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Finite-lattice extrapolations for a Haldane-gap antiferromagnet
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We present results of exact diagonalizations of the isotropic antiferromagnetic S = 1 Heisenberg
chain by the Lanczos method, for finite rings of up to N = 22 sites. The Haldane gap G(N) and the
ground-state energy per site e(N) converge, with increasing N, faster than a power law. By Vanden
Broeck—Schwartz and Shanks transformations, the extrapolated values are G(oo) = 0.41049(2) and
e(oo) = —1.401485(2). The spin-spin correlation function is well fit by exp( r/—g)/~r with f = 6.2.

I. INTRODUCTION

A great variety of magnetic phenomena can be un-
derstood by the study of classical spin systems. How-
ever, we know that there are some surprises from quan-
tum mechanics in one-dimensional spin systems. Hal-
dane has conjectured that the properties of the one-
dimensional Heisenberg antiferromagnet are qualitatively
diH'erent depending on whether the spin is integer or
half-integer. This intriguing argument applies notably
to the simple prototypical antiferromagnetic (AF) S = 1
spin chain which, according to Haldane, should exhibit
a gap (G) towards spin excitations. This conjecture has
been checked experimentally, in particular with the com-
pound NENP [Ni(C2HsN2) zNOzC104] for which inelastic
neutron scattering and susceptibility measurements have
clearly shown the existence of a spin gap. 2

The Heisenberg AF S = 1 spin chain has been stud-
ied in many numerical works. In 1973, ten years before
the Haldane conjecture, De Neef computed the specific
heat by exact diagonalizations of the Hamiltonian for
chain lengths up to N = 8. In 1977, Blote diagonalized
chains up to N = 10. In 1982, Botet and Jullien, with
diagonalizations up to N = 12, obtained evidence for
a nonvanishing gap in the thermodynamic limit. Their
value for the gap was rather imprecise (G 0.25J). Af-
ter this work, other authors used exact diagonalizations
with chains of increasing length: in 1984, Glaus and
Schneider and Parkinson and Bonner with N = 14,
in 1987, Moreo with N = 16, and in 1990, Lin with
N = 18, a length that has also been reached by Haas
et al. and Takahashi. This growth is almost linear:
two more spins every three years. In fact, the numerical
complexity of an exact diagonalization is 3 . The ex-
ponential growth of computer power is not suKcient to
explain these results and much progress has been done
in the algorithms. However, it is clear that it is very
difBcult to continue along this line of study.

With Monte Carlo methods, longer chains can
easily be studied (for example, N = 64), but the results
have statistical as well as systematic errors (the latter be-
ing much more troublesome). In 1985, Nightingale and
Blote obtained a very precise estimate of the Haldane

gap G = 0.41 by use of a stochastic implementation of
direct iteration. In this case there is a systematic bias,
caused by the finite number of "walkers, " that is difficult
to control.

Real-space renormalization-group methods have also
been applied to spin chains. The first works were quite
disappointing because of large systematic errors, but
in 1988 Lin and Pan, ~ gave the very precise value
G = 0.4097(5). In 1992, White and Huse found G =
0.41050(2) and a ground-state energy with a precision
of 10 by an improved method, the density-matrix
renormalization-group (DMRG) technique. is

Let us brieBy comment on the most precise measure-
ment of the Haldane gap itself in the present implemen-
tation of the DMRG algorithm. These works have used
open chains for which momentum is not a good quantum
number. As a consequence, it is not possible to simply
measure the energy of the Haldane triplet state defined
as the lowest-lying k = vr, S = 1 state on a periodic chain.
Some estimates have looked at the (S = 1)-(S = 2) gap
with simple open boundary conditions but the most pre-
cise estimate of White and Huse uses a fine tuning of a
peculiar boundary condition. In fact, on an open chain,
magnon states are re6ected by the boundaries to form
standing waves. These standing waves can be acted upon
by adjusting the boundary conditions. Since &om the
AHleck-Kennedy-Lieb- Tasakii (AKLT) picture there are
effective spins 1/2 at the end of the open chain, White
and Huse have added extra spins 1/2 coupled to the rest
of the spin-1 chain by an adjustable exchange coupling
J,„g. Such a coupling allows some control over the po-
tential energy of the one-magnon states. To select a state
with a k = vr magnon one has to take J „g——0.5088 that
makes the spin and energy densities most uniform near
the middle of the chain. Then the energy of this state is
the Haldane gap and is measured &om the ratio of the
excess energy density to the spin density near the middle
of the chain where efFects of the end spins are minimal.
The associated systematic errors (choice of J,„~ and uni-
formity) are not yet well studied but they are apparently
small (see Table II of White and Huse). We think it is
worth checking the corresponding accuracy by using a
method which leads directly to the energy of the one-
magnon state such as exact diagonalizations.
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In this work we have used the Lanczos technique on the
longest possible chain we could reach which is N = 22
spins and then we have applied powerful extrapolation
techniques. In this strategy, the only source of error is
due to the extrapolation technique while the finite-lattice
numbers are limited essentially by machine accuracy.

