the surface anisotropy term on
the hysteresis is small. For J = K, the small diEer-
ences in bulk and surface magnetization are shown in
Fig. 2(b). The primary difFerence is that the magnitude
of the surface magnetization is smaller than for the bulk,
because a sizable &action of the surface has its anisotropy
axes at large angles to the applied field. However, for
J/K = 0.1, the magnetization reverses through a se-
quence of small steps, leading to the rather interesting
result shown. These nearly linear sections separated by
steps in magnetization are associated primarily with the
tilting of surface spins; the bulk magnetization actually
reverses much sooner than the surface, as indicated in
Fig. 2(c).
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FIG. 2. Magnetization per spin for a 10 x 10 uniaxial sur-
face anisotropy model. (a) Hysteresis loops for values of J/K
indicated. (b) Magnetization of the bulk and surface spins,
for the system with J/K = l. (c) Bulk and surface magneti-
zation for the system with J/K = 0.1.

FIG. 3. (a) Size dependence of the hysteresis for the mean
magnetization in the uniaxial surface anisotropy model, for
square L x L systems with J/K = 1. (b) The coercive Beld h
versus inverse system length. (c) The integrated area within
the hysteresis loops versus inverse system length.
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An indication of the size dependence of the results is

given in Fig. 3. In Fig. 3(a), the mean magnetization
is shown for systems of diferent sizes, with J = K. As
the system size increases, the reduced coercive field h,
and area A within the hysteresis loop decrease. Since
the ratio of the energy associated with the domain wall

at the surface compared to the energy of the bulk varies
as 1/L at sufficiently large system size, the Heisenberg
term will prevail over the surface anisotropy even at very
small magnitude magnetic fields, which leads to the ob-
served decrease of h, and the area A. These are plotted
in Figs. 3(b) and 3(c) versus 1/L.

C. Three chmensiens
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Although we have not performed a systematic study,
we can also test geometric eH'ects in three dimensions by

B. Circular particle -0.5-

Another set of simulations, for an approximately circu-
lar particle, is shown in Fig. 4. The radius of the particle
is about 4.243 lattice constants, and con&ins 61 spins.
This model is more realistic in that the surface spins have
anisotropy axes with a wide range of directions, contrary
to the situation for the square particle model. However,
the J/K dependence of these results is similar to that of
the square system; the magnetization reverses in a step-
wise fashion when the exchange is rather weak compared
to the anisotropy [Fig. 4(a)]. For J/K = 0.2, again the
bulk magnetization reverses much sooner than the sur-
face, as seen in Fig. 4(b). The associated spin config-
urations at particular points of the reversal process are
shown in Fig. 4(c). Even though the exchange is rel-
atively weak, the bulk reverses more or less as a unit,
while the surface spins reverse in smaller groups, leading
to the magnetization steps. The linear rises in surface
magnetization between these steps are due to the tilt-
ing of the spins as the applied field competes against the
uniaxial surface anisotropy.

For circular particles, the size dependence of the mean
magnetization is shown in Fig. 5. Again, the coercive
field and area of the hysteresis loop decreases with 1/D,
where D is the diameter of the particle.

The above results show how our choice of either a
square or circular particle affects the hysteresis, espe-
cially when J/K is small. For square particles, there are
more nearly linear segments in the surface magnetization
[Fig. 2(c)] than for the circular particles [Fig. 4(b)]. This
can be attributed to the fact that with the [10] field direc-
tion, about half of the surface sites of the square particle
have their anisotropy axes parallel to the field, and about
half have their anisotropy axes perpendicular to the field.
The nearly linear segments in the surface magnetization
are due to the slow tilting of the spins whose anisotropy
axes are perpendicular to the field, as the field changes
(i.e., as in the Stoner-Wohlfarth model for magnetic field
perpendicular to anisotropy axis). The breaks between
the linear segments correspond to some spins reversing
along their anisotropy axes. On the other hand, for cir-
cular particles, there is a more uniform distribution of
angles between the Geld and the anisotropy axes, leading
to slightly curved segments in the surface magnetization,
separated by j»mps or breaks.
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FIG. 4. Mean magnetization per spin hysteresis loops for a
circular particle vrith uniaxial surface anisotropy. The parti-
cle radius is 4.243 lattice constants and it contains 61 spins.
(a) Mean magnetization for systems with J/K values as indi-
cated. (b) Magnetization for the buHr. and surface spins, for
the system with J/K = 0.2. (c) Spin configurations during
reversal for J/K = 0.2, with the field near the [llj direction.
Note hovr the bulk reverses as a single unit.
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though the exchange to anisotropy ratio is greater for the
circular particle than for the spherical one, the increased
coordination number in three dimensions favors the col-
lective motion of the spins parallel to each other and
results in a smaller h, . Another effect is the higher mag-
netic field required in order to saturate the surface spins
for the cubic particle [Fig. 6(b)] than for the square par-
ticle [Fig. 2(c)], for similar sizes and similar values J/K.
We interpret this result as due to the greater surface-to-
volume ratio of the cubic particle compared to the square
one and thus more energy is required to overcome the to-
tal energy barrier associated with the surface anisotropy.

