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High-temperature series expansions of the spin-spin correlation function for the XY (or plane
rotator) model on the triangular lattice are extended by two terms up to order 8*. Tables of the
expansion coefficients are reported for the correlation function spherical moments of order ! = 0 and
2. Our analysis of the series supports the Kosterlitz-Thouless predictions on the structure of the
critical singularities and leads to fairly accurate estimates of the critical parameters.

I. INTRODUCTION

In the last two decades since the seminal papers by
Berezinski and by Kosterlitz and Thouless, the critical
behavior of the two-dimensional XY (or plane rotator)
model has been much studied numerically, mainly on
the square lattice,’ '3 but, sometimes, also on the tri-
angular lattice.>® The steady increase of the computers
power, important recent progress in Monte Carlo (MC)
algorithms!'* and the calculation of O(3%°) high tempera-
ture expansions (HTE’s) on the square lattice,® have pro-
duced increasingly accurate verifications of the Kosterlitz
and Thouless (KT) theory.!5'® However, since on reason-
able grounds it has been disputed®!! that these studies
are really conclusive, further quantitative evidence is still
valuable.

Here we present an extension (by two terms up to order
B'*) and a new analysis, by the methods of Ref. 8, of
HTE’s for the XY model on the triangular lattice. Our
study gives further support to the KT picture and leads
to fairly precise estimates of the KT critical parameters.
On the contrary, our results appear not to be consistent
with a conventional power-law critical behavior unless
the exponents are very large, namely v 2 3.2 and v+2v 2
5.4. If this is the case, our O(8'*) series do not seem to be
sufficiently long to yeld accurate estimates of the critical
exponents.

In the second section, we recall briefly the main pre-
dictions of the KT theory. The third section is devoted
to an analysis of the series by ratio extrapolation, and by
rational and differential approximants techniques. The
last section contains our conclusions.

II. THE MODEL AND THE HT SERIES

The Hamiltonian of the two-dimensional XY model is

H{s}=-- s(z)s(z (1)

(z,x")

Here s(z) is a two-component classical spin of unit length
associated to the site with position vector = of a two-
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dimensional triangular lattice and the sum extends over
all nearest-neighbor lattice pairs (z,z’).

Our series have been computed by a FORTRAN code
which solves recursively the Schwinger-Dyson equations
for the correlation functions.”!”

Here we shall analyze the HTE of the spherical mo-
ments of the correlation function m®(3) for I = 0 (re-
duced susceptibility) and | = 2.

Table I shows the HTE coefficients through 84 of the
nearest-neighbor spin-spin correlation function. In Ta-
bles IT and III, we have reported the expansion coeffi-
cients for the moments m()(8) with { = 0 and 2.

The main predictions of the nonrigorous renormaliza-
tion group analysis of the plane rotator model'®!¢ can
be summarized as follows.

The correlation length £(3) is expected to diverge as
[ 1 B. with the unusual singularity

€6) x €an(8) e () 100N @)

where 7 = (3. — 8.
The value of the exponent o predicted in Ref. 15 is
0 =1/2 and b is a nonuniversal positive constant.

TABLE I. HTE coefficients of the nearest-neighbor corre-
lation function.

Order Coeflicient
1 0.500000000000000000000000000000
2 0.500000000000000000000000000000
3 0.437500000000000000000000000000
4 0.312500000000000000000000000000
5 0.182291666666666666666666666667
6 0.072916666666666666666666666667
7 -0.039550781250000000000000000000
8 -0.204481336805555555555555555556
9 -0.448027886284722222222222222222
10 -0.763769531250000000000000000000
11 -1.139343883373119212962962962962
12 -1.581509003815827546296296296296
13 -2.114185611785404265873015873016
14 -2.760278320043385554453262786596
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TABLE II. HTE coefficients of the susceptibility m(®.

Order Coefficient
0 1.000000000000000000000000
1 3.000000000000000000000000
2 7.500000000000000000000000
3 16.87500000000000000000000
4 35.62500000000000000000000
5 72.06250000000000000000000
6 141.2734375000000000000000
7 270.1728515625000000000000
8 506.3834635416666666666666
9 933.5703776041666666666666
10 1697.512101236979166666666
11 3050.264278496636284722222
12 5424.862119886610243055555
13 9561.162654477074032738095
14 16716.55156094636866655299

At the critical temperature, the asymptotic behavior
of the two-spin correlation function as r = |z| — oo is
expected to be

20
(s(©)s@) o« P11 1 onfin(ry}/mr) (3)
The values predicted'®'® for 7 and 6 are, respectively,
n=1/4,0=1/16.