In Sec. II, we explain the numerical method (in par-
ticular the importance of the symmetries and the quan-
tum numbers of the Haldane triplet). The programming
techniques useful for a chain length N = 22 are described
in the Appendix. In Sec. III, we explain our extrapola-
tion method: the Shanks and Vanden Broeck—Schwartz
(VBS) transformations and how we quote errors. In
Sec. IV, we apply our strategy to the Haldane gap and the
ground-state energy. In Sec. V, we compare our results
with those of other authors. In particular, the precision
for the gap is similar to that of White and Huse with
compatible results. In Sec. VI, our results for the corre-
lations functions are presented. They are well described
by a correlation length ( = 6.2. Section VII presents our
conclusions. U =exp iver ) S'

j even

(2)

the z axis (which is diagonal in the z-axis basis), and the
7r rotation around the x axis, R = exp(inS ). In this
basis, R ~(s, ),) = ~(

—s, );) and the action of R is a flip
of all the spins. So B maps the subspace S, = m onto
S, = —m and reduces the size of blocks only for m = 0.

We will now explain which blocks contain the ground
state ~0) and the first excitation ~1). Because of the SU(2)
symmetry, the eigenvectors can be labeled by the quan-
tum numbers j and m. Each energy level has a degener-
acy 2j + 1 and a representative member in the subspace
m = 0. On the other hand, the subspace m = 1 contains
no singlet j = 0. With the help of general arguments,
the ground state ~0) of an antiferromagnetic model is a
singlet j = 0, but the first excitation can have j = 0 or 1.
The full diagonalization of 0 for short chains shows that
the first excitation has j = 1: the Haldane triplet. We
denote it ~l, m) with m = —1, 0, or 1. The other quan-
tum numbers are obtained by using the transformation

II. NUMERICAL METHOD

The Hamiltonian for a chain of length X is

1V

II =) S; S+i,

where the S, are the quantum spin-1 operators. The ex-
change constant is positive (J = 1) in the antiferromag-
netic case. The boundary conditions are periodic (N+1
—:1) and the length N is even to avoid frustration.

We have computed, by exact diagonalization of the
Hermitian matrix II, the ground state ~0), its energy
Ep, its spin-spin correlation functions, and the energy
of the first excitation El, for finite lengths up to N = 22
spins. The Haldane gap G(N) is the difference between
Ep and El, the two lowest eigenvalues. The extrapolation
method, which gives an estimation of G(oo), is explained
in the next section. We have used the standard Lanczos
method, which is well adapted for this problem: The
matrix is very sparse and only a few extreme eigenvalues
are needed.

The size of the matrix 0 is 3 x 3 . With the sym-
metries of the Hamiltonian, H is block diagonal and
only the two interesting blocks, with a size smaller than
3, must be diagonalized. The symmetries of the lat-
tice are the translational invariance T, and the left-
right reflection Lr (Lr transforms the wave vector k to
—k; so it reduces the size of blocks only for k = 0
or x). The spin symmetries are the global rotation
S = g, S, [it seems difflcult to implement this symme-
try, and in practice, only a subgroup of SU(2) is usedj.
The matrix elements are computed in the z-axis basis:

(~ si, sz, . . . , s~) ) where s, = —1, 0, or 1, are the eigenval-
ues of S;. In this basis, T!s„.. . , s~) = ~s2, . . . , s~, si)
and Lr~ {s, ),) = ~(s~;j,). The spin symmetries that can
be implemented easily are S', the magnetization along

which is diagonal in the z-axis basis. The interest of U
is that the nondiagonal elements of UHU are 0 or —1.
The Perron-Frobenius theorem can then be applied in
each subspace S, = m. For m = 0 or 1, it follows that
the components of U~O) and U~l, 1) are strictly positive
(in the z-axis basis). In a subspace S, = m, T U =
(
—1) U T. So ~0) has the wave vector k = 0 and ~1, 1)

(and so the entire Haldane triplet ~l, m)) has k = vr.