VI. DISCUSSION

The results in Sec. IV for the random bulk anisotropy
model indicate how the surface magnetization is different
in magnitude relative to the bulk magnetization. This is
because the single-ion anisotropy has a stronger effect on
the surface sites than the bulk sites, since there are less
nearest neighbor exchange couplings for the surface sites.
When the particle undergoes magnetization reversal, the
surface sites lag behind the bulk as the field changes, due
to their weaker effective exchange coupling. Also, be-
cause the anisotropy axes were chosen randomly, in such
a finite system there are distinct steps in the hysteresis
curves due to particular sets of spins reversing before the
whole. A different choice of random anisotropy axes leads
to a hysteresis curve with different particular features. A
weak size dependence of the hysteresis can be seen. This
result is due to the moderate sized surface-to-volume ra-
tio for the system sizes we have simulated and again to
the smaller surface coordination number. Another result
is the increase of coercivity when decreasing J/K. This
is in agreement with Saslow and Koon's results even
though they have used a different algorithm, the so-called
"greedy" algorithm, and periodic boundary conditions.

The results in Sec. V for the surface anisotropy mod-
els demonstrate that even though only a &action of the
total sites are a8'ected by this anisotropy energy term, a
hysteresis can result. The magnetization reversal process
can take place in steps, with each step related to a par-
ticular set of spins reversing. The hysteresis eventually
disappears as the particle size increases, as expected for
this model with only surface anisotropy. The geometry
of the particle can in8uence which sets of spins reverse
at a particular field, as well as the shape of the hysteresis
curves, especially for the surface magnetization.

In general, in three dimensions the effective coupling
via Heisenberg exchange is stronger than in the 2D case
due to the greater coordination number. This requires
a stronger surface anisotropy constant K in the 3D case
than in the 2D case in order to produce similar effects.

Apart from the obvious limitations of classical con-
siderations and of a simulation at zero temperature our
study is confined to give qualitative understanding of the
dynamics of a single magnetic nanoparticle. In an ex-
periment one has many such particles in a nonmagnetic
matrix and statistical effects should be expected, such
as disappearance of the small jumps in the magnetiza-

tion associated with fiipping of a small number of surface
spins. We have ass»med zero anisotropy for the bulk sites
in the surface anisotropy model which, though not real-
istic, underlines the infiuence of the surface and gives the
order of magnitude of this effect. One can improve this
model by allowing bulk uniaxial anisotropy difFerent &om
the surface, and comparing with the phenomenological
relation for a spherical particle

6
K,g ——Kg + —K„

d
(6)

VII. CONCLUSIONS

In an attempt to understand the surface and finite sys-
tem size effects in a very small magnetic particle (consist-
ing of about several hundred to several thousand atoms),
where the discreteness of the particle has started to be
seen but quantum mechanics may not be required, we

where K,g is the overall anisotropy constant per unit vol-
ume of the particle, Kp is the bulk uniaxial anisotropy
constant per unit volume, K, is the surface anisotropy
constant per unit area, and d is the diameter of the par-
ticle. Another point concerning a simulation as ours is
the definition of the sites that are afFected by surface
anisotropy. Does one consider surface anisotropy as act-
ing only on the surface sites (those with a number of
nearest neighbors less than the coordination number of
the lattice), as we did, or extend the interaction into sec-
ond, third layers, etc.?

In an experimental study of metallic iron nanopar-
ticles Bgdker et al. 22 demonstrated that the effective
anisotropy energy density of a whole particle increases
with decreasing particle diameter. A similar result to-
gether with some interesting temperature eKects have
been published also by Linderoth et at 2s In a. contin-
uum material model, this result was interpreted in terms
of an increased contribution &om the surface anisotropy,
assumed perpendicular to the surface, while the bulk
anisotropy energy density remained fixed, modeled by
Eq. (6) above. This would also occur in the lattice model
presented here when K & J. However, the diameter
of a nanoparticle is not more than an order of magni-
tude greater than the lattice constant of the material,
so a continuum model may be inadequate in other re-
spects, and particular eKects due to the underlying dis-
crete lattice may be important. Also, surface efFects due
to sharp edges and orientations of the surfaces faces could
play roles afFecting the hysteresis of fine magnetic parti-
cles, as suggested above when comparing the cubic and
spherical particle results. This is an oversimplified sur-
face anisotropy model, it is likely that other interactions
should be considered, in addition to effects that might
change the local surface magnetic moments compared
to the bulk. However, we expect our simulation of the
model with normal surface anisotropy, improved if nec-
essary by adding nonzero bulk anisotropy, to be in qual-
itative agreement with the hysteresis loops measured for
nanoparticles at sufficiently low temperatures.
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have reached the following conclusions: (i) At approxi-
mately equal exchange and anisotropy coupling constants
the coercive force 6 for the random uniaxial mode.' in
2D increases with decreasing the J/K ratio and shows a
weak dependence on the size of the system for systems
up to 30 x 30 sites. (ii) h, of the surface anisotropy
model in 2D shows strong size dependence and weaker
dependence on J/K. For sufficiently big particles, keep-

