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It is argued that dislocations in the L12 intermetallic compounds displaying the yield strength anoma-

ly undergo a stress-driven pinning-depinning transition. The transition is from a dynamic phase in

which a moving dislocation becomes immobile to a dynamic phase in which a moving dislocation, in an

infinite medium, remains mobile for all time. The distribution of event times and areas, where an
"event" is the mobilization and subsequent immobilization of a dislocation, is related to measurements
of the primary creep transient. At the critical point of the proposed transition, the distribution of events

becomes scale invariant. A simple scaling hypothesis connects the scaling behavior of the transition to
the time dependence of the creep tests. A simplified model of dislocation motion is presented and used

to study the properties of the transition. The properties so calculated are not obviously consistent with

the published interpretations of experiments, but are consistent with the published data. A reinterpreta-
tion of those experiments is proposed.

I. INTRODUCTION

It is argued below that the dislocations responsible for
the plastic deformation in L12 compounds undergo a
stress-driven pinning-depinning transition. A simple
scaling argument is used to connect the continuous na-
ture of this transition to the mechanical properties of the
compounds. It is demonstrated that primary-creep-
transient measurements provide a means to determine
important characteristics of the transition.

This paper is organized as follows. This section is an
introduction containing background on the mechanical
properties of these intermetallics. In Sec. II a model is
presented which establishes the connection between the
pinning-depinning transition and the primary-creep tran-
sient. Section III introduces the simulations used to
study the transition. Section IV contains a numerical
study of the transition, including results for the critical
exponents. Section V presents a discussion of the experi-
mental results predicted by the theory. Finally, Sec. VI
presents the conclusions.

The current understanding of plastic deformation in
the L12 intermetallics relies on both experimental and
theoretical research efforts spanning more than 20 years.
A summary of experimental and theoretical results
relevant to this paper is presented in the following.

The L12 intermetallic compounds are technologically
important. Unlike most metals which get weaker with
increasing temperature, the strength of many I 12 com-
pounds increases with temperature over a range of tem-
peratures. ' It is this "anomalous How" behavior which
leads to the use of these compounds in high-temperature
structural applications. For example, the primary corn-
ponent of modern superalloys used for turbine blades in

jet engines is based on the ordered phase of Ni3A1. As
the temperature of a typical compound is increased from
300 to 900 K, the yield strength increases, approximately
by a factor of 9.

The anomalous temperature dependence of the yield
strength is due to the tendency of the dislocations to form
nonplanar core structures. ' Since the Burgers vectors
of these dislocations are vectors of the superlattice, the
dislocations are referred to as superdislocations. Figure
1(a) depicts the presumed core structure of a glissile su-

perdislocation. The superdislocation has a Burgers vec-
tor a(101),where a is the cubic lattice constant. In gen-
eral, the energy of a dislocation scales with the square of
the magnitude of its Burgers vector. It is therefore ener-
getically favorable for the superdislocation to dissociate
into two superpartial dislocations, each with Burgers vec-
tor a/2(101). The region between the dissociated super-
partials now contains a (111) antiphase boundary (APB).
The equilibrium separation between superpartials is
determined by the balance of the repulsive elastic interac-
tion between the superpartials and the surface tension
due to the APB. The superpartial dislocations are thus
bound by the APB. Each superpartial dislocation can
further lower its energy by dissociation into two
a/6(112) Shockley partials. The Shockley partials are
bound by a region of crystal containing a complex stack-
ing fault (CSF). In this configuration, in which the four
Shockley partials of a single superdislocation lie in a sin-

gle (111)plane, the superdislocation is mobile.
Both microstructural and theoretical evidence suggest

that the planar, glissile configuration is not the lowest-
energy configuration. Superdislocations have a tendency
to "cross slip" from the (111) plane to the (010) plane.
The completely cross-slipped configuration, referred to as
a Kear-Wilsdorf lock, is shown in Fig. 1(b). This cross-
slip tendency arises from two sources: The (010) APB en-

ergy is lower than the (111)APB energy, and the elastic
interaction between superpartials generates a torque
which also drives the cross slip.

Paidar, Pope, and Vitek (PPV) proposed that cross
slip is a thermally activated process leading to the forma-
tion of a localized pinning point. This pinning point is
shown in Fig. 1(c). Note that PPV have assumed that,
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FIG. 1. Three possible core con6gurations of the screw su-

perdislocations in the L12 intermetallics: (a) the assumed struc-
ture of a glissile superdislocation, (b) the cross-slipped state, a
Kear-Wilsdorf lock Ref. (5), and (c) the formation of a cross-
slip-pinning point. SP& refers to the forward superpartial, and

SP2 refers to the rearward superpartial. APB denotes an anti-
phase boundary. In panels (a) and (c), the antiphase boundary is
of the (111)type. The Kear-Wilsdorf lock of panel (b) contains
a (010) APB. In all cases, the superpartials are dissociated into
two Shockley partials. The Shockley partials are connected by a
(111) complex stacking fault. Thermally activated constriction
of this stacking fault is required for cross slip to occur.

under an applied stress, complete cross slip [Fig. 1(b)] is
dynamically impossible. The super dislocation is en-
visioned, by PPV, to move as shown in Fig. 2. In the ini-
tial state, pinning points have formed at the sites labeled
A. The superdislocation bows around the pinning points,
exerting a force on them. Eventually, this force reaches a
critical value at a critical bowing angle 8, (the bowing an-

gle is measured between the superdislocation s line direc-
tion and the screw orientation). At this point, the bowing
force is sufficient to overcome the pinning points, and
they dissolve. Simultaneously, however, new pinning

A'

Pinning
Point

FIG. 2. Illustrations of successive positions for a superdislo-
cation moving on the (111)plane by bowing between the local-
ized pinning points as envisioned by PPV. Note that the pin-
ning points are assumed to form in a regular array. The period-
ic length between pinning points is indicated as 1. The super-
dislocation bows between these obstacles, exerting a force on
them. When this angle reaches the critical value, 8, in the
Sgure, the obstacles at A are assumed to dissolve. Concomi-
tantly, new obstacles are assumed to form at A'. The Burgers
vector b is indicated.

points are envisioned to form at the points labeled A',
thus establishing a "steady state. " Note that at lower
stresses it is possible for the line tension in the superdislo-
cation to prevent bowing to the critical angle. In this
configuration, all the segments in the PPV-like super-
dislocations become immobile —the superdislocation is
pinned. As the temperature increases, the frequency of
the formation of the pinning points increases, thus reduc-
ing the average distance between pinning points. This de-
creased distance, in turn, requires that a larger stress be
applied to allow the segments to bow to the critical angle.
This is the microscopic process responsible for the yield
strength increase.

