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The validity of finite-size scaling in the presence of an inhomogeneous external field vanishing in the
thermodynamic-limit is studied using a fully finite three-dimensional mean spherical model. The exter-
nal field is chosen to change sign stepwise in one space dimension and to be translationally invariant in

the other two dimensions, in which the lattice is assumed periodic. The boundary conditions in the
direction of broken translational invariance are (i) periodic, and (ii) free, and (iii) fixed. Exact expres-
sions for the magnetization profile are derived and studied. An extended, coordinate-dependent finite-

size scaling is found to hold near the shifted critical temperature. Different scaling forms hold near the
bulk critical temperature: in case (ii) the distance from the boundary scales with the finite-size correla-
tion length, and in case (iii) with the linear size of the system.

I. INTRODUCTION

Vanishing external fields are usually used to break the
symmetry of the Hamiltonian and to single out pure
Gibbs phases in the low-temperature region. For that
purpose the amplitude H of the field is set to zero after
the thermodynamic limit is taken. This approach, ap-
plied to classical and quantum systems with various
symmetry-breaking sources, constitutes the basis of
Bogoliubov's definition of quasiaverages. '

A generalized version of Bogoliubov's quasiaverages
makes use of symmetry-breaking fields with a size-
dependent amplitude H' ', which tends to zero simul-
taneously with the unlimited increase of the linear size L
of the system. For example, one may set H' '~L as
L ~ ~, with some a) 0. When the thermodynamic limit
is taken at fixed density of the number N of particles, i.e.,
for a d-dimensional system in a space domain L, the ra-
tio X /L"=c osnt as L~ao, one may set alternatively
H'~' ~ N ". The generalized quasiaverage approach
has been suggested in Ref. 2 and used to explore the set
of zero-field-limit Gibbs states of some exactly solvable
models: the Curie-Weiss-Ising ferromagnet, the n-vector
Curie-Weiss model, and the spherical model with
nearest-neighbor interaction.

It has been realized ' that the generalized quasiaver-
age approach, with field amplitudes vanishing according
to a suitably chosen power law, provides a constructive
procedure for the explicit calculation of finite-size scaling
functions at both second-order and first-order phase tran-
sitions. In the case of a second-order phase transition,
one has to consider the system at temperatures T'
which approach the critical temperature T, simultane-
ously with L ~~; the appropriate choice, predicted by
the finite-size scaling theory, is T' '/T, —1~L
where v is the critical exponent of the correlation length.

Most of the works on finite-size scaling (see Ref. 8 and

references therein) have focused on the case of uniform
external fields (sources) which break rotational (gauge)
symmetries. Hypotheses are most readily tested on the
example of the mean spherical model, for which a
variety of analytical results has been obtained (see the re-
cent Refs. 10—12 and references therein). Vanishing uni-
form fields have been applied in that model to study the
scaling behavior with respect to the magnetic vari-
able. ' ' Bulk and surface fields have been used in a de-
tailed investigation of the surface properties, in particular
the variation of the susceptibility with the distance from
the surface. '

Inhomogeneous fields, switched off after the thermo-
dynamic limit, appeared to be useful tools for investigat-
ing phase separation and surface and interface phenome-
na. For example, a steplike inhomogeneous external
field, which breaks the translational invariance in one
space dimension, has been applied in a study of the prob-
lem of phase separation in the mean spherical model. '

The spherical model in a magnetic field with the same
spatial dependence, but with an amplitude vanishing
simultaneously with L ~~, has been considered by Pa-
trick. ' Interesting phenomena have been found to occur
in the regime of moderate rate of decrease of the ampli-
tude H' '~L: the leading O(L ) correction term of
the free-energy density exhibits a new singularity with
respect to the temperature at T= T,', where 0& T,* & T„
below T, there appears a "frozen" (temperature-
independent), smooth magnetization profile. Qualitative-
ly similar phenomena were shown to appear under the ac-
tion of surface magnetic fields. '

The aim of the present work is to study the validity of
finite-size scaling in systems subjected to inhomogene-
ous external fields. Obviously, the problem is a part of
the more general investigations on finite-size effects in
spatially inhomogeneous systems.