The left-right reflection Lr commutes with U; ~0) and
1, 1) (therefore all the triplet) are even for Lr. The spin

rotation R commutes with U; ~0) is even for R . But
R ~1, 1) = 6~1, —1) and only ~1, 0) is an eigenvector of
B . In a triplet, the eigenvalues of S are —1, 0, and

1; so those of R are —1, 1, and —1. The eigenvectors

~1, 1) + ~l, —1) match +1; necessarily, the eigenvalue of
~1, 0) for R is —1. To summarize, the ground state ~0) is
in the subspace (S, = 0, k = 0, Lr = +1,R = +1) and
one representative of the Haldane triplet is the ground
state of the subspace (S, = 0, k = n, Lr = +1,R = —1).

The advantage of these symmetries is the reduction of
the size of the matrix. The size of the subspace S, =
m is PN!/(n+! no! n !) with n+ + no + n = N and

n+ —n = m. When N is large,

1
dim(S, = 0) ——

2

The translation T reduces this size by a factor N (asymp-
totically when N is large), the left-right reflection Lr by
2 (N large), and the z rotation R by 2 (N large). For
N = 22, the size is reduced by 851 (1% better than the
asymptotic formula) and it is equivalent to N = 16 with-
out symmetries.

Certain methods are well adapted to obtain the ground
state of a large, unstructured sparse and symmetric (or
Hermitian) matrix, for example, the conjugate gradient
and the Lanczos method. In these iterative methods,
by starting with an arbitrarily vector Vp, the matrix H
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acts only in matrix-vector multiplications and remains
sparse: The vector V„ is a linear combination of H - V„
and the previous V s (i ( n —1). Then V„ is in the
subspace iC„= span(Vo, H . Vo, . . . , H" . Vo). From a
theoretical point of view, the Lanczos method builds an
orthogonal basis of K„and the projection of H on K is a
tridiagonal matrix n x n. After n iterations, the ground
state is approximated by the vector of K„which min-
imizes the Rayleigh quotient R(V) = (ViHiV)/(ViV).
So, by construction, it is the fastest convergent method
among these one using H V multiplications. Because
computers have a finite precision, the orthogonality of
the V, tends to be lost after many iterations and it is dif-
6cult to obtain many eigenvalues. However, as we want
only the ground states of some blocks, we used the Lanc-
zos method. For N = 22, only 55 iterations (or matrix-
vector multiplications) are needed to obtain eigenvalues
with a precision which cannot be improved by more iter-
ations. Details on the programming techniques are given
in the Appendix.

III. NUMERICAL RESULTS
AND EXTRAPOLATION METHOD

The numerical values are given in Table I with 12 digits
after the decimal point, for periodic chains with length
up to N = 22. We have no direct means to estimate
the precision. Some direct iterations have been made
with the eigenvector obtained by the Lanczos method
and the precision is estimated at better than 10 for
the ground-state energy Eo and the first excitation Ei.
The sizes N = 2 and 4 are added because we will see that
they have, surprisingly, a good behavior with respect to
the extrapolation method. Results up to N = 18 have
been published by other authors (see the caption of Table
I).

The gap G(N) = Ei —Eo and the ground-state en-

ergy per site e(N) = Eo/N have still not converged. To
obtain a good estimate of their thermodynamic limits,

the convergence must be accelerated by an extrapolation
method, adapted to their behavior.

For periodic chains, the convergence of the gap has
been observed to be exponential. In a theory with a gap,
we expect of course exponential convergence towards the
thermodynamic limit for a closed chain. This has been
shown explicitly in the large-N limit of the nonlinear o
model. We analyze the estimated decay length g(N) at
the index N as given by

(4)

where aiv represents the sequence G(N) or e(N). If aiv =
A + b exp( —N/(), then ((N) = ( exactly for all N. If
a~ = A+b/(N —no)", then((N) (N —no)/(v+1) for
N large, and the exponent v is given by the asymptotic
slope of ((N)