There are several details of the cross-slip pinning pro-
cess which are of importance to what follows. First, the
frequency of cross slip increases with temperature.
Second, in order for cross slip to occur, the superdisloca-
tion must be oriented along the screw direction. Third, a
pinning point dissolves (athermally) when the adjacent
superdislocation segment bows to a critical bowing angle.

Direct simulation of dislocation motion resulting from
the PPV model of an individual pinning point, but
without the artificially imposed spatial and temporal
correlations between pinning events, allows a detailed
study of the dynamics of superdislocation motion ' (for
brevity, "dislocation" will henceforth refer to the total
a(101) Burgers vector of the superdislocation). These
studies reveal features of the dislocation motion that are
relevant to the current work. Most importantly, the
dislocation line tension and the physical constraints on
the formation of pinning points lead to correlations be-
tween the pinning points.

Consider the expansion of an (initially} circular loop.
Since only screw-oriented segments can pin, the edge por-
tion of the loops move rapidly, unhindered by cross-slip
pinning. The dynamical motion of the screw segments,
however, depends on the applied stress. At lower
stresses, the dynamics lead to a structure in which pin-
ning points tend to form very near to other pinning
points. This results in long segments of near-screw orien-
tation which are highly pinned and, hence, immobile.
These highly pinned, immobile segments are connected
by long, unpinned, segments of mixed orientation re-
ferred to as superkinks. The observed steplike
configurations are similar to those observed using
transmission electron microscopy. " In the studies re-
ported in Refs. 9 and 10, the near-screw dislocations are
found to advance forward (i.e., in the direction orthogo-
nal to the Burgers vector indicated in the figure) through
the lateral motion of superkinks. Therefore superkink
motion governs glide in these compounds.

At high stresses, the loops appear substantially
different from their low-stress counterparts. The pinning
points are more uniformly spaced, and the screw seg-
ments of the dislocation move nearly as rapidly as the
edge segments. In addition, the long, mixed-character
superkinks which appear at lower stresses are absent.
(See Ref. 9 for details. }

In a finite-size crystal, the edge segments of the disloca-
tion loops rapidly advance out of the crystal, leaving the
predominantly screw segments. The mechanical proper-
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E(t)-t'" (2)

It is important to note that the tixne dependences of
Eqs. (1) and (2) are assumed —no detailed theory of dislo-
cation motion in the L 12 compounds has been proposed

ties of the compound, then, depend on the mobility of
these predominantly screw-oriented dislocations. At low
stresses, these segments are observed to advance for some
time and then become immobile. As detailed previous-
ly, *' ' this immobilization occurs because the number
of mobile superkinks in a dislocation fluctuates with time
as a result of superkink multiplication, annihilation, and
interaction. Eventually, these fluctuations lead to a
con6guration in which there are no mobile superkinks
within the dislocation. This immobilization of disloca-
tions, referred to below as exhaustion, is a natural ex-
planation of the strain hardening in the compounds. In
contrast, at high stresses, the predominantly screw-
oriented segments move at a nearly constant velocity for
as long as they can be observed (limited by computer
time).

The above characterization is indicative of a change in
the correlations between the pinning events. At low
stresses, these correlations result in total pinning of the
entire dislocation, whereas at high stresses the localized
pinning events are only capable of retarding dislocation
motion. Thus the dislocations display a stress-driven
pinning-depinning transition, and it is this transition
which is studied below. It is important that the pinning-
depinning transition not be confused with the localized
pinning event. The pinning-depinning transition involves
the pinning of the entire dislocation, a collective e8'ect
arising from the correlations between localized pinning
points. It is also noteworthy that, within the physical
picture presented in Refs. 9, 10, and 12, the mechanical
properties of the compounds, while linked to the proper-
ties of the localized pinning points, are not determined
solely by those properties. Rather, it is the collective
behavior of the localized pinning points which leads to
the observed dislocation dynamics. Thus, in bridging the
length scale "gap-" between atomistics and macroscopic
mechanical properties, one is forced to consider collectiue
egects. "

The results of creep tests are of particular interest to
this paper. A creep test measures the strain as function
of time for a sample subject to a constant stress. The
early-tine portion of this curve is referred to as the
primary-creep transient.

Thornton, Davies, and Johnston' (TDJ) measured
creep in polycrystalline samples of Ni3A1. They found
that at lower temperatures (298 K) the strain rate con-
tinually decreased as a function of time and the reported
form of the transient was well described, for a range of
times, by

c(t) -1nt,
where e(t) is the tensile strain at time t At higher tem. -

peratures (672 K), they found that for low stresses the
primary-creep transient was again logarithmic in time.
However, at higher stresses, the primary-creep transient
became proportional to t '

to support them. (Historically, logarithmic creep is as-

sumed to arise from dislocation mobility controlled

creep, whereas t ' creep is assumed to stem from
recovery processes. ) It is also noted that based on the
figures in TDJ's work' these forms apply only over a lim-

ited time range. Thus, although TDJ assumed a simple

power law-dependence for the creep transient, the experi
ments reueal clearly a more complicated time dependence

II. CRITICALITY AND MECHANICAL PROPERTIES

v(t, t') =0, Vt ) t' . (6)

Simulations demonstrate that the movement of disloca-
tions (at low stresses) in the compounds under considera-
tion is accomplished through the lateral motion of super-
kinks. As a dislocation advances under an applied
stress, its superkink population distribution fluctuates.
Consequently, the time and area swept out before exhaus-
tion also varies (from dislocation to dislocation). Charac-
terization of this distribution of times and areas provides
a description of transient plastic How.

Consider a crystal with a large number of noninteract-
ing dislocations. (The dislocations in the L lz compounds
are not observed to be directly entangled. Under these
circumstances, the dislocations interact only through
their elastic stress Selds. This interaction, admittedly im-

portant, is neglected in the current work and the need for
further research is noted. ) Imagine that the crystal has
been strained so that the vast majority of the dislocations
are the linear, mostly screw-character dislocations de-
scribed in the preceding section. Also, assume that a
stress is applied until the sample no longer creeps (i.e., all

of the dislocations are exhausted). The stress is then in-

cremented and held 6xed. Some dislocations now become
mobile, because the increased stress is sufBcient to bow
some formerly immobile segments beyond the critical an-

gle.
Let n(a, t)da dt be the number of dislocations which

subsequently sweep out an area between a and a+da be-
fore exhausting at a time between t and t+dt. The total
number of dislocations which exhaust between time t and
t+dt is n(t)dt with n(t) given by

n(t)= f da n(a, t) .
0

Similarly, n(a)da is the total number of dislocations
which sweep out an area between a and a+da with n(a)
given by

n(a)= J dt n(a, t) .
0

The average area swept out by a dislocation which moves
for a time between t and t+dt before exhausting is given

by

J da an(a, t)
a(t)= (5)

dan a, t
0

Let v(t, t') be the average areal velocity, at time t, of a
dislocation destined to exhaust at time t'. The de6nition
of v(t, t') requires that



50 CRITICALITY IN THE PLASTiC DEFORMATION OF 512. . .

An(a, t)=n(A, a, iPt), (9)

where a and 5 are the scaling exponents.
The scaling ansatz (9) implies that quantities related to

the exhaustion distribution will obey simple power-law
relationships (at the critical point} with exponents direct-
ly related to a and 5. For example,

ii(t)-t ~, g= —(I+a)/5 .

