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Dynamics of one-dimensional Heisenberg spin glasses in the high-field limit
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This paper reports the results of a study of the distribution and localization of the magnon modes in

one-dimensional Heisenberg spin glasses with nearest-neighbor interactions. The analysis is limited to
high fields and frequencies near the precession frequency. Both symmetric and asymmetric distributions
of exchange interactions of the form P(J) ~

l Jl (a & 1) are treated in detail. The results of approxi-
mate calculations based on the coherent-exchange approximation are shown to be in good agreement
with numerical data obtained by applying mode-counting techniques to arrays of 10' spins. Particular
emphasis is placed on the qualitative differences in the behavior that arise depending on whether the

average values of J ' and J are zero, nonzero, or infinite.

I. INTRODUCTION

In a recent paper (hereafter referred to as I), ' the re-
sults of a detailed study of the magnon excitations in a
one-dimensional Heisenberg spin glass were reported.
An analysis was carried out in the zero-Geld and high-
field limits for a model where the nearest-neighbor ex-
change interactions had the values +1 and —1, with
probabilities 1 —c and c, respectively, there being no
correlation between different bonds. In the high-field
limit, the results of computer simulation studies were
compared with the predictions of an analytical theory
based on the coherent-exchange approximation (CEA).
Although the CEA did not account for the fine structure
at high frequencies in the density of states and the inverse
localization length, it did prove to be an accurate approx-
imation near the precession frequency over the full range
of c. The purpose of this paper is to extend the study of
the dynamics of one-dimensional spin glasses in high
fields to a more general class of interactions than that of
the +Jmodel.

Our interest in this paper is in Heisenberg spin systems
where the nearest-neighbor exchange interactions have
continuous distributions of the form

with no correlation between different bonds. We limit

the analysis to saturating magnetic fields and consider
two cases: symmetric distributions where P(J)=P( —J),
and asymmetric distributions for which, in general,
P(J)XP( —J ). Both the integrated density of states and
the inverse localization length are calculated in the CEA
and the results compared with corresponding data ob-
tained by applying mode counting techniques to chains of
10 spins. The major result to emerge from our study is

that, as in the case of the +J model studied in Ref. 1, the
CEA provides a quantitatively accurate (albeit approxi-
mate) description of the distribution and localization of
the magnon modes in the vicinity of the precession fre-

quency.
The starting point in the analysis is the set of equations

i dS+ Idt=(J ) +J +)+H)S+

j—1 j +j—1 j j+1 +j+1 (1.3)

Assuming a harmonic time dependence, exp(

idiot

),—and
taking the zero of energy to be the spin precession fre-

quency, H, we obtain the resulting equation for the spin
amplitudes U.

(JJ,J+J +, E)U, =J~—, ~UJ, +J &+, Uj+, ,

(1.4)

where E =co—H. Note that since the analysis is carried
out on chains of X spins, one has

U0 UN+1 J0, 1 JN, N+1
As pointed out elsewhere, one obtains the integrated

density of states from a Sturrn sequence made up from
the determinants associated with Eq. (1.4). If we denote
the determinant characterizing the equations of motion
of a chain of j spins by D, the D obeys the recursion re-

lation

D (E)=(J ) +J +) E)D,(E)—J —
) D q(E) .

Writing R - =D /D „one has the equivalent expression

R (E)=J, +J +) E—JJ. , J/R, (—E) . (1.6)

The integrated density of states, denoted by IDos(E), is

given by the number of negative terms in the sequence
R, (E),R2(E), . . . , R~(E), where N is the number of
spins in the array.

The spatial extent of the modes is characterized by the

of motion for the transverse spin operators S+j which
are obtained from the Heisenberg Hamiltonian

HQS—,J —g JJ J.+)S) S~+) .
J J

In saturating fields, where the expectation value of S,
can be replaced by 1, the linearized equations of motion
take the form (fi= 1 )
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inverse localization length which is calculated from the
amplitude ratio T =U.+&/U. From Eq. (1.4}, T (E)
can be written

(1.7)

Equations (2.5) and (2.6), with Go evaluated according
to Eq. (2.3), give the CEA results for the integrated densi-

ty of states and the inverse localization length. What we
refer to as the conventional regime pertains to situations
where the integrals fdJ P(J)J ' and fdJ P(J)J are
finite. To see the consequences of this at low frequencies,
we keep only the lowest-order terms in I (E) and Go(E).