In Fig. 1, we have plotted ((N) for G(N) and e(N).
Both curves are concave: The estimated exponent v in-
creases with N (for N = 22, respectively, v 15 and
ll). This figure shows that the gap and the energy per
site converge faster than a power law. This is good evi-
dence for the expected exponential behavior of the Hal-
dane conjecture. For this reason, we extrapolate with
the Shanks transformation. We explain in some de-
tail this method because we will use it in a different way
than Ref. 15 or 26. If the sequence a~ is a sum of k
exp onentials,

a~ ——g+ b, e-N/~' + -+ b~ e-"i~"

the limit A is one of the 2k + 1 unknowns and
can be obtained by solving the system (5) for

aN 2I„.. . , aN, aN+2, . . . , a~+2A;. We call AN this so-(~)

lution, i.e., the limit A extracted from aber 2q, . . . , apr+2i.
supposing that the sequence a~ is a sum of k exponen-
tials. Of course, if the sequence a~ has not exactly this
form, then A~~ varies with N. The simplest case of the
Shanks transformation is k = 1. The solution is

TABLE I. Dimension of the largest block (S, = O, k = O, Lr = +1,R = +1), ground-state
energy Eo, first excitation energy Ei, gap G(N) = Ei —Eo, and ground-state energy per site
e(N) = Eo/N for chain lengths N = 2—22. These results are obtained by exact diagonalization.
Previous results for N = 8 are given by De Neef (Ref. 3), N = 10 by Blote (Ref. 4), N = 12 by
Botet and Jullien (Ref. 5), N = 14 by Claus and Schneider (Ref. 6) and Parkinson and Bonner
(Ref. 7), N = 16 by Moreo (Ref. 8), and N = 18 by Lin (Ref. 9).

N
2
4
6
8

10
12
14
16
18
20
22

Dimension
2
5

15
59

290
1 728

11 549
82 790

617 898
4 730 966

36 871 567

4.0
6.0

8.617423181814
11.336956077897
14.094129954932
16.869556139477
19.655133499935
22.446807281171
25.242312007671
28.04Q291720480
30.8398988?9910

2.0
5.0

7.896795819190
10.743400823522
13.569322004518
16.385359669563
19.196168152997
22.004011719811
24.810090537803
27.615081406019
30.419383859516

Gap G(N)
2.0
1.0

0.720627362624
0.593555254375
0.52480?950414
0.484196469914
0.458965346938
0.442795561360
0.432221469868
0.425210314461
0.420515020394

e(N)—
2.0
1.5

1.436237196969
1.417119509737
1.409412995493
1.405796344956
1.403938107138
1.402925455073
1.402350667093
1.4Q2014586Q24
1.401813585450
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the A~ are the Pade approximants of the series. Due to
the nonlinearity of Eq. (7), only a few exact results are
known. For example, if aN is a sum of exponentials,

a~ - W+) l;e "~~' when N -+ ~,

with (q ) (2 ) ) 0, then for k fixed and N -+ oo

Q

6 10 22

FIG. 1. The estimated decay length g(N) given by Eq. (4)
for the gap G(N) and the ground-state energy per site e(N)
vs the length N of the periodic chain.

A(1) 0N+2 +N —2
2

)- ..-2-+ (6)

(g( ) g( ))— + (g( ) g( ))—
(7)

with the initial conditions A~ ——aN, A~ ——oo and
where n = 1 (for the Shanks transformation). The table

of the A~ veri6es many algebraic properties; for ex-
ample, if the a~ are the partial sums of a power series,

which is also called Aitken's 6 process. This
Aitken-Shanks transformation (6) with k = 1 can be
iterated: ' ' It is erst applied to a~, then again to
the obtained sequence A~, and so forth. The iteration

of the (k=1) transformation does not give the A&, for(A, )

k ) 1. For k ) 1, the AN can be computed by using the(&)

recursive "cross rule" due to Wynn,

(g("+') g(")
)
—~ + (g(" ') g(")

)
—~

(k) ( %+1 1) '''( @+1 k)+ @+X
Aq+, (1 —Ag) 2 . (1 —Ag) 2

e

with A, = e ~~'. (9)

Each k iteration removes an exponential and each column
k will be more rapidly convergent than the previous ones
when N goes to the inlnity. Even if the exact results
are rare, in practice a quite general class of sequence is
accelerated.