Similarly,

(10)

Also, from the definition of v(t, t'),

a{i)=I dr'v(r', r) .
0

The shear strain y(t) is proportional to the total area
swept out by all the dislocations. The experimentally
measured shear-strain rate dy(t)/dt is proportional to
d A(t)/dt,

dA(t) t'v t, t' N t'
t

This expression follows directly from the definition of
R(t)dt and v(t, t'). Thus the time-dependent flow proper-
ties of the material are related directly to the exhaustion
distribution.

Pinning-depinning transitions in charge-density waves
have been described within the framework used for con-
tinuous phase transitions. ' A notable feature of continu-
ous phase transitions is that they display scale invariance
at a critical point. By analogy, it is proposed that the
critical point of the pinning-depinning transition studied
here displays scale invariance at a critical stress. Physi-
cally, the critical stress is the result of the competition be-
tween the thermally assisted formation of pinning points
and their dynamically driven annihilation. At low
stresses, the formation rate is larger than the annihilation
rate, leading to pinning of the entire dislocation. At
stresses above the critical stress, the pinning-point annihi-
lation rate equals the formation rate, and on the average,
the density of pinning points remains constant while the
dislocation remains mobile. Because the pinning-point
formation rate is temperature dependent, the critical
stress is also temperature dependent.

In order to explore the consequences of the proposed
scale invariance, it is conjectured that at a critical stress
the exhaustion distribution n(a, t) displays scale invari-
ance:

R(t)= K, t &e (13)

where to is the characteristic exhaustion time of the dislo-

cation, which becomes infinite at the critical point, and 5,
is a normalization constant. The value of 8, is deter-
mined by requiring that the integral of R(t) from some in-

itial time (nonzero) to infinite times be equal to the num-

ber of mobile dislocations at that initial time. Note that
no analytical theory has been developed to support the
form of Eq. (13). However, this form produces a high-
quality fit to the numerically obtained distributions.

The velocity function v(t, t') is the function which de-
scribes the average, time-dependent velocity of a disloca-
tion destined to exhaust at time t . Scale invariance im-

plies that there is no characteristic exhaustion time in the
distribution n(t}dt [i.e., to~ ~ in Eq. (13)]. Consider a
dislocation destined to exhaust at time t . This time pro-
vides a characteristic time for that particular exhaustion
event. Since there is no other characteristic time in the
dynamics, one must be able to write the following (at the
critical point in an infinite system):

v(t, t') = t' vg(t /t'), (14)

where ri is a scaling exponent and g(x) is defined to be
the areal-velocity scaling function. Using Eqs. (5) and (7),
one can show that ri is related to a and 5:

ran=a/5 1. — (15)

Using expressions (13) and (14) with expression (8)
gives the following equation for the creep strain rate at
stresses near the critical stress:

for which the primary-creep transient varied as t'
(again, over a limited time span). A complete theory of
primary creep in the L12 alloys must be able to predict
the algebraic laws over a broad range of stresses in order
to be compatible with the experiments.

In order to explain a power-law creep rate over a range
of stresses, one is forced to consider the behavior of the
dislocations near, but not at, the critical stress. In many
systems displaying scale invariance at a critical point, it is
observed that the function which becomes scale invariant
at the critical point is well described by the Ornstein-
Zernike' form near the critical point. The following is,
therefore, conjectured to hold near to and below the criti-
cal stress:

E(a)-a ~, P= —(I+5)/a .

More relevant to primary creep,

gy(r) n, b, ~ dx g(x)exp( —t/tox)
dt V o ~2+~ (16)

dA(t) -t, 5= —( I+2a)/5 .
dt

(12)

A power-law creep rate is the direct result of the scale in-
variance of the exhaustion distribution —in an infinite
system, at the critical stress.

There is, however, another observation that needs con-
sideration. The TDJ analysis resulted in a range of
stresses for which a logarithmic primary-creep transient
was observed (over a range of times), not just a single crit-
ical stress. In addition, TDJ reported a range of stresses

where b is the magnitude of the Burgers vector, V is
volume of the crystal, and it has been assumed that Eq.
(14) holds near the critical stress. (This is certainly a
good approximation for t'« to.) Thus, at the critical
stress, when to is strictly infinite, the creep rate reduces
to the simple power law of Eq. (12) with 5= / —g —1. (In
the case b, =O, the preceding statement does not hold. )

It is difficult to extract the behavior of dy(t)/dt for to
large, but finite, without knowledge of the critical ex-
ponents and the areal-velocity scaling function. Howev-
er, if one assumes that g(x) can be written as a polynomi-
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al in x (i.e., g(x) can be expanded in a complete set of po-
lynomials defined on the interval [0,1]),

g(x)= g g x
m=0

then Eq. (16) can be recast:

d&(r) n, b, I„dxexp( xt—/to)
7f

(17)

(18)

In summary, the distribution of dislocation exhaustion
events, n(a, t)da dt, is linked to the mechanical proper-
ties of the L12 compounds. The continuous nature of the
proposed pinning-depinning transition leads directly to
the algebraic form for the primary-creep transient.
Quantitative evidence supporting this claim, however,
has not been given. Therefore, in the following sections,
a model for dislocation motion is introduced and studied.
The model displays the proposed transition and allows a
detailed study of its properties.

III. SIMPLIFIED DISLOCATION MODEL

Continuum-based simulations are too numerically in-
tensive to allow direct calculation of the properties of the
proposed transition. Therefore a simplified model of
dislocation motion is developed. The study of this model
provides a useful qualitative information concerning the
nature of the transition, as well as quantitative estimates
of the scaling exponents.

A remarkable feature of critical exponents for equilib-
rium phase transitions is their universality. ' If one con-
structs a model with the proper symmetry, it is possible
to determine the critical exponents very accurately.
%hile universality has not been explicitly shown to hold
for nonequilibrium systems, it is possible that the ex-
ponents for nonequilibrium phenomena display behavior
dependent only on symmetries, not precise microscopic
details. This possibility has been exploited in studies of
crystal growth. ' In addition, recent results on a
simplified Burridge-KnopofF' model have demonstrated
universality for that particular dynamical system. ' In
the problem under consideration here, it is not clear what
symmetries determine the exponents. Therefore the ap-
proach taken is to develop a model which mimics the
physics of the dislocations as closely as possible while
maintaining computational tractability. It is hoped that
the model studied here can make quantitative predictions
for the pinning-depinning transition.