In units of the inverse of the lattice constant, the inverse
localization length associated with modes of energy
E,I,LL(E), is give~ by'

I (E)= —1/J, iE—' J, /2, (2.7)

N

L,L~(E)=(1/N) g ln~T (E)~ . (1.8)

We note, in passing, that since the signs of Jj ] j and

JJ/+, can differ, the amplitude ratios, T (E},are not a
Sturm sequence. As a consequence, the integrated densi-

ty of states is not related to the number of negative terms
in the sequence T, (E),T2(E), . . . , T~(E), a result we
have confirmed by direct calculation.

II. CEA AND THK CONVENTIONAL REGIME

In this section, we summarize the CEA and use it to
obtain the integrated density of states and the inverse lo-
calization length in what we refer to as the "conventional
regime. " In the CEA, the effect of the disorder on the
configurationally averaged single-particle Greens func-
tion is accounted for by a complex, energy-dependent ex-
change integral, J,(E), which is obtained as the solution
to the equation. '

JPJ J—J E 1 —J—J, E I E =0,
(2.1)

where P(J) denotes the distribution of exchange in-

tegrals. In one dimension, I'(E ) has the form

I (E)= —1/J, (E)+[E/J, (E)][E 4EJ,(E)]—
(2.2)

Go(E ) = [E 4EJ,(E )]— (2.3)

The magnon density of states, p(E), is related to the
imaginary part of Go through the equation

The corresponding single-site Greens function is ex-
pressed as

Go(E ) = —/E
—i/2J —1/2/2

The self-consistent equation for J, takes the form

1/J +lE1/2J —3/2/2 fpJ P(J)/(J ~)

(2.8)

(2.9)

from which it follows

G (E )
—e

—i /32 —4/3
~
E i

—1/3
& J—2

&
I /3

(2.11)

(2.12)

As a consequence, the integrand density of states and the
inverse localization length are given by

IDos(E)/N=m '(3/2 )~E~ & J &' sin(m/3),

(2.13)

LtLL(E)=(3/27 )~E~
/

& J & cos(m/3) . (2.14)

In (2.13), it is understood that IDos(E) for E &0, is the
number of modes in the interval between E and zero.

In the case of asymmetric distributions, & J '&%0, so
that for E)0 one has

I /J + iE I /2J—3/2/2 —
& J—I

& + iE 1 /2J 1 /2
& J—2

& /2

with W=iE'/ J,'/ /2. Assuming that the average values
of J ' and J are not infinite, one can expand the in-
tegral in (2.9) and obtain the equation

(2.10)

where &J "&=fdJP(J)J
In the case of a symmetrical distribution, one has

&J '&=0. For small ~E~, the second term on the left-
hand side of (2.10) can be neglected (as may be verified ex
post facto) so that we obtain

p(E ) = n' ImGO(E+ i—e), (2.4) (2.15)

while the integrated density of states per spin is expressed
as

E
IDos(E )/N= —

m
' f dE' ImG (Eo'+ i ).s(2.5)

Note that with this definition, IDos(E) is the integrated
density of states referenced to the value at E=0. In one
dimension, the inverse localization length is related to the
integral of the real part of the Greens function. ' In par-
ticular, we have

EL„„(E)=f dE'ReG, (E'+is) . (2.6)

which is equivalent to

1/J (E) & J—1&+.El/2& J—
1&

—
1/2(& J—

2&
& J—

1&2)/2

(2.16)

As a consequence, Go is given by

Go(E)= —(i/2)[& J '&/E]'

+(1/8)[(&J '& —
&J '&')/& J '&] . (2.17)

The resulting expressions for the integrated density of
states and the inverse localization length take the form
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and

IDos(E)/N=77 & J & E (2.18)

(2.20)

LiLL(E)=(1/8)[(&J '& —
& J '&')/& J '&]E .

(2.19)

These equations assume & J '& and E are both positive.
If they differ in sign, then the L,L„ is inferred from

IDos( E ) via

(2.14). From the figure, it is apparent that the CEA gives
good results for both the IDQs and the L,~L over the
range 10 ~E ~ 1.

The behavior in the interval —1 & a & 1 that is predict-
ed by the CEA follows from solving Eq. (2.9). One finds
that the second term on the left-hand side can be neglect-
ed, leaving the equation

1/J, = JdJ P(J)/(J iE—'/ J,'/ /2) . (3.3)

A general analysis of (3.3) indicates that the solution is of
the form

J, =C(a)IEI ' 'exp[ —in/(2 —a)], (3.4)
while the integrated density of states varies more rapidly
than IEI.