The parameter n in Eq. (7) was introduced by Vanden
Broeck and Schwartz2s (VBS). The table changes when
n varies. The Pade-Shanks transformation (at order k)
is given by n = 1. The iterated Aitken-Shanks (k=1)
transformation is given by 0, = 0. When o. = —1, Hamer
and Barber2 have shown that, if a~ has exactly the
power law behavior a~ = A+ b(1 —v/2)(1 —v/4) (1—
v/N) (for N large, a)v A+ b'/N"), the second column

A& ——A for all N. Hamer and Barber s transformation(2) )

can be iterated with o.p ——0, —1,0, —1, . . . successively
for each column k.

IV. EXTRAPOLATED VALUES

In Table II, we give the results of the Shanks transfor-
mation (n = 1 and k = 1—5) for the gap G(N) = Ey —Fp.
The estimated decay lengths ((N, k), defined by Eq. (4),
are calculated, for each k, with the AN . One sees that
the data of each column are monotonic. This is also true
with the last oblique row. In particular, the ((N, k) de-
crease with k. In fact because of the rather small values
of N, ((N, k) represent only an effective decay length
and ((N, k) involve data &om smaller value of N than
((N, k —1). Thus what we have to expect is

TABLE II. The Shanks extrapolations A~ for the gap values
(with the VBS parameter cr = 1). The estimated decay lengths
formula (4) on the A("

G(N) = Eg —Ep with k = 1—5

( are obtained by applying the

G(N)
2 2.000000
4 1.000000 0.612320
6 0.720627 0.487533
8 0.593555 0.443776

10 0.524808 0.425578
12 0.484196 0.417574
14 0.458965 0.413941
16 0.442796 0.412240
18 0.432221 0.411414
20 0.425210 0.410996
22 0.420515

1.57
2.54 0.435259
3.26 0.417985
3.80 0.413089
4.20 0.411524
4.50 0.410954
4.71 0.410714
4.87 0.410600
4.99

1.91
2.28 0.412584 1.59
2.43 0.411146 1.75
2.53 0.410744 1.98
2.64 0.410590 2.32
2.77 0.410523 2.69
2.94

0.410712 1.57
0.410555 2.08 0.410498 1.85
0.410501 2.38
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((N, k) & ((N + 2, k —1). (10) with N up to 22, the ground-state energy per site is

These inequalities are all satisfied and the idea that the
Shanks transformation removes at each step an exponen-
tial transient is coherent. The values for N = 2 and 4
do not disturb the table. One must compute this table
with at least double precision arithmetic (64 bits), be-
cause large cancellations occur in the cross rule (7). We
verified that the precision is better than 10 (only six
digits are retained).

If the parameter a of Eq. (7) takes a value sufficiently
different &om a = 1, this table loses its consistency [for
example, Eq. (10) is not verified for all (N, k) values]
and the extrapolation cannot be trusted. In particu-
lar, n = 0 (iterated Aitken-Shanks transformation) and
ni, ——0, —1, 0, —1, . . . (Hamer and Barber's transforma-
tion) do not give a satisfactory table. For the gap, the
acceptable interval is 0.7 ( a ( 1.05 (close to n = 1, the
pure Shanks transformation) and the respective extrapo-
lations A~ ~ for these bounds are 0.410478 and 0.410 504.
Then, with the VBS or Shanks transformation, for peri-
odic chains with N up to 22, the gap value is

G(oo) = 0.41049(2).

The error bar (2 x 10 s) is an estimation of the system-
atic error due to the arbitrary parameter n. The Shanks
transformation does not give a direct estimation of the
systematic error with respect to the true limit. But the
main argument in favor of this method is the good regu-
larity of the data of the Table II.

Now we study the ground-state energy per site e(N) =
Eo/N with a same method. In Table III, we give the
results of the Shanks transformation (o. = 1 and k = 1—
5). The convergence is faster (in particular, the decay
lengths ( are shorter) and the precision is better (10
but only six digits are given here). For n = 1 (the pure
Shanks transformation), the table is consistent: All the
columns are monotonic, as is the last oblique row, and
the ('s decrease with k. For o. , the acceptable interval
is 0.5 & o, & 1.1. The respective extrapolations A~ ~ for
these bounds are —1.401484 and —1.401487. Then, with
the VBS or Shanks transformation, for periodic chains

e(oo) = —1.401 485(2). (12)

V. COMPARISONS

We compare our extrapolations with those published
by other authors. For the most part, numerical results
have been obtained by exact diagonalizations (with sim-

ple iterations or Lanczos method), Monte Carlo simula-
tions, or the real-space renormalization-group method.
Of course, for a fixed chain length N, we find the same
results as the other exact diagonalization studies: Blote
for N = 10, Glaus and Schneider and Parkinson and
Bonner for N = 14, Moreo for N = 16, and Lin for
N = 18. Sakai and Takahashi, with N & 16 results
extrapolated by the Aitken-Shanks iterated transforma-
tion [Eq. (6)], give G(oo) = 0.411(1), compatible with
Eq. (11).