In constructing a model for dislocation motion, it is
necessary to preserve the physical properties of a super-
kink. In particular, it is essential to represent properly
the superkink-superkink interactions as well as the in-
teraction of the superkinks with the pinned dislocation
structure (i.e., the "backbone" of the dislocation). The
model presented here includes the processes thought to
be important to the description of dislocation motion: (1)
Superkinks spawn superkinks, (2} superkinks can annihi-
late through interactions with the "backbone, " and (3)
superkink-superkink interactions can lead to the destruc-

The physics of the model is contained in the specification
of the advancement probabilities.

Figure 3 depicts the possible configurations of nearest-
neighbor sites which are allowed in the model. In this
model, a mobile superkink is composed of one segment
drawn from configurations (1)—(o}, any number of seg-
ments of type (g), and one segment drawn from (h) —(k).
Figure 4 shows the model representation of one type of
superkink (there are numerous possible configurations
displaying superkink behavior}. For the purposes of this
discussion, a configuration of sites will be denoted

(a)

y
2
1

1 2

FIG. 3. Three segment configurations allowed by the model.
The darkened points represent segments, not pinning points. In
this model, a superkink is composed of one segment drawn from
configurations (1)—(o), any number of segments (g), and a seg-

ment drawn from configurations (h) —{k). Segments labeled

(a)—(f) are assumed to be immobile because they do not have
suScient edge character. Segments (g) are mobile because they
have sufBcient edge character. Segments (h) —(k) are mobile be-

cause they represent the bottom portion of the superkink which

is freeing the adjacent pinning point. Configurations (1)-{o)are
partially mobile because they represent the upper edge of a su-

perkink. See the text for more details. The lower right corner
of the figure is the scale.

tion of one or more superkinks. The rules governing the
model are described in general terms immediately below.
In order to make the dynamics stemming from the rules
more clear, specific examples of superkink motion within
the model are also presented.

The simplification begins by describing the dislocation
in a manner similar to that encountered in crystal-growth
models. ' The dislocation is assumed to consist of L seg-
ments, labeled by the index i. Each segment i rests at a
position given by y, , restricted to be an integer. For each
step of the model, the segment at each point i is allowed
to advance with an advancement probability p; that de-

pends on the configuration of that segment's nearest
neighbors. L random numbers p;o, uniformly distributed
between 0 and 1, are generated. The advancement of the
dislocation is accomplished through the rule

&) + 1 ~ p& + 5'&o~

3'& ~ Pi —Bio .
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(a) (m) bowing superdislocation

FIG. 4. Example of a superkink. The segment types (see Fig.
3) composing the superkink are indicated. A configuration of
segments is denoted through a sequence of letters. In this case,
the superkink is denoted [(a)(m)(g){j)(a)]. See the text for details.

pinning

pinning zone

through a succession of letters. For example, the super-
kink shown in Fig. 4 is indicated by [(a)(m)(g)(j)(a)] be-
cause it contains one segment in which the sites have a
nearest-neighbor arrangement of type (a), adjacent to a
segment of type (m), etc. The advancement of the dislo-
cation in the screw direction is accomplished through the
lateral motion of unpinned segments with a sufficient de-
gree of edge character. For the purposes of this simple
model, the edge character of a segment is determined by
the position of the neighboring sites. If both ~y, , —y, ~

and ~y;+, —y, ~
are less than 2, site i is deemed to have

insufficient edge character for mobility and is immobile.
The central sites in the configurations labeled {a)—(Q are,
therefore, immobile and have p; =0. The central sites in
the configurations labeled (g) are defined to be mobile,

p; = 1, because they represent the maximum edge charac-
ter of any segment in the model. In the continuum simu-
lations, a pinning point dissolves when the dissolution
force reaches a critical value. In this discrete model, the
dissolution force exerted on site i is critical whenever

(y;, —y; ) and/or (y, +,—y; ) are equal to 2.
Configurations labeled (h) —(k), therefore, have p, =1.
The central sites in (1)—(o) are those which are potentially
mobile. Their advancement probabilities depend on the
temperature and the applied stress in the manner out-
lined below.

Configurations (1)-(o) correspond to regions of the
dislocations in which new pinning points can form. In
order to determine the advancement probabilities for the
four configurations {1)—(o), one must account for how the
equivalent points would move in the continuum model.
The illustration of Fig. 5 demonstrates the origin of the
correlations between pinning points. The shaded region,
the "pinning zone, " is the region near a pinning point in
which another pinning point can form and create an im-
mobile segment. The shape of this region is dictated by
the critical bowing angle 8, and the applied stress. The
total probability for pinning of an adjacent point is
roughly proportional to the time that the dislocation seg-
ment spends in the "pinning zone. " To a 6rst approxima-
tion, the time spent in this pinning zone is inversely pro-
portional to the velocity of the dislocation segment. The
velocity of the segment is directly proportional to the
difference of the applied stress and the bowing stress,
with the bowing stress proportional to the circular curva-
ture a; of the segment. Therefore the probability that a
segment i pins is given by

FIG. 5. Origins of the correlations between pinning events.
There is only a small region near which a pinning point can
form and create an immobile segment, indicated by the shaded
area, the "pinning zone. " At low stresses, the dislocation
spends an appreciable time in this "pinning zone, "and there is a
high probability of pinning. Increasing stress has two important
effects. First, the size of the shaded region decreases. Second,
the dislocation moves more rapidly. Both of these effects reduce
the probability of forming an immobile segment (Ref. 9).

pz,„(i)- 8
7

'7 K.
(20)

where ~ is a parameter representing the applied stress and
O~ is a parameter refiecting the pinning frequency. Since
the pinning frequency increases with temperature, 8 also
increases with temperature. The advancement probabili-
ty for configurations (1)-(o) are then given by

r

p; =max
0,

1—
7

KI-

(21)

where

r} y . By
a; = (i) 1+ (i)

Qx r)x

' 2 —3/2

(22)

and the derivatives are replaced by their discrete counter-
parts:

and

ay . [yi+1 yi —ll
Bx 2

Q2J)

, (i)=[y;+1+y;-12y;] .
Bx

(23)

(24)

The advancement probabilities are thus determined by
two parameters 8 and ~.

The dynamics of superkink motion are most easily ex-
plored through example. Consider the superkink of type
[(a)(m)(g){j)(a)] shown at the far left of Fig. 6. The figure
displays three of the possible paths for the superkink.
The path labeled by the arrow (A) takes the configuration
[(a)(m)(g){j)(a)] to the configuration [(a)(b)(n)(k)(c)]. The
path labeled by the arrows (A) and (C) is the path by
which the superkink moves laterally one unit (in two time
steps) and returns to its initial configuration. If P(z)
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(F

(E)W
FIG. 6. Example of superkink motion demonstrating three

typical behaviors. The path designated by the arrows (A) and
(C) returns the superkink to its original structure, but translates
the superkink by one lateral spacing. The path (A)-(D)-(E)
leads to immobilization of the superkink. The path (B)-(F)-(G)
leads to spawning of an additional superkink.