In the present work we consider the mean spherical
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model with nearest-neighbor interaction on a fully finite

domain A of the three-dimensional simple cubic lattice.
The spatial dependence of the external field is chosen as
in Refs. 16 and 17: it changes sign stepwise along the
first coordinate r„being positive in one half of A,
1 ~ r

&
& L /2, and negative in the other half,

L/2+1 (r, & L (distances are measured in units of the
lattice constant and L is assumed even). The amplitude
of the field H' ' vanishes in the thermodynamic limit
according to the finite-size scaling prediction
H' ' ~ L ' as L ~~, where 5/v= —', . Different

boundary conditions in the direction of broken transla-
tional invariance are considered: (i) periodic, (ii) free, and
(iii) fixed (we adhere to the terminology of Gelfand and
Fisher' ); in the remaining dimensions the lattice is as-
sumed periodic.

The paper is organized as follows. In Sec. II we give
the definition of the model and present the necessary
starting expressions for further investigation. The mean
spherical constraint, under the above-mentioned bound-
ary conditions and in two critical regimes with respect to
the temperature, is analyzed in Sec. III. The exact results
for the magnetization profile and its critical finite-size
asymptotic behavior are given in Sec. IV. The paper
closes with a discussion of the extended finite-size scaling
behavior in Sec. V.

II. THE MODEL

= J „g do(r)exp{ —P&'A'[{o(r),reAj]
I"rEA

.
—s o ro. r

rE'A
(2.2)

where s is a parameter. The quadratic form in the ex-
ponent in the right-hand side of (2.2) can be diagonalized
by performing a unitary transformation of the dynamical
variables:

mensionless coupling, o (r) ER is the dynamical variable
(scalar continuous spin) at site r = {r„.. . , rd j EA, and

the coordinates r„E{1, . . . , L j, v=1, . . . , d, are mea-

sured in units of the lattice spacing. The dependence on
the boundary conditions imposed along the first coordi-
nate axis is denoted by a superscript (~), ~=p for period-
ic, 0 for free, and 1 for fixed boundaries; in the remaining
d —1 spatial dimensions periodic boundary conditions are
assumed. %e consider the case of nearest-neighbor fer-
romagnetic interactions, when QA' is the adjacency ma-

trix: QA'(r —r') =1 if and only if sites r and r' are nearest
neighbors (under the assumed boundary conditions) and
Q~'(r —r'}=0 otherwise.

The partition function for the Gaussian model corre-
sponding to Hamiltonian (2.1) is given by

Z~ (K, {h(r),r&Aj;s)

Consider the ferromagnetic mean spherical model (see,
e.g., the review, Ref. 9},on a finite d-dimensional hyper-
cubic lattice A=LX XLEZ" of L =N sites. The
Hamiltonian of the model in the presence of an inhomo-
geneous magnetic field h(r), r EA, is

x(k)= g o(r)U~'(r, k),
rEA

x(k) = g o (r) UA'(r, k),
rEA

(2.3)

P&~'[{o(r),rEA] ]

Eg Q~'—(r r')o (—r)o (r') gh—(r)o (r) .1

r, r'6 A rEA

(2.1)

d
U~' (r, k }= UL'( r „k, ) g U~~ ( r„,k„),

v=2
(2.4)

where x denotes the complex conjugate of x and
k= {k„.. . , kd j with k„6{1,. . . , L j. The transforma-
tion matrix in (2.3) reads

Here P= 1/ks T is the inverse temperature, E is the di- where

U&~'(r, k„)=L ' exp( 2mir„k„/L),—v=. l, . . . , d, (2.5a)