The results of Monte Carlo calculations have statis-
tical as well as systematic errors but longer chains (for
example, N = 32 or 64) can be studied. The stochastic
iteration of Nightingale and Blote gives compatible re-
sults: G(32) = 0.413(7) and e(32) = —1.40155(16), as
the method of Liang:i e(64) = —1.402(1). On the other
hand, the projector Monte Carlo method of Takahashiii
is not compatible: e(32) = —1.4023(1). The methods
based on the Trotter-Suzuki decomposition are charac-
terized by imprecisions when the temperature goes to
zero and the properties of the ground state are not well

reproduced. For example, Nomura gives 0 = 0.425.
Concerning the real-space renormalization-group

method (or truncated basis expansion), we are in dis-
agreement with some of the published values: Pan and
Chen (G = 0.368166 and e = —1.449724), Mattis and
Pans (e = —1.388), and Xiang and Gehrings2 [e(oo) =
—1.377]. On the other hand, we agree with Lin and
Pan:i e(oo) = —1.4021(5) and G(oo) = 0.4097(5) and
with the recent method of White which gives e(oo) =
—1.401484038971(4) and G(oo) = 0.41050(2). These
values are in good agreement with ours; the ground-state

TABLE III. The Shanks extrapolations A~ for the ground-state energy per site e(N) = Eo/N(Iz)

with k = 1—5 (with the VBS parameter a = 1). The estimated decay lengths ( are obtained by
applying the formula (4) on the A "

N e(N)—
2 2.000000
4 1.500000 1.426917
6 1.436237 1.408933
8 1.417120 1.404208

10 1.409413 1.402598
12 1.405796 1.401974
14 1.403938 1.401713
16 1.402925 1.401596
18 1.402351 1.401541
20 1.402015 1.401514
22 1.401814

0.97
1.66 1.403743
2.20 1.402154
2.64 1.401712
3.00 1.401571
3.29 1.401521
3.53 1.401500
3.73 1.401492
3.89

1.50
1.86 1.401683
2.11 1.401544
2.30 1.401505
2.47 1.401492
2.64 1.401487
2.82

g(4)

1.56
1.75 1.401503 1.59
1.95 1.401490 1.83 1.401486 1.68
2.17 1.401486 2.01
2.38
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TABLE IV. The correlation functions C~(r), calculated by exact diagonalization for N up to
22. For N & 18, these results have been published by other authors (Refs. 7—9).
r N=6
1 0.47874573
2 0.28844542
3 0.28606604
4
5
6
7
8
9

10
11

8 10 12
0.47237317 0.46980432 0.46859878
0.27210249 0.26392567 0.25918542
0.24086913 0.22135314 0.21075706
0.21561295 0.18479849 0.16814782

0.18180007 0.15402811
0.14543474

14 16 18 20 22
0.46797936 0.46764181 0.46745022 0.46733819 0.46727118
0.25622175 0.25429251 0.25300867 0.25214355 0.25155626
0.20436261 0.20028789 0.19761348 0.19582835 0.19462472
0.15810415 0.15169940 0.14749166 0.14468055 0.14278366
0.13824755 0.12849332 0.12220081 0.11804519 0.11526281
0.12353893 0.11017252 0.10161828 0.09599964 0.09225227
0.12121726 0.10228686 0.09052395 0.08293057 0.07792178

0.09842421 0.08305179 0.07322701 0.06679153
0.08143053 0.06847270 0.06012605

0.06646187 0.05588756
0.05479614

energy is more precise and the precision on the gap value
is similar. The fact that both methods give results with
six and five identical digits is a good argument that they
are both quite accurate.

VI. CORRELATION FUNCTIONS

In this section, we present our results for the correla-
tion functions

C (") = (—1)"(S'S;) = (—1)"(S S)/3,

for the ground state of an isotropic and periodic chain
of length N for N & 22. Numerical values are given in
Table IV. To compute these quantities, the eigenvalue
is not sufhcient and the eigenvector is required. So the
precision for the CN (r) is less than for the energies. It can
be estimated around 10, for example, by comparing
C~(1) with E(N), or by direct applications of the matrix
0 on the Lanczos result.