From Egs. (2) and (3), together with the usual scal-
ing ansatz, it follows that, for [ > n — 2, the correlation
moment m()(3) should diverge as 3 1 8. with the singu-
larity

mB(B) o 7%, (B [L+ O(T (7). (4)

At (. a line of critical points should begin which ex-
tends to 3 = oo, so that for 8 > [. both £ and the
correlation moments remain infinite.

Finally, it is worth mentioning the rigorous bound*®

B. > 28! = %1:13 = 0.5493..., (5)

TABLE III. HTE coefficients of the second correlation mo-
ment m®.

Order Coefficient
0 0.000000000000000000000000000
1 3.000000000000000000000000000
2 18.00000000000000000000000000
3 72.37500000000000000000000000
4 239.6250000000000000000000000
5 703.7500000000000000000000000
6 1902.406250000000000000000000
7 4835.969726562500000000000000
8 11719.07975260416666666666666
9 27326.64085286458333333333333
10 61726.45278320312500000000000
11 135743.4609174940321180555555
12 291741.0660864935980902777777
13 614640.8839340452163938492063
14 1272465.830598210733403604497
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where 3! is the inverse critical temperature of the Ising
model on the triangular lattice.

III. AN ANALYSIS OF THE HT SERIES

We estimate the critical parameters by simple modifi-
cations of current methods of series analysis.”-820723

In Refs. 7 and 8 we have shown that the ratios
Ta(m®) = al! /11,2Ll of the successive HTE coefficients

of the correlation moment m(")(3) for large n behave as

C
ra(m®) = . + (_n+’—1) +0(1/n%), (6)
with e = 35, G = —[(2 — 7 + )obB], and A =

min(1,2¢). According to the KT prediction we should
have € = 2/3. This is a clear signature of the KT singu-
larity and it should be detected in a ratio analysis of the
HTE’s.

On the other hand if, instead of (2) and (4), we had
conventional power-law critical behavior so that, as 8 1

Bes
mD(B) ~ 777" W[A 4+ Byt + -, (7)

where A > 0 and, as usual, v and v denote the suscepti-
bility and the correlation length exponents, respectively,
we would obtain a formula analogous to Eq. (6) with
e=1and A =1+ A, namely

ra(mW) = . + ﬂL(l”J—_l”) +0(1/n'*2).  (8)

In Fig. 1, we have plotted versus 1/n the sequences
of ratios 7,(m®) for | = 0 and 2. These ratio plots
exhibit a residual curvature and an increasing slope for
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FIG. 1. The successive ratios of the HTE coefficients of
various moments are plotted versus 1/n. The ratios rn(x)
are represented by solid squares; r, (m(z)) by solid triangles.
We have also plotted the linearll)y extrapolated ratio sequences

rf,l)(x) (open squares), and & (m®) (open triangles).
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large n. If Eq. (8) were a correct representation of the
asymptotic behavior of 7,,(m(®), the O(1/n) terms in (8)
should be suppressed by forming the linearly extrapo-
lated sequences

riD(m®) = nr, (mY) - (n = 1)r,_; (m®)
=B+ 0(1/n'+4), (9)

which, for large n, should approach with vanishing slope
their common limit B.. This does not happen (at least
up to n = 14), as it is shown in Fig. 1 where we have also
plotted the sequences r,(ll)(m(l)) versus 1/n. The esti-
mates of 3. obtained from r$" (m®) still increase rapidly
with order.

Turning to critical exponents, we have computed a se-
quence of (unbiased) estimates of v 4 lv by the formula

(n = 1)2r, (mW) = n(n — 2)r,_1(m®)
nrp—1(m®) — (n — D)r,(m®)

v+ W), =
(10)

The sequences of estimates so obtained for v and y+2v
are plotted versus 1/n in Fig. 2. We conclude that, under
the assumption of power-law scaling, the simplest extrap-
olations suggest v 2 3.2 and v + 2v 2 5.4. These esti-
mates for the exponents are larger than those obtained
from a fit® of (square lattice) MC data to power-law crit-
ical behavior.