L —1/2

UL '(r&, k&)= '
k, =l,

(2/L)'~ cos[m(r, —
—,')(k, —1)/L], k& =2, . . . , L, (2.5b)

UII"(r&, k, )=[2/(L+1)]'~ sin[mr, k, /(L+1}] . (2.5c)

The transformed interaction matrix can be written in
the diagonal form

d

cog '(k) =2d —2 g cso(2n. „k/L}, (2.7a)

U~'(r, k)Q ~'(r —r' }U~'(r', k' }
r, r'E A

=5q q [2d —co'A'(k) ], (2.6)

where

d
co~'(k)=2d —2cos[m(k) —1)/L] —2 g cos(2@k IL),

v=2

(2.7b)
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co~"(k)=2d —2cos[mk, I(L+1)]—2 g cos(2mk, /L ) .
v=2

the parameter

P =2s /K —2d, (2.9)

and the transformed magnetic field is given by
2.7c

In terms of the new variables (2.3) the exponent of the in-
tegrand in the right-hand side of (2.2) reads

—,'K g [/+co~ (k)]x(k)x(k)
keA

h "(k)= g h(r)U'„'(r, k),

h "(k)= g h (r) U'„'(r, k) .
(2.10)

g [h "(k)x(k)+h "(k)x(k)], (2.8)
keA

where, instead of the spherical field s, we have introduced

Thus, by performing the integration in the partition func-
tion (2.2) at P) —min|, co'A'(k), for the free-energy density
of the Gaussian model one obtains

Pa(~'(K, [h(r},rEA];P) —= N'l—nZ'„'[K, [h(r), rEAI; —,'K(P+2d)]

=const+(2N) ' g ln[P+co~z'(k)] —(2KN) ' g [/+co(A'(k)] 'h "(k)h "(k) .
keh kch

(2.11)

The free-energy density of the finite-size mean spheri-
cal model is defined by the Legendre transformation

13fA'(K, [h(r), r&AI)=sup [Pa~'(K, [h(r), r&A];P)

Here we will consider the case of an inhomogeneous
external field which depends on the first coordinate only
and has the steplike form

—
—,'K(P+2d )] . (2.12) h (r ) =hi sgn[(L + 1)/2 —r, ], (2.15)

The supremum in (2.12) is attained at the solution of the
mean spherical constraint on P:

N-' y [y+~,"(k)]-'

—(a/ay}P' (K, [h(r), r EA];P}=K, (2.13)

with an amplitude hL~O as L~oo which will be
specified below. Under the field (2.15}and the boundary
conditions ~=p, 0, and 1, the term (2.14) can be evaluated
exactly with the aid of a "contour summation" technique
(see Refs. 17 and 18). By using Eqs. (2.4), (2.5), (2.7),
(2.10},and (2.15), and setting

with a field-dependent term

P'„'(K, [h(r},rCAJ;P)

=(KN) ' g [/+co~'(k)] 'h "(k)h "(k) . (2.14)
keA

z =in[1+//2+ [( I+//2) —1]'

we obtain that (2.14) reduces to (assuming L even)

(2.16)

L/2
1P '(LK, h pi)=(4hJ/KL ) g

, [ 1 —cos [2m ( 2m —1 ) /L ] ] [ 1+P /2 —cos [2m (2m —1 ) /L ] ]
T

=(hL /PK) 1 ——tanh( —,'Lz)I[L sinh(z)]
4

(2.17a)

L/2
1P' '(K, hL p)=(2h'/KL ) g [1—cos[n(2m —1)/L ]][1+//2 —cos[n (2m —1)/L ] j

= (hL I/K ) 1 ——tanh( —,'Lz) /[L sinh(z) ]
2

(2.17b)

P,"'(K h y)=[2h'/KL(L+1)] y [1—cos[2mm I(L +1)]I[1+//2 —cos[2mm/(L+1)]I

L+2 4 cosh[(L+1)z/2] —cosh(z/2)
L+1 L sinh(z) sinh[(L+1)z/2]