For an infinite chain, the Haldane conjecture predicts
an exponential decrease C (r) b exp( r/()/i/r w—hen
r is large. This is because the underlying continuum the-
ory is a nonlinear cr model which is retativistic in 1+1
dimensions. In fact, if we approximate the nonlinear
0 model by free massive bosons, the propagator is the
modified Bessel function K0 which has this asymptotic
behavior. The Haldane conjecture does not deal with
short-distance details so that there is no a priori pre-
ferred choice when trying to fit data on the full range of
spin-spin separation.

For a periodic chain, one has the equality C~(r)
CN(N —r). To extract the correlation length ( for
N and r large, we analyze our data with the guess
C~(r) = C~(r) + C (N —r), which is reasonable if
( « N For some classical . spin systems (one-dimensional
Potts model, Ising chain with a magnetic field, etc.) with
nonvanishing temperature, the corrections to this for-
mula are of order O(C (N)).

We have verified that exp( r/()/~r fits the d—ata bet-
ter than exp( —r/() or exp( —r/()/r. From these three
forms, the estimated values for ( are respectively 6.2, 4.5,
and 10, for X = 22. In Fig. 2, we compare the Bessel
function Ko(r/() and exp( r/()/~r. Both fits —are com-
parable in quality. But the estimated correlation lengths
f are slightly diferent: 5.9 versus 6.2 for N = 22. For

X = 10, they are respectively 5.4 and 6.2. We notice that
the optimal ( is 6.2, for all N & 22, with exp( —r/()/+r,
whereas the estimations for ( with the Bessel function
vary with N. For this reason, we prefer the former but
we keep in mind that both laws have the same asymptotic
behavior and that only an exact solution of the model can
give the correlations for short range.

It is interesting to compare the correlation length (
[obtained with C~(r)] and the decay length ((N) LEq.

(4)] of the gap G(N) (Table II) and energy e(N) (Ta-
ble III). In Fig. 1, we see that it is not excluded that
( = 6.2 is the limit of ((N). The extrapolation of ((N)
with the Shanks transformation gives 5.5 for the gap and
4.6 for the energy, but the columns of the Shanks table
are nonmonotonic and these results are only qualitative.
Of course, by analyzing the convergence of the G(N) and
e(N) with an exponential corrected by a power law (as
1/~N), the estimations of ((N) are greater, and the ex-
trapolations are closer from 6.2. Then this comparison
is only qualitative and requires longer chains. Our value

(( = 6.2) is equal to the estimate quoted by Nomura s

(tr = 6.25) and by Liangi4 (( = 6.2) with Monte Carlo
methods for X = 64. It is comparable with the results of
Takahashiiz (( = 5.5 + 2.) with a Monte Carlo method
for N = 64, by Kuboss (( = 6.7) with a transfer-matrix
method, and by White and Huse (( = 6.03) with the
real-space renormalization-group method.

6,2

5.9

22

FIG. 2. The ratio of the correlation function
C~(r) = (—1)"(So S*) and two proposed laws vs r The.
C~(r) have been exactly computed for N = 22. The ratios
are normalized to 1 for r = N/2.
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VII. CONCLUSION

The main limitation of exact diagonalizations is, of
course, the small lengths that can be studied. The nu-
merical complexity grows as the exponential [S(S+l)]~
for N spins S and the limits of computer power are fastly
reached. The length N of the system must be compared
with the physical correlation length (, and in fact, the
situation for the 8=1 AF spin chain is quite favorable.
Within the Haldane conjecture, ( is finite for integer spins
and shortest for small S. We have shown that some quan-
tities can be measured with excellent accuracy: the gap
and the ground-state energy. On the other hand, the
correlations C (r) (and thus the correlation length ()
clearly need longer chains.

The main advantages of exact diagonalizations are that
they depend only on one parameter (the size N) and give
exact results (i.e., with machine precision). One has to
deal only with the thermodynamic limit. By compar-
ison, methods based on Trotter-Suzuki decomposition
have three parameters (number of slices, temperature,
and length of the chain) and systematic errors which de-
crease by extrapolating in the number of slices. Monte
Carlo methods have their own parameters (number of
walkers or length of simulations, etc.) which must be
tuned, and the results have statistical Huctuations as well
as systematic errors. Real-space renormalization-group
methods have to extrapolate with respect to the number
of basis states and the chain length.