Let us assume now that Eq. (6) is valid instead of
Eq. (8), then by reporting the r,(m®)) sequences versus
1/n?/3, we should obtain nice straight plots, as indeed is
observed in Fig. 3. We can suppress the O(1/n?/3) terms
in the sequences r,(m()) by forming the (nonlinearly)
extrapolated sequences

2/3p, (m®) — (n — 1)¥3r,_o(m®)
n2/3 — (n —1)2/3
~ B+ O(1/n). ()

Sn(m(l)) = "

Unfortunately the sequences obtained are not regular
enough to give a much more precise estimate of 8. by
a further extrapolation in 1/n. The results are reported
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FIG. 2. Unbiased estimates of the critical exponent v of
the susceptibility under the assumption of a power-law criti-
cal singularity obtained from the ratios r.(x) (open squares).
Analogous estimates of the exponent 7y + 2v as obtained from
rn(m®) (open triangles).
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FIG. 3. Ratio plots for the HTE coefficients versus 1/n2/3.
The ratios r,(x) are represented by solid squares; r,(m(®)
by solid triangles. The ratio sequences have been extrapo-
lated in 1/n?/3 obtaining the sequences s,(x) (open squares),
sn(m®) (open triangles). A further extrapolation in 1/n
of the sequences s, gives ssll)(x) (open circles), sill)(m(z))
(crosses).

in Fig. 3. We can infer that 5. = 0.683 + 0.004.
A direct unbiased estimate of € in terms of ratios is
obtained from the sequence

t, — 1
€, = nln (%—-) , (12)
tn+1 -1
where t,, = 1;,."(();2)). If the ratios r,(x) and r,(x?) have

the asymptotic behavior (6), the sequence €, will pro-
vide estimates of €. A quantity u, analogous to ¢, may
be defined in terms of the moment m(?)(3) and its square,
and, via Eq. 12, the corresponding sequence €/, may be
formed. The sequences ¢, and €/, have been plotted ver-
sus 1/n in Fig. 4. We have also reported the sequence €,
as computed from the susceptibility x; of the triangular
lattice Ising model,?* in order to emphasize the quali-
tatively different behavior of the two cases. These tests
support the KT theory and are inconsistent with a power-
law singularity: if that were the case, as it appears from
the Ising model plot, the limit of the sequences should be
1. An extrapolation of €, and €], to n = oo by the Barber-
Hamer method?? leads to the estimate o = 0.51 4 0.04,
while for the sequence &, we get 0 = 0.02 &+ 0.04. Note
that this test is able to distinguish sharply powerlike sin-
gularities from KT singularities, unless asymptotic be-
haviors have not yet set in. This is true even if the criti-
cal exponents are large: for instance a reasonable model
series, like x2 ( having v = 3.5), produces an € sequence
with the same qualitative behavior as €,.

The rest of our analysis uses differential approximants
(DA’s) or simply Padé approximants (PA’s).

The expected singularity structure of In(x), namely

In(x) = A(B)(B. — B)~7 + B(B) with A(B) regular and
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FIG. 4. The sequences €, (open squares), €, (open trian-
gles), as computed from the quantities ¢, introduced in Eq. 12,
and from the analogous ones u,, are plotted versus 1/n. The
dashed line indicates the KT prediction for the value of e.
We have also reported the analogous sequence &, (crosses)
as computed from the susceptibility of the triangular lattice
Ising model.

B(8) at most weakly singular at 3., should be reproduced
with reasonable accuracy by inhomogeneous first order
DA’s. We have selected DA’s [n/l;m] with 1 < n < 6,
2 <m < 5, and 2 <[l < 6. From the nondefec-
tive approximants of the reduced sample that use at
least 12 series coefficients, we get the unbiased estimates
Be = 0.680 £ 0.002 and o = 0.49 + 0.03. If we set 0 = %,
we get the biased estimate 3. = 0.681+0.002. Conserva-
tively, we have estimated uncertainties as three times the
standard deviation of the sample. The results remain es-
sentially unchanged whether we use the Fisher-Au Yang-
Hunter-Baker or the Guttmann-Joyce definitions2° of the
DA’s.

We have also computed the PA’s to the logarithmic
derivative of In()x)/8. This quantity should discriminate
between the structures (4) and (7) of the critical singu-
larity, since the residues at the critical poles have either
to approach o, if (4) holds, or to vanish, if (7) holds.
From the PA table for the location of the critical pole
of the approximants to Dln[ln(x)/3] and the PA table
for the residues we get the estimates 5, = 0.684 + 0.003
and o = 0.54 + 0.04. If we set 0 = %, we get the bi-
ased estimate 3, = 0.680 + 0.003. The PA and the DA
estimates are, therefore, consistent, the small difference
in the central values being probably due to background
effects.

Due to the slower convergence of the m(?) series a sim-
ilar DA analysis of the correlation length [using ln(%)]

is unsuccessful unless we assume o = % In this case we
get the estimate 3. = 0.684 + 0.004 consistent with the
previous ones from , but somewhat less accurate.