2 coth[(L + 1)z/2] (L + 1) 'cath(z/2)—
L sinh(z)

(2.17c)
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The field-dependent finite-size terms (2.17) are regular
functions of P at /=0. By expanding the above expres-
sions in power series of P, one obtains

PP'(K, h; y) —= (h /48K )

different ways: Pr L ~ ao, Pr L =O(1), or Pr L ~0.
Consider first the possible asymptotic behavior of the

field-dependent term —(8/BP)Pr" (K,h; P) in (2.13).
Whenever PrL =O(1), or PrL ~0, as L~~, the
leading-order estimate of that term follows from (2.19}:

X[L +8 ~~—(L +10L +64)$], —(a/ay}P,"(K h y)-=(h'L"/K)G,"(QL ) . (3.3)

Pr' '(K, hr ', P) = (hr—/12K)

(2.18a) On the other hand, when Pi ~0 and L ~ oo, so that

PzL ~ ao, from (2.16) we obtain

X[L +2—
—,', (L +5L /2+4)P],

Pq '(K, hr,'P) —= [hr (L +2)/48K(L +1)]
(2.18b)

z =y'"[1+O(y)] 0,
Lz=LQ' [1 +0($)]~oo,

and, as is readily seen from (2.17),

(3.4)

X[L +2L+8
—~[(L+I) +6(L+1) +25]gj .

(2.18c)

P~"(K,hr;$)=(hr /PK)[1 —O(1/LP'~ )] . (3.5)

Therefore, when Pr L ~ ~ as Pz ~0 and L ~~, the
leading-order estimate of the field-dependent term in
(2.13) is

In general, when $~0 the field-dependent term in Eq.
(2.13) can be written in the form

—(8/BP)P"(K, h;P)=—h L /(P L K) . (3.6)

—(8/BP )P"(K,h; P )

—(h 2L 4/K )[G(rj (PL 2)+L —1G(r) (PL 2)+. . . ]

The asymptotic behavior of the first term in the left-
hand side of Eq. (2.13),

(2.19)
W,",(y)=X-' y [y+~' (k)]-',

kcA
(3.7)

where Gz"(x), k =1,2, . . . , are regular functions of x at
x =0. From (2.18) we conclude that Go" (0) & 0,
G'P'(0) =GP'(0) =0, and G',"(0)&0. In the next section
we will obtain the asymptotic behavior of this term in the
different finite-size scaling regimes.

is known (see Ref. 11 and references therein). In the ther-
modynamic limit, when L ~ 00 at a fixed value of P & 0,
the term (3.7) tends to the 1-dimensional Watson in-

tegral, '

lim W~'q(P)=Wq(P) .
g~ oo

(3.8}

III. THE MEAN SPHERICAL CONSTRAINT

x2=hr L K ' =O(1) . (3.1)

Previous studies" have shown that in the case of non-
periodic boundaries one has to distinguish between two
different finite-size scaling regimes of approach to the
critical coupling: when E~E, as L~ ao either

In the absence of external magnetic fields, the finite-
size scaling regimes of the mean spherical constraint have
been studied in detail under general periodic, open, and
fixed boundary conditions;" antiperiodic boundary con-
ditions have been taken into account too. ' Here we will
study the asymptotic behavior of the solution P=Pr of
Eq. (2.13) in the presence of the steplike inhomogeneous
field (2.15), with an amplitude vanishing as L~ao in
such a way that

The leading finite-size corrections in (3.7) depend both on
the boundary conditions (~) and on the asymptotic re-
gime of PL as $~0 and L~oo. Here we summarize
the relevant results at d =3."

(a) When PL ~ ~ as P —+0 and L ~~, then

WP,'(P) =—Wi($)+O(L ');

Wr' q(P) =- Wi($)+(1/2L )W2($)+O(L ');

Wr' i'(p) =2Wi($) —(1/2L ) W2(p)+O(L ') .