The high precision allows the use of sophisticated ex-
trapolation methods and we are able to validate some
assumptions on the asymptotic behavior. Figure 1 sug-
gests that the use of the Shanks transform. ation is optimal
concerning gap extrapolation. In fact the parameter n of
the more general VBS transformation can vary only in a
small interval around n = 1. This shows that our choice
is not arbitrary but dictated by the data. The results of
exact diagonalizations combined with a careful extrapo-
lation can give physical quantities in the thermodynamic
limit with a good precision.

APPENDIX: PROGRAMMING TECHNIQUES

We used a Cray 2 of the CEA with a central memory
of 256 megawords of 64 bits. Some details of our pro-
gram are useful only for this kind of machine in particular
and are not described here. The algorithm has two main
parts, the building of the sparse matrix H (and its stor-
age on disks) and the matrix-vector H. V multiplication,
needed for the Lanczos iterations.

We consider 6rst the matrix multiplication. The ma-
trix H is very sparse. For N = 22, its order is 37 x 10
and the number of nonvanishing elements is (on average)
8N/9 per rows (when N is large). We use the classical
storage by rows with only the nonvanishing elements of
H (values and column number) stored. In practice, 1 bit
is needed for the value (+1) and 26 bits for the column
number. So two elements are stored in a 64-bit word and
3.5 gigabytes are used for H. The matrix-vector rnultipli-

cation is done by an indirect addressing of the elements

of the vector, where the address is the column number.
This indirect addressing is the most time consuming part
of the program and it is intrinsic to this sparse storage
method. For N = 22, a multiplication needs 190 s of one
Cray 2 CPU.

The most difficult part of the algorithm is the building
of the matrix with use of symmetries. Each z-axis basis
state ~si, . . . , siv) is described by the number P„(s„+
1)3" i. First, the list of the symmetrized basis states
is obtained. Each symmetrized state is represented by
the state of the z-axis basis, which contributes and has
the smallest number. Then the Hamiltonian H operates
on this list and generates other states. The problem is
to find the corresponding symmetrized states (and their
phases). Possible methods are (a) each generated state
is symmetrized by action of all the symmetries operators
or (b) a storage table gives, for each z-axis state, the
symmetrized one and the generated state is searched in
this table. The first method is too time consuming and
the second one uses too much memory.

%e use an intermediate method with a decomposition
in two sublattices, A = (sq„) and B = (sq„+i). The
symmetries R, Lr, and T " do not exchange A and B.
We call them sublattice symmetries. On the other hand,
symmetries T~"+ exchange A and B. Then, each sym-

metry is the product of a sublattice symmetry and possi-
bly T. Since a sublattice is described only by 3 ~ states,
we can use a storage table which gives for each sublattice
state the symmetrized one. For all the chain, A syrn-
metrization consists of symmetrized A and to operate on
B with the same operator. Since a storage table of size
3~~2 is available, it does not require much time or mem-

ory. The last step is the action of T, which exchanges A
and B, and S„which imposes S,(A) + S,(B) = 0. By
symmetrizing by T, the number of the A-symmetrized
states (around 78 x10s for N = 22 and S, = 0) is di-
vided by 2 (for N large). On our computer, we keep on
memory the list which gives the fully symmetrized state
for each A-symmetrized one. This list has some proper-
ties of factorization, as well explained in Ref. 9, and the
location of each state is easily obtained by considering
each sublattice. To summarize, a generated state is, in a
first step, symmetrized by 8, Lr, and T " (which keep
invariant the sublattices), and in a last step by T. The
first step needs only short lists (3~~2) and the final one
a big list, for which the length is 2 times the order of the
fully symmetrized block. For N = 22, our program needs
2200 s of one Cray 2 CPU to build the matrix H.

For one block (~0) or ~1, 0)), with the Lanczos method,
the precision cannot be improved after 55 iterations (for
N = 22). To compute eigenvectors, the Lanczos method
is not optimal because all the intermediate vectors must
be stored. To do that, 16 gigabytes are required. Then, a
6rst Lanczos calculation gives the eigenvalues and the co-
ordinates of eigenvectors on the Lanczos basis. A second
Lanczos calculation is needed to generate the eigenvec-
tor'S.

The computations of this paper have used 12 h of one
Cray 2 CPU.
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