[1—P(m)]P(n) . (25)

The term in square brackets represents the probability
that the original configuration will take the path labeled
(A} in the figure, and the second term represents the
probability that the subsequent configuration will be that
resulting from path (C). Alternatively, the mobile super-
kink could have taken path (A) —(D)—(E), which would
result in annihilation of the mobile superkink. The prob-
ability for the superkink to annihilate through this path
(there are many paths to annihilation) is given by

denotes the advancement probability of a configuration of
type (z) [where (z) is any configuration (a) —(o) of Fig. 3],
then the probability that configuration [(a)(m)(g)(j)(a)] will
return to itself (translated laterally by one space) in two
time steps is given by the product

lective nature of the transition. It is thus necessary to use
numerical methods to explore the properties of the model
described above.

The dynamics of the model are explored as follows. A
random, immobile configuration of the dislocation is gen-
erated using the configurations of Fig. 3 labeled (a)—(f).
A dislocation is mobilized by selecting a point at random
in the dislocation and allowing it to advance by one unit.
The dislocation advances according to the rule (19) with
the advancement probabilities described above until it be-
comes completely immobile. Throughout the simulation
the dislocation is restricted to approach the boundaries of
the crystal with zero slope —the end segments (those la-
beled i =1 and i =L} are drawn always from one of the
configurations (a), (e), (f}, (h), and (o). A dislocation be-
comes immobile when all of its segments are drawn from
the configurations (a) —(I). The total area swept out by
the dislocation and the time span over which the disloca-
tion is mobile are noted. Starting from the exhausted
configuration, the dislocation is remobilized by advance-
ment of a random point. In this manner, the distribution
of exhaustion events, n(a, t )da dt, predicted by the model
is numerically calculated.

IV. RESULTS FROM NUMERICAL STUDY
OF THE MODEL

As stated above, it is hoped that the model can make
quantitative predictions for the critical exponents. The
model is also useful for analyzing qualitative aspects of
dislocation motion, and these aspects are discussed in
Sec. IVA below. Section IVB contains a study of the
scaling properties of the transition, including a brief dis-
cussion of the effects of finite size.

[1—P(m)][1 —P(n)] (26)
A. General features of dislocation motion

Figure 7(a) depicts the exhausted configurations of a
single dislocation advancing according to the rules de-
scribed in the preceding section. For this simulation, the
length of the dislocation was chosen to be L =100, with
the temperature parameter 8=6.5 and the stress param-
eter x= 10.0. At this stress, the dislocation is mobile typ-
ically for only a short time before exhaustion and conse-
quently sweeps out small areas (the area swept out by an
event is the white region in the plots). This behavior is
consistent with the exponential cutoff in Eq. (13). Figure
7(b) plots the exhausted configurations of a dislocation
with 0=6.5 and ~=12.0. At this stress, the number of
larger events is substantial, but there appears to be an
even larger number of small events. (The "size" of an
event can be gauged by the area it sweeps out. ) In this re-

gime, the dislocation advances by the lateral motion of
inclined segments (with slopes equal to 2), while the ina-

jority of the dislocation remains static. This behavior is
in qualitative agreement with the superkinklike motion of
dislocations found in the continuum-based model and in-
dicates that the dynamics of the current model are
reasonable. Figure 7(c} shows the exhausted
configurations of a dislocation advancing under an ap-
plied stress of ~=15.0 with 0=6.5. As is evident from

Had the original superkink evolved along the path
(8)—(F)—(6), another mobile superkink would have been
spawned. The probability of this path can be calculated
as well. Note that the spawned mobile superkink moves
in a direction opposite to that of the original superkink.
In addition to superkink motion, annihilation, and
spawning, the interaction of one superkink with another
is also allowed in the model. Thus the primary processes
identified from the continuum simulations are incorporat-
ed in this discrete model.

Transition probabilities similar to those of Eqs. (25)
and {26) can be written down for all possible
configurations of L segments. In principle, the distribu-
tion n(a, t)da dt can be calculated exactly from these
probabilities. In practice, however, the number of possi-
ble configurations grows as 5' ", and the transfer ma-
trix connecting the various configurations becomes in-
tractable for moderate L. The exact solution for L =4
has been obtained through this technique, and it agrees
with the simulated results for the model for a system of
this size. However, the scaling behavior rnanifests itself
through the large number of degrees of freedom found
only in systems of large L. This fact emphasizes the col-
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the figure, the distribution of events sizes is dominated by
very large (both in area and time) events. These large
events involve the motion of the entire dislocation and
may be described by collective dynamics differing from
those of the smaller-scale events. It has been argued in
the context of charge-density-wave systems that the criti-
cal behavior of a finite-size system is distinctly different
from that of an infinite system. ' Perhaps the difference
in dynamics of the larger and smaller events of the
present model is related to a similar difference.

The nature of the stress-driven pinning-depinning tran-
sition is now clear. Below the critical stress, the "events"
(i.e., the mobilization and subsequent immobilization of a
dislocation) are limited by some time intrinsic to the dy-
namics of dislocation motion. As the stress increases,
this intrinsic time also increases. Consequently, the dis-
tribution of the "sizes" of the "events" begins to display

the scale invariance associated with the critical point. Fi-
nally, at the critical stress, the characteristic time for the
"events" goes to infinity and the scale invariance associ-
ated with the critical point is evident in the figure. At
this point, the only characteristic time in the system is
dictated by the finite size of the dislocation, which,
perhaps, corresponds to the time it takes for a superkink
to traverse the entire length of the dislocation. Above
the critical stress, an infinite mobile dislocation would
remain mobile for all times. However, a dislocation of
finite length may still be exhausted. This exhaustion pro-
cess is accomplished not through the dynamics intrinsic
to dislocation motion, but rather because the edge of the
crystal acts as superkink sinks. This is precisely the situ-
ation in Fig. 7(c), where the majority of the "events" are
very large.

B. Scaling properties of the transition

la=

F~

J
w3F SL

~ & I 1E

lP~

FIG. 7. Exhausted configurations of a single dislocation as
calculated from the simple model with L=100, 0=6.5 for
stresses of (a) ~=10.0, (b) r=12.0, and (c) ~=15.0. At low
stresses, each exhaustion event produces only small amounts of
strain. At stresses near the critical stress, as in panel (b), the
events are distributed over many sizes. At stresses above the
critical stress [panel (c}], the events are typically very large,
sweeping out large areas and lasting for long times. (All three
panels represent the same physical size. )

In this subsection, the scaling properties of the transi-
tion are explored. The exploration begins with the estab-
lishment of scaling behavior for the distribution
n(a, t)da dt, as well as a(t}, and v(t, t'}. The scaling ex
ponents of the transition, defined by the quantities a and
5 of Eq. (9}, are shown to be near a= —

—,
' and 5= —

—,'.
The values of a and 5 are then computed as a function of
stress from the histograms K(t)dt and ii'(a)da. The values
so obtained are not consistent with the values obtained
from n(a, t)da dt, a(t), and v(t, t') (except near the criti-
cal stress). It is argued that this disagreement stems from
the presence of the "large events" similar to those of Fig.
7(c) (henceforth referred to as the large events) and hence
is a finite-size effect.