Equations (2.13), (2.14), (2.18), and (2.19) generalize the
results obtained in I for the kJmodel. They show that in
the conventional regime, the power-law behavior of
IDos(E ) aild L ii L(E ) are independent of the details of
the distribution. In the following section, the predictions
of the CEA for the continuum distribution with a = —2
will be compared with the corresponding simulation data.

where C(a) is independent of E. Thus, both IDos and

L,LL vary as IE I" ' ' ' with the ratio

L,„L(E)/(ir/N)IDos(E) = cot[(ir/2)(1 —a)/(2 —a)] .

(3.5)

For the values a = —
—,', 0, and —,', we find for the IDQs

a ———1

2

III. CEA RESULTS AND NUMERICAL SIMULATION
STUDIES

A. Symmetric distributions

The normalized distribution for the exchange integral
is given by

IDos(E)/N=Sn 2 3 sin(3n'/10)IEI

a=0

IDos(E)/N=ir '/ sin(ir/4)IEI'/

(3.6)

(3.7)

P(J)=(1—a)2

For a (—1, one has

(3.1)
a=——1

2

IDos(E )/N = 3' ' 2 sin(ir/6) IE I

' (3.8)

&J '&= —4(1— )/( +1) . (3.2)

In Fig. 1, we compare the simulation data with predic-
tions of the CEA. The numerical studies were carried
out on chains of 10 spins using Eqs. (1.6), (1.7), and (1.8),
while the CEA results were obtained from Eqs. (2.13) and

with the L,LL(E) obtained with the help of Eq. (3.5).
Figures 2, 3, and 4 show the comparison between the
simulation data for chains of 10 spins and the predic-
tions of the CEA. As in Fig. 1, the two are in very good
agreement, particularly for E ~ 10

The point a= —1 marks the boundary between the
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FIG. 1. Integrated density of states and inverse localization
length for a= —2. &&Ioos(E)/X; L,„„(E).The straight lines
are the CEA predictions given by Eqs. (2.13) and {2.14). Here,
and in Figs. 2—8, the numerical data are from a single
configuration of 10 spins.
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—1 &00

FIG. 2. Integrated density of states and inverse localization
length for a= ——'. Q'Ioos(E)/N; LiLi (E). The straight lines

are the CEA predictions obtained from Eqs. {3.5) and {3.6).
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FIG. 3. Integrated density of states and inverse localization
length for a=0. OIrsos(E)/III; CILILL(E). The straight lines
are the CEA predictions obtained from Eqs. (3.5) and (3.7).

conventional regime and the regime where the power
dependence of ~E

~
is a function of a. A numerical solu-

tion of Eqs. (2.1), (2.2), and (2.3) shows that in the CEA,
when a= —1, both the integrated density of states and
the inverse localization length vary as ~E

~

/ with slowly
varying corrections. Similar to what happens when
aA —1, the CEA is in good agreement with the simula-
tion near E=0 (see Fig. 5).

B. Asymmetric distributions

Here we consider the considerations of an asymmetric
distribution of exchange interactions of the form

P(J)=C,J, J&0,

(3.9)

1Q 3 I I I I »I , , I

10-4 10 10
I ssl

10—1

FIG. 5. Integrated density of states and inverse localization
length for a = —1. The simulation data are shown as open sym-
bols: Q'Irsos(E)/N; CILILL(E). The CEA results are
+IDos(E)/N; XL&«(E). The latter were obtained by solving
Eqs. (2.1)-(2.3) and numerically integrating Go from 10 4 to E
The integral of Go from 0 to 10 was set equal to the value
given by the simulation data.

for a & —1. In Fig. 6, we show the CEA results and the
numerical simulation data for a = —2 and C, =3Ci for
both E &0 and E &0. The CEA predictions for the in-
tegrated density of states and the inverse localization
length for E & 0 are obtained from Eqs. (2.18) and (2.19),
while the predictions of the inverse localization length for
E&0 follows from Eq. (2.20). In all cases, one has
(J )=—and (J )=12.

For —1&a&0,(J ') is finite, but (J 2) is infinite.
To see the consequences of this, we write the self-
consistent equation for J, [Eq. (2.9) with the second term
on the left-hand side omitted] in the form

with C, & Cz. As noted in Sec. II, the CEA predicts con-
ventional behavior for asymmetric distributions whenev-
er both (J ') and (J ) are finite. This willbe the case
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FICs. 4. Integrated density of states and inverse localization
length for a= 2. OIrsos(E)/N; QLILL(E). The straight lines
are the CEA predictions obtained from Eqs. (3.S) and (3.8).