ing J/K constant, this model does not show hysteresis
since the surfaces are expected to be less important for
large particles. This results holds for both square and

circular particles. (iii) For the surface anisotropy model,
a smaller J/K ratio is needed to observe the same order
of magnitude effects in 3D particles as in 2D particles.

ACKNOWLEDGMENTS

Discussions with M. J. O' Shea and C. M. Sorensen are
gratefully acknowledged. This work was supported by
NSF OSR92-55223.

' S. Gangopadhyay, G. C. Hadjipanayis, B. Dale, C. M.
8orensen, K. J. Klabunde, V. Papaefthymiou, and A.
Kostikas, Phys. Rev. B 45, 977S (1992); F. T. Parker, M.
W. Foster, D. T. Margulies, and A. E. Berkowitz, ibid. 45,
9778 (1992), and the references in both papers.
D. L. Mills, Phys. Rev. B 39, 12306 (1989).
D. L. Mills, Phys. Rev. B 40, 11153 (1989).
T. Kaneyoshi, Physics A 163, 533 (1990).
C. Rau, C. Jin, and G. Xing, Phys. Lett. A 144, 406 (1990).
A. Benyoussef, N. Boccara, and M. Saber, J. Phys. C 19,
1983 (1986).
R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev.
Lett. 31, 160 (1973).
R. W. Cochrane, R. Harris, M. Plischke, D. Zobin, and M.
J. Zuckermann, J. Phys. F 5, 763 (1975).
R. W. Cochrane, R. Harris, and M. J. Zuckermann, Phys.
Rep. 48, 1 (1978).
Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
E. M. Chudnovsky and R. A. Scrota, Phys. Rev. B 2B,
2697 (1982); E. M. Chudnovsky, W. M. Saslow, and R. A.
Scrota, ibid. 33, 251 (19S6).
C. Jayaprakash and S. Kirkpatrick, Phys. Rev. B 21, 4072

(1980).
R. Harris and D. Zobin, in Magnetism and Magnetic
Materials 1975 (P—hiladelphia), Proceedings of the 21st An-

nual Conference on Magnetism and Magnetic Materials,
AIP Conf. Proc. No. 29, edited by J. J. Becker, G. H.
Lander, and J. J. Rhyne (AIP, New York, 1976); M. C.

Chi and R. Alben, in Magnetism and Magnetic Materials—
1978 (Joint MMM-Intermag Conference, Pittsburg), Par-
tial Proceedings of the First Joint MMM-Intermag Confer-

ence, AIP Conf. Proc. No. 34, edited by J. J. Becker and
G. H. Lander (AIP, New York, 1976); E. Callen, Y. J. Liu,
and J. R. Cullen, Phys. Rev. B 1B, 263 (1977).
W. M. Saslow and N. C. Koon, Phys. Rev. B 49, 3386
(1994).
C. M. Sorensen (private communication).
H. N. Bertram and J. G. Zhu, in Solid State Physics, edited

by H. Ehrenreich and D. Thurnbull (Academic, New York,
1992), Vol. 46, p. 271.
E. C. Stoner and E. P. Wohlfarth, Proc. R. Soc. Lon-

don, Ser. A 240, 599 (1948); see also Solid State Physics
(Ref. 16), p. 303.
M. J. O' Shea and K. M. Lee, J. Magn. Magn. Mater. 99,
103 (1991).
L. Neel, J. Phys. Radium 15, 225 (1954).
U. Gradmann, J. Magn. Maga. Mater. 54-57, 733 (1986).

' A. Aharoni, J. AppL Phys. B3, 4605 (1987); for experimen-
tal results on acicular p-Fe203 particles, surface treated
with Co, see A. E. Berkowitz and F. E. Parker, IEEE Trans.
Magn. 24, 2871 (1988).
F. B@dker, S. M@rup, and S. Linderoth, Phys. Rev. Lett.
72, 282 (1994).
S. Linderoth, L. Balcells, A. Labarta, J. Tejada, P. V. Hen-

driksen, and S. A. Sethi, J. Magn. Magn. Mater. 124, 124

(1993).