The scaling relationship (9} is a very powerful one.
Since Eq. (9) must hold for all choices of A, , it must hold
for any specific choice. If one chooses A=t '~, on, e can
show

n(a, t)=t' f(a!t ), (27)

Figure 9(a) is a plot of a(t}obtained from a system of size
L =1000, with ~=95 and 0=50. Note that there is a
large range of data for which the curve appears straight

where a and 5 are the scaling exponents appearing in Eq.
(9) and f(x) is a scaling function. Hence plotting

'~sn(a, t) as a function of a It ~, for fixed t, should re-
sult in the scaling function (when at the critical stress).
This is explicitly demonstrated for the model in Fig. 8.
The system size is I.=1000, 8=50, and x=95 The crit-.
ical stress for these conditions is estimated to be ~=95.
The exponents which produce the best data collapse
(where "best" is judged by eye) are a= —0.51 and
5= —0.35. These values give 5= —0.05. The magni-
tudes of the error in the estimates of a and 5 obtained in
this manner are difBcult to assess. Nevertheless, Fig. 8
provides evidence that the n (a, t) histogram displays scal-
ing behavior over a range of areas and times.

The ratro a/8 can also be determined by a direct mea-
surement of the curve of a(t) as a function of t. Equa-
tions (5) and (7) can be used to show that

(28)
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FIG. 8. Plot of t ' n(a, t) as a function of a/t with
a= —0.51 and 5= —0.35. The data were obtained from a
simulation with L=1000, 8=50, and ~=95. The times for
each of the curves are indicated in the legend. These values of a
and 5 give a creep-rate exponent of 6= —0.05, which is well out
of the range expected from the TDJ analysis (Ref. 1).

on the log-log plot. The dashed line displays a t'
dependence, the dependence suggested by the data col-
lapse in Fig. 8. The long-time behavior shows a linear
dependence on time (dotted line). This finite-size effect is
discussed further below.

Finally, the ratio a/5 can also be determined from the
velocity scaling function. Figure 10 is a plot of
t' '~ v(t, t') as a function of t/t' for various t' for data
obtained at a stress of v =90, in a system of size I.=1000
{the value i)= —,

' has been used, which is also consistent

with the values of a and 5 suggested from the scaling plot
in Fig. 8). The curves are for times t ' equal to
30,60, 90, . . . , 300. The solid line represents the scaling
function determined from events with t'=30. The data
collapse on this plot is adequate.

In summary, the data collapse of the scaling functions
and the slope of the a(t) curve suggest that the critical
exponents (at the transition stress) for this transition are
near to a= —

—,', 5= —
—,', g= —'„P=~4,ri= —,', and b, =o.

Note that this value of 5 is well out of the range assumed

by TDJ. Note also that this value of b, and Eq. (18) im-

ply that the time dependence of the primary creep tran-
sient is never a simple power law.

In earlier work by the current authors, ' ' the values
of the exponents g and P were determined through
analysis of the histograms 8(t)dt and n(a)da. The values
of the exponents so obtained displayed a stress depen-
dence, which, when convoluted to give the value of 6 as a
function of stress, agreed with the interpretation of the
TDJ results. ' This analysis is revisited below where it is
argued that the apparent stress dependence of the ex-
ponents g' and p, as measured from K(r)dt and R(a)da,
arises from the presence of the large events described
above and hence is a 6nite-size effect.

Figure 11 contains a plot of n(t)dt (with dt =1) for
four different stresses. (The curves have been offset for
clarity. ) At lower stresses, the most prominent feature of

160

155
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1.45

70 75 80 85 90 95 100

FIG. 9. The solid line in panel (a) is the simulation data for
'T 95, 8=50, and L = 1000. The dashed line displays a t '
dependence, which tracks the short-time behavior. The dotted

line displays linear variation with t. Panel (1) depicts the stress

dependence of the ratio a/5 obtained from fits of a(t) to the

form of Eq. (28). The data were fit to the range of points with

10& t ~1000. Note that the ratio appears nearly constant for
70 & ~ ~ 90 and then shows a sudden, large increase.
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FIG. 10. Plot of t' "v(t, t') as a function of t/t' obtained

from a with I.= 1000, 0=50, and ~=90, for
t'=30, 60,90, . . . , 300. The solid line corresponds to t'=30,
and the curves systematically bulge up and to the right with in-

creasing t'. The value of g was chosen to be 2. This value is

close to the value of 0.46 suggested from Fig. 8. The data col-

lapse in this plot is adequate.
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FIG. 11. Plot of S(t)dt (with dt =1) as a function of t as cal-
culated from the simple model for 8=50, L =1000 at v=80,
90, 95, and 100 for curves (a), (b), (c), and (d), respectively. The
critical stress for these conditions is estimated to be ~=95. The
dashed line displays a t ' dependence consistent with the scal-
ing analysis presented in the text. The initial portion of each
histogram appears to be near the t ' dependence and then is
cut ofF at longer times, either by a simple exponential depen-
dence [low stresses, curves (a)-(c)] or by the appearance of a
peak in the number of large events [high stresses, curve (d)].
This peak is argued to be the result of the finite size of the sys-
tem.

the curve is the absence of long-tine-scale events. At
stresses very near the critical stress, e.g., the curves la-
beled (c) and (d) in the figure, the initial portion of the
distribution (excluding the point for t =1 step) is a simple
power law. The dashed line displays a t
dependence —the dependence suggested by scaling
analysis presented above. The (d) curve of Fig. 11 also
displays a peak at very large times. This peak arises from
events similar to those of Fig. 7(c). Simulations on sys-
tems with different sizes show that the onset time of the
peak scales roughly with system size L, suggesting that
its presence is a finite-size effect. As the stress is further
increased, the peak grows, but the onset time appears to
remain fixed. The behavior of the if(a)da histograms is
very similar to the $(t)dt histograms, including the ap-
pearance of an abundance of large events at higher
stresses. The small-area portion of the histograms
display an a dependence, as suggested by the scaling
analysis above.