IEI

FIG. 6. Integrated density of states and inverse localization
length for a= —2. OIQQs(E & 0)/Ã +LIILL(E & 0)'
+IDos(E &0)/N; XL&«(E &0). The straight lines are the
CEA predictions for the asymmetric distribution with C, =3C2,
Eqs. (2.18)—(2.20).
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1/J, = f dJP(J)l(J —W)+ f dJP(J)l(J —8'),
00 0

(3.10)

with 8'=iE' J,' /2, and assume the solution

(3.1 1)

1OO

I I I I I IIII I I I I I IIII

where f(E ) vanishes as E~0. Since the Greens function
at stnall E varies as i(—EJ, ) ', the limiting value of
the real part of J„(J ') ', determines the density of
states, whereas the imaginary part, Imf (E), is related to
the inverse localization length. That is, we have

G, (E)= —(t /2)E '"[&J ')+f(E))'"
(

~ /2)E
—1/2( J—1 ) 1/2

+(1/4) I f(E)(J ') '/ +. . . , (3.12)

1O-'

10
I I II

10-4 10 10
—2

IEI

10 1oo

where

Imf(E)=x f dJP(J)l(J +x ), (3.13)

with x =(E/2( J ') )'/ .
Specializing to the distribution (3.9), one finds

Imf(E)=x (C, +C2)f dyy '/(y +1),
0

=(n/2)x (C, +Cz) csc[tr(1 —a)/2] .
LtLL(E & 0)=F2 3 E

L t LL (E & 0 ) =7TInos ( E ) /N

(3.16)

FIG. 8. Integrated density of states and inverse localization
length for a= 2. &)Ioos(E &0)/N; I:)L,LL(E &0);
+IDos(E & 0)/X; XL,«(E & 0). The straight lines are the
CEA results for the asymmetric distribution with Cl =3Cp,
Eqs. (3.19)-(3.22).

(3.14) 31/2i E /2 (3.17)

(E & 0)—31/2 —1E 1/2 (3.15)

By combining (3.14) with (3.12), one sees that when
—1 & a & 0, the inverse localization length for E & 0 is
predicted to vary as E" ', whereas the integrated den-
sity of states continues to vary as E', independent of a.

In order to test these predictions, we have carried out a
series of calculations for a= —

—,
' with the results shown

in Fig. 7. The straight lines were calculated from
Go(E)-E ' ' 'exp[i8(a, C2lC, )] . (3.18)

which are the CEA predictions for a= —
—,
' and C, =3C2.

Once again, there is good agreement between the numeri-
cal data and the CEA.

Finally, when 0&a&1, one has J, ~E ' ', where
the coefficient of proportionality is a function of a and
the ratio C2/C, . As a consequence, one finds

1oo

I I I I I I III

From (3.18), it follows that IDos(E &0), LtLL(E&0),
IDos(E & 0) and L,LL(E & 0) all vary as E ' ' ' ' and
that the results for E&0 are obtained from those for
E & 0 by making the replacement 8~8—n. l(2 —a). Fig-
ure 8 shows the numerical results for a= —,', C& =3Cz,
along with the predictions of the CEA:

10—1

10

IDos ( E & 0) /N =0.648E

L,LL(E &0)=1.851E'",

IDos(E & 0)/N =0.1864~E
~

'

L tLL (E 0&) = 6288' iE

(3.19)

(3.20)

(3.21)

(3.22)

1O-4

++
+

, „t I I I

1O
—4

I I I III I I I I I IIII I I I I I IIII I

1o-3 1o
—2 1o—' 1OO

As in Figs. 1 —7, there is good agreement between theory
and simulation, especially at small ~E ~.

IV. DISCUSSIQN

FIG. 7. Integrated density of states and inverse localization
length for a= —2. OInos(E & 0)/N; LqqL(E & 0);
+IDos(E &0)/W; XLI«(E &0). The straight lines are the
CEA predictions for the asymmetric distribution with C, =3C2.
Eqs. (3.15)—(3.17).

The purpose of this paper has been to extend and gen-
eralize the earlier studies' of the dynamics of one-
dimensional spin glasses in strong magnetic 6elds. In the
analysis, particular emphasis was placed on the behavior
of the integrated density of states and the inverse locali-



DYNAMICS OF ONE-DIMENSIONAL HEISENBERG SPIN. . .