Assuming o = %, the nonuniversal parameter b may
be obtained by computing PA’s of the quantity

C(B) = L(1)°In(1 + mP/x) = b+ O(r7) (13)

at 3 = B.. Taking 8. in the range [0.680-0.682], we
estimate b = 1.27 + 0.05.

Finally, the critical index 7 governing the large dis-
tance behavior of spin-spin correlation function may be
estimated (without bias on o) by PA’s of the ratio

n m?) /x?
H(B) =" (ltn(x) P 23

at 3 = (B.. Allowing as above for the uncertainty on f3,,
we estimate n = 0.27 £ 0.01.

If we assume a power-law singularity (7), from a study
of the location of the singularities of the PA’s to the loga-
rithmic derivative of the susceptibility Dln(x), we should
be able to estimate (3., and from their residues, the criti-
cal exponent v. As we have already observed in the case
of the HTE’s for the square lattice,® both the PA tables
for the poles and for the residues contain many “defec-
tive entries” or blanks and show a very poor convergence.
These features of the PA’s suggest that the critical singu-
larity is not a power or, at least, that our series are still
too short. If we insist in producing anyway some estimate
of the critical parameters, then, by averaging over all rel-
evant entries of the PA tables for the poles and residues
of the approximants to Dln(x) we get 3. = 0.655 +0.008
and v = 3.7 £ 0.6. This estimate for ~y is consistent with
those from ratio tests, but larger than those obtained in
Ref. 6 from power-law fits to MC data.

” + O(17) (14)

IV. CONCLUSIONS

Let us finally compare our results to those obtained
in previous studies of the model on the triangular lat-
tice. To our knowledge, no MC simulation is available
for the ferromagnetic XY model on the triangular lattice
although, by virtue of the higher coordination number of
this lattice, the approach to scaling behavior is expected
to be faster than in the square lattice case, for the same
lattice size. On the same grounds one can also argue?®
that, for a given number of HT coefficients, the triangu-
lar lattice series are “effectively longer” than the square
lattice ones. In fact, we expect from our analysis that
it would perhaps take only an O(8®) triangular lattice
series to reach the same precision as with our O(3%°)
square lattice series.®

An extensive review of the square lattice numerical
studies can be found in Refs. 8 and 11 and needs no dupli-
cation here. As to HT studies! on the triangular lattice,
we recall that the early ones, based on ten term series,
were essentially inconclusive and did not provide reason-
ably stable estimates of the critical parameters. When
the HT series were extended to twelve terms,® an analysis
by the four-fit method gave convincing indications of the
validity of the KT predictions and yielded the estimates
B. = 0.687 £ 0.009, 0 = 0.5+ 0.1, and = 0.27 £ 0.03.

We believe that our extended series and our new tests
further substantiate the KT picture and provide more
precise estimates of the critical parameters, otherwise
consistent with those of Ref. 5. We have pointed out that
the study of ratio plots, and of the PA’s to the logarith-
mic derivative of x and ¢, are strongly suggestive that the
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critical singularity is not a power. If, however, we want
to pursue a power-law interpretation, we should not over-
look the unusual facts that, for a closely packed lattice,
O(B*) series do not seem long enough to determine with
reasonable accuracy the critical parameters v and v and
that the rough estimates obtained for these exponents are
significantly larger than those observed in conventional
critical phenomena and show a trend to increase with
the number of coefficients used. These estimates are also
larger than those obtained in the power-law fit of Ref. 6
to square lattice MC data. However we have reexamined
the most recent and extensive MC simulation data®!!
on the square lattice and we have observed that they are
consistent with a power-law finite size scaling ansatz if
we choose the larger exponents suggested by our series
(it seems that this range of parameters has not been ex-
plored in the fits of Refs. 9 and 11). Our interpretation
of all these facts has been already pointed out at the con-
clusion of our analysis of the square lattice series:® as the
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critical point is approached, larger and larger effective
exponents are needed to fit an infinite order singularity
by an ordinary power singularity.

We may conclude that, if we extrapolate the HT series
consistently with the KT behavior, we find stable values
of the critical parameters in good agreement with the
KT fits to the MC data and with our previous studies of
HTE’s on square lattice. Our unbiased estimates of the
critical parameters are 3. = 0.680+0.002, o = 0.4940.03,
and = 0.27 £ 0.01.

If we set o = % we obtain the estimate 3. = 0.681 +
0.002 and by also fixing 3. at its central value we find
b= 1.27 £ 0.05.
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