The nature of the proposed transition allows a natural
explanation for the origin of the peak. Consider a dislo-
cation being driven below the critical stress. For stresses
well below the critical stress, the superkinks responsible
for the overall motion of the dislocation are unlikely to
traverse its entire length and hence do not feel the pres-
ence of the ends of the dislocation. As the stress is in-
creased, the characteristic time for the "events" also in-
creases. Consequently, the superkinks begin to interact
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FIG. 12. Plot of the exponents P and g as a function of the
applied stress calculated for a system with L = 1000 and 0=50.
The exponents labeled with the subscript 1 arise from fits to the
simulation results for the range 3~t &1000 and 10~a ~8000.
The exponents with the subscript 2 are those calculated by
fitting the data from the simulations over the range 20~ t ~ 500
and 50~a ~3000. Note that in both cases the exponents de-
pend on the applied stress. Also, note that the results from the
two fits are not coincident.

with the free ends of the dislocation more frequently.
These events are cut short arbitrarily and appear in the
histogram of events, n (a, t)da dt, at a time and area other
than that for which they would appear in an infinite sys-
tem. Since a superkink moves laterally at the rate of one
unit per time step, events that last for a time longer than
L steps are very likely to feel the edge of the dislocation.
These events would normally last for much longer than L
steps, but as a consequence of the finite size of the dislo-
cation, they are "folded" into the n(a, t)da dt histogram
at other times. Most often, the time they are folded into
is greater than L steps, but a significant number must also
be "folded" into the histogram for times shorter than L
steps. The dynamics governing these large events are not
well understood and remains the subject of future
research.

The distributions K(t)dt and K(a)da [see Eqs. (3), (4),
and (13)] were used to determine g, P, and to. The nu-

merically obtained histograms were fit to the Ornstein-
Zernike form using a standard, generalized least-squares
fitting routine, weighting the points of the histogram as if
they were governed by Poisson statistics. [The distribu-
tion if(a)da was also assumed to have the Ornstein-
Zernike form. ] The fitted curves were indistinguishable
from the numerically obtained histograms.

The values of ( and P calculated as a function of the
stress parameter r are plotted in Fig. 12, labeled with the
subscript 1. These values were obtained by fitting to the
range of data 3 & t & 1000, 10~ a ~ 8000 for a dislocation
of size L =1000 and 0"=50. The most notable feature of
this plot is that the exponents g and P are apparently
stress dependent. A parameter-dependent critical ex-
ponent is not expected from the analogy with equilibrium
critical phenomena, and so this result is somewhat
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surprising. Three possible explanations for this behavior
are that (1) the critical exponents truly do vary as a func-
tion of stress, (2) the variation is an artifact of the fitting
procedure, in particular, the choice of the Ornstein-
Zernike form for n (t), or (3) the finite size of the system is
playing an important role. Evidence in favor of explana-
tions (2) and (3) is presented in Fig. 12, which also plots
the values of g and P obtained by fitting the same func-
tional form to a smaller range of the numerical data:
20~ t 500 and 50&a ~3000, labeled by the index 2.
Note that the two sets of data are not coincident and can
differ by as much as 25%. The implication is that Eq.
(13) does not provide an accurate description of the histo-
grams.

Because both g and P appear to depend on the applied
stress ~, the value of b, calculated from these exponents
[using Eqs. (10)—(12)] is also stress dependent, as has been
noted in the previous work. ' ' At low stresses, the 6 is
near 1, predicting logarithmic creep. At higher stresses,
the creep-rate exponent decreases, implying a power-law
time dependence for the primary-creep transient. Final-
ly, the creep-rate exponent approaches h(r)-0 at the
transition stress, which is consistent with the values ob-
tained through the data-collapse plot in Fig. 8.

The origin of the discrepancy between the critical ex-
ponents determined from the data-collapse plot (Fig. 8}
and those determined by rt(t)dt and n(a)da is now dis-
cussed. Insight into the discrepancy can be obtained
when one plots the value of a/5 obtained from the mea-
surements of a(t) as a function of the stress parameter r.
Figure 9(b) contains this plot. Note that a/fi slowly
varies over the range of stresses 70~~ 90, but then
shows a rapid increase. The data were Qt to the range of
points with 10+ t ~ 1000. The marked rise in the value of
a/5 near r=95 stems from the presence of the large-
scale events of Fig. 7(c). Note also that the simulation
data [Fig. 9(a)] shows two regimes. A short-time regime,
~hose slope is near to that expected from a t depen-
dence (indicated by the dashed line in the figure), and a
long-time regime, with a slope corresponding to a linear
dependence on t (i.e., a constant velocity for the disloca-
tions, indicated by a dotted line). Figure 9 implies that
the critical exponents a and 5 are dependent weakly, at
most, on stress for times t ~ 1000 steps. Near the critical
stress, however, the large events skew the results of the
6ts.

The values g= —', and P= —', deduced from the data col-
lapse of the scaling functions and the a(t) curves are in
reasonable agreement with the initial dependence (small t
and a) of the n(t)dt and n(a)da plots. The internal con
sistency of the data suggests that the estimates of the seal
ing exponents based on the data collapse of the
n (a, t )da dt plots are the most accurate

In summary, the dislocation exhaustion events can
have one of two behaviors: (1) a small event which
displays scaling behavior and (2) a large event. The data
collapse plots, which are composed of events from short-
er times, are less susceptible to the presence of the large
events (which tend to appear at larger times). In con-
trast, the fits of rt(t)dt and n(a)da to the Ornstein-
Zernike form are influenced by the presence of large

events. These large events do not display the same scal-
ing behavior as the small events and, hence, are not mell

described by the Ornstein-Zernike form. The presence of
the large events, whose number increases with applied
stress ~, explains the apparent stress dependence of 5 re-

ported in Refs. 10 and 11.
Given this understanding (which was not appreciated

by the current authors in their prior work}, it is not obvi-

ously appropriate to associate the apparent stress depen-
dence of 6 with that deduced from the TDJ data. ' The
agreement between the experiments and simulations as
reported in Refs. 10 and 12 is, therefore, fortuitous. It is

not, however, correct to conclude that the model studied
here is not a good description of the physics of the transi-
tion. Perhaps the agreement between the analysis of
Refs. 10 and 12 and TDJ's interpretation of their data
stems from applying the same approximation to both the
results of the experiments and simulations. In this view,
it is the interpretation of the model results (and earlier
experiments) that is Qawed, not the model itself. A com-
parison presented below shows that the model is con-
sistent with the TDJ data, although further experiments
are needed.

Large events are also expected in experiments. Howev-
er, the scaling theory is expected to apply for applied
stresses in which the contribution to the strain from the
large events is "small, " i.e., for times t & to and at stresses
for which to is less than the time it takes for a superkink
to traverse the width of the crystal. Consequently, in the
next section, the predictions of the Ornstein-Zernike-
based description [Eq. (18)], while fixing the exponents to
the values a = —

—,', 5= —
—,', g= —3, ri= —,', and b, =0, are in-

vestigated. A more complete theory (i.e., applicable to a
broader range of times), including the effects of the large
events, has not been developed.