zation length near the precession frequency. The results
of a calculation based on the coherent-exchange approxi-
mation were shown to be in good agreement with numeri-
cal simulation data for chains of 10 spins. The behavior
of the system near the precession frequency was shown to
depend on the average values of J ' and J . In the
case of symmetric distributions of exchange interactions,
where (J ) vanishes identically, so-called conventional
behavior was obtained when (J ) was finite. In the
conventional regime, the integrated density of states and
the inverse localization length varied as ~E~ with a
coefficient that was proportional to (J z ) '/ . The
behavior in a regime where (J ) was infinite was inves-
tigated with a distribution of the form
P(J) ~ ~J~,a&1. For —1&a&1, both the integrated
density of states and the inverse localization length varied
as ~E ~(l

—a)/(2 —a)

In the case of asymmetric distributions, when both
(J ' ) and (J ) are finite and nonzero, the integrated
density of states varied as E' and the inverse localiza-
tion length as E with coefficients determined by the aver-
age values of J ' and J ( (J ' ) & 0). The inverse lo-
calization length for modes with E &0 was equal to the
integrated density of states for E & 0, apart from a factor
of m, and thus varied as

~
E

~

'/ . As long as (J ' ) is
finite, the integrated density of states for E & 0 and the in-
verse localization length for E &0 both vary as ~E~'/,
even when (J ) is infinite; however, the power depen-
dence of the inverse localization length for modes with
E &0 depends on the details of the interaction. For an
asymmetric distribution where both P(J&0) and
P(J &0) varied as

~
J~, it was found that the inverse lo-

calization length was proportional to E" ' for
—1 & a & 0. For the same distribution with 0 & a & 1, the
integrated density of states and the inverse localization
length for both E & 0 and E &0 varied as ~E ~"

The power-law behavior discussed above follows from
an analysis based on the coherent-exchange approxima-
tion. As noted, however, the results from the CEA are in
good agreement with the numerical data from chains of
10 spins, which suggest that the CEA is a very good ap-
proximation at small ~E ~. Additional evidence in support
of this conjecture comes from I, where a connection is es-
tablished between the high-field limit of the +J model
with equal concentrations of + and —bonds, the corre-
sponding model in zero field, and the one-dimensional
Schrodinger equation in a random potential proportional
to E for which exact results have been obtained by Derri-
da and Gardner. In the CEA, Ioos(E)/N varies as
0.164~E~, while L,LL(E)=0.298~E ~; the equivalent
results, obtained by applying the theory of Ref. 6, are
Ioos(E)/N =0. 160~E~ and Lii i (E ) =0.289~E

~

In the case of the nonsymmetric distributions, a com-
parison can be made with the exact results for the fully
asymmetric distribution, P(J ) ~J, J & 0; P(J ) =0,

—m„co u„=E(u„+i+u„,—2u„) . (4.1)

The corresponding inverse localization length is ex-
pressed as

L, (co ) = ( ( m ) —( m ) )co /8K ( m ), (4.2)

which is to be compared with Eq. (2.19).
Our final point concerns the CEA. The results ob-

tained here, along with the findings reported in Refs. 1

and 5, are evidence that the coherent-exchange approxi-
mation provides a remarkably accurate characterization
of the linearized magnon modes at high fields for spin
glass models with random nearest-neighbor exchange in-
teractions in one, two, and three dimensions. The chal-
lenge for the future, on one hand, is to develop compara-
ble approximations for characterizing the spin dynamics
of these models in zero field, and, on the other, to extend
the high-field theory to cover more realistic situations
where the spin glass behavior arises from random alloy-
ing with magnetic ions having different exchange interac-
tions.
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J &0, which is the distribution for a ferromagnetic
chain. In this case, behavior in the high-field limit is
identical to that in zero field, apart from a shift of H in
the frequency scale. As noted elsewhere, the eigenvalue
distribution for the ferromagnetic chain is equivalent to
that of the master equation with nearest-neighbor
transfer rates equal to J„„+,. For the latter model,
rigorous results for the limiting behavior of the distribu-
tion of eigenvalues have been obtained by Bernasconi,
Schneider, and Wyss' and Schneider and Bernasconi. "
In particular, the CEA results for the IDos with (J ')
finite, Eq. (2.18) are in exact agreement with their calcu-
lations. In addition, the rigorous results for the power-
law behavior of the integrated density of states when
a&O, E" ' ' ', are also reproduced in the CEA. The
high-field dynamics of the Heisenberg spin glass with a
fully asymmetric distribution of exchange interactions is
also characteristic of the one-dimensional planar spin
glass with dominant uniaxial anisotropy in zero field. A
CEA theory developed for the latter model also gives a
good agreement with simulation data. ' '

Next, we expand on the point made in I that the result
for the L,LL for asymmetric distributions in the conven-
tional regime has the same form as that derived rigorous-
ly by Matsuda and Ishii' for an isotropically disordered
chain with the dynamical equation
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