V. IMPLICATIONS FOR EXPERIMENTS

The exponents measured from the simple model are
most consistent with the values a= —

—,
' and 5= —

—,'.
With these values the creep rate, Eq. (18}becomes

d&(t) n, b „dxexp( xt /to )—
dt V ~ gm ~m+1 (29)

where b is the magnitude of the Burgers vector, 5, is the
normalization constant for the distribution of exhaustion
times, and V is the crystal volume. Thus the conjecture
contained in Eq. (13) plays a crucial role in determining
the creep behavior. The integral is the well-studied ex-
ponential integral

„
dx exp( xt /to)—

E„(t/t )=O
1 X

(30)

Equation (29) can be integrated from some initial time

t;„;,to give the following expression for the creep curve:

y(t)=y(t;„;,)

n, b+ tO g g [E +2(t;; /tO} E +2(t/tO)]
V

(31}
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Note that expression (31}does not apply for t;„,=0, be-
cause iT( t) is no longer of the form given by Eq. (13).

Expression (31} holds the promise of allowing the
direct measurement of the areal-velocity scaling function
g(x). One can fit the experimentally obtained primary-
creep transient to the form of Eq. (31). This fitting pro-
cedure results in a polynomial approximation to g(x).
The areal-velocity scaling function has a physically im-
portant interpretation. It describes the average velocity
of a dislocation destined to be exhausted at some time.
Since this velocity is determined by the superkink distri-
bution, the form of this curve gives direct insight into the
nature of the fluctuations in the superkink population. In
the model studied here, the dislocation motion is initiated
at some superkink structure, the velocity increases for
some time as the superkinks grow in size and multiply,
and finally, the velocity decreases through superkink an-
nihilation. This behavior is evident from the form of the
scaling function in Fig. 10. The Quctuations display scale
invariance; the only time scale for the fluctuation is set by
the total length of time for which the dislocation is
mobile. Thus simple measurement of the primary-creep
transient should result in a direct measurement of the dy-
namic properties of the superkink population.

As a test of this analytical technique, the creep curve
resulting directly from the simulations was fit to the form
of Eq. (31), retaining all terms in the sum with m &4 and
fixing the coefficients g to have the values measured
from the data collapse plots for the areal velocity scaling
function. The parameters y(t;„;,), I„and to were al-
lowed to vary. Two fitted creep curves are compared
with the numerically calculated creep curve in Fig. 13.
The data were collected from a simulation with L =1000,
8=50, and r=90. The dashed line is fit to the entire
range of data; the dotted line is fit the range 10~ t & 300.

The dashed fitted curve and the simulation are similar, al-
though the agreement is not perfect. The difFerences be-
tween the fitted curve and the simulation results arise pri-
marily from the fact that expression (14) for the areal-
velocity scaling function holds only for t « tc (to=320
steps from the fit). The dotted line is indistinguishable
(except from 10 to 20 steps) from the simulation result
and results in to=410 steps. Thus expression (31) pro-
vides an exce11ent description of the appropriate range of
data, as dictated by to.

As a final note, Fig. 14 displays the result of fitting the
TDJ data to the form of Eq. (31}. Note that these data
are taken from the TDJ "t' regime. " The data report-
ed in this regime are believed to be obtained in the
correct range of applied stresses for expression (31) to be
applicable. The liinited number of available data points,
coupled with uncertainties introduced by the polycrystal-
linity of the samples (more than one slip system may be
operative), suggests that this fitting procedure is not a
stringent test of the theory. Figure 14 is presented only
for illustrative purposes. It is clear that Eq. (31}provides
an adequate description of the data. Clearly, experiments
on single-crystal specimens oriented for single-system slip
are necessary.

The properties of the characteristic time to appearing
in Eq. (31) are also of possible experimental interest. In
general, tc will be stress dependent As th. e stress in-
creases, so will to. In an infinite system, to~ 00 at the
critical stress, and there is no characteristic exhaustion
time. In a finite system, however, one can never elimi-
nate all time scales. At the critical point for the small
events, the only remaining time scale for these events is
the typical time it takes for a superkink to traverse the
entire dislocation. Thus, as the stress increases, to should
increase until it reaches the traversal time. Further in-
creases in stress should only decrease to, assuming that
the superkinks move more rapidly under higher applied
stresses.
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FIG. 13. Comparison of expression (31) with the creep curve
resulting directly from the simulations. The creep curve was
obtained for a stress of v =90. The areal-velocity scaling func-
tion was measured directly and fit to a polynomial retaining
terms x with m &4. This polynomial approximation was used
to fit the simulation results to expression (31) allowing only
y(t;„;,), 8'„and to to vary. The dashed line is the fit to the entire
range of data shown and gives to =320 steps. Expression (31) is
expected to hold only for times less than to. The dotted line in
the figure, nearly indistinguishable from the simulation results,
is the curve fit to the range of data: 10 t ~ 300 steps.
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FIG. 14. Test of the fitting procedure on the TDJ data for
363 MPa and a temperature of 399 C. Only the m =0 term of
Eq. (31) is included in the fit. The paucity of data points and the
uncertainties introduced by the polycrystallinity of the sample
make a quantitative test of Eq. (31) difficult.
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VI. CONCLUSIONS

It has been argued that the dislocations in the L12 in-
termetallic alloys displaying the yield strength anomaly
undergo a stress-driven pinning-depinning transition.
The transition is from a "phase" in which all dislocation
motion is ultimately exhausted to a "phase" in which a
mobile dislocation remains mobile for all time for a dislo-
cation of infinite length.

The scaling properties of the transition were studied
using a model of dislocation motion. In particular, it was
argued that there are two types of events: large and
small. The small events were shown to display scaling
behavior, whereas the large events, which result from the
finite size of the system, displayed different behavior.
The critical exponents of the transition were obtained
from the properties of the small events. These critical ex-
ponents differ from earlier estimates of their values. ' '
The differences were attributed to the presence of finite-
size effects. It is suggested that the agreement between
experiment and the theory reported in Refs. 10 and 12
stems from applying the assumption of a power-law time
dependence to both the experimental and numerically
calculated transients.

The nature of the primary-creep transients predicted

by the model were explored by assuming the critical ex-
ponents of the transition are those deduced from the
small events. It was argued that for a range of stresses
below the critical stress, Eq. (31) provides a good descrip-
tion of the creep transient. Comparison of expression
(31) to the TDJ data supports this argument, although
further experiments designed explicitly for testing the
theory are warranted.

Finally, it is noted that within the model presented
here, the primary-creep transient can be used to directly
measure the properties of the dislocation areal-velocity
scaling function. These measurements can provide im-
portant experimental information concerning the dynam-
ical properties of the dislocations. These properties can
then be used to refine the theories of dislocation motion.
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