(3.9a)

(3.9b)

(3.9c)

Wgi($)—= Wi($)+(PL ) '+L 'R'~'(PL ), (3.10a)

(b) When PL =O(1) or PL ~0 as $~0+ and
L —+ 00, then

or

xi =(K,—K)L =O(1), (3.2a) Wr' 3i(P}—= W3($)+(PL ) '+lnL/4n. L

+L —'R ~'~(yL') (3.10b}

xi =(K,'~ K)L =O(1}, — (3.2b)

where K,'r' is the pseudocritical (or shifted critical) value
of the coupling K [see (3.21) and (3.26) below]. Depend-
ing on the regime, the solution P =Pi of the mean spheri-
cal constraint may approach the limiting value zero in

where R "(x), r=p, 0, are some functions analytical at
x =0.

In the case of fixed boundary conditions, one has to
take into account that the finite-size gap parameter is
A, =/+5", rather than P, where
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r

0, ~=p, 0,
min ~ (k} 2 2 [ /(L+1}]

(b) Assuming PL =0(1) or PL ~0 as $~0 and
L ~ ao, Eq. (3.14) becomes

(PL ) '+R' '(PL )+xiG(') '(PL )
(3.11)

= —x, +P' L/4ir+0(1) . (3.20)

Therefore, when x, =0(l) [see (3.2b)], where the shifted
critical coupling is given by

K,' '=E, +1nL/4mL, . (3.21)

Therefore, the different finite-size critical regimes
AL =0(1) or AL ~0, as A, ~O+ and L~~, both im-

ply PL =0(1) as L~~. Note that since 5~"L -=xi,
the parameter P is allowed to take negative values. Now
the following asymptotic estimate holds:"

WL s(A, —5'I"}=—Wi(A, ) +(A,L )
' —lnL/4m. L

+L 'R'"(A.L ), (3.12)

where R "'(x) is a function analytical at x =0.
It is convenient to make use of the asymptotic expan-

sion

(3.13)

and rewrite the mean spherical constraint (2. 13) in the
general form

[ W" (A, —5")—W (A, ) ]L

—L ( 8/M, )P"(E,h; A,
—5")

the solution has the order of magnitude PL =0(L ) and
depends analytically on both x, and xz.

PL -=L X' '(x„xi) if x, =0(1) . (3.22)

(iii} Under fixed boundary conditions in one space di-
mension, v=1, the analysis of the mean spherical con-
straint leads to the following conclusions.

(a) Assuming AL ~ ~ as A ~0 and L ~ ao, which is
equivalent to PL ~~ as $~0 and L —+ oo, Eq. (3.14)
takes the form

—(1/8n)in/ '+0(1)=—xi+/' L/4m+0(PL) .

(3.23)

Thus, if x, =0(1), the mean spherical constraint has no
solution /=PL ~0 with the property PLL ~ ~ as
L —+ 00.

(b) Assuming AL =0(1) or AL —+0 as A, ~O and
L ~ oo, Eq. (3.14) takes the form

=(E—K, )L+I,' L/4m+0(AL) . (3.14)

Wi(A, ) =(1/4ir)ink, '+0(1), (3.15)
(AL ) '+R'"(AL )+x Go" (AL ir )

Finally, taking into account the asymptotic expansion
of the two-dimensional Watson integral W~(A, ) as A, ~O+,

we will summarize the results of our asymptotic analysis
of Eq. (3.14) under the considered boundary conditions.

(i) Under fully periodic boundary conditions, r=p,
when PL =0(1) or PL ~0 as $~0 and L ~ ~, Eq.
(3.14) becomes

(yL ) '+R'~'(yL )+x GI'(yL )

= —x, +(1/4m )lnL+ A,
' L /4m+0(1) . (3.24)

Therefore we reach the following conclusions.
(1) If xi =0(1), the solution of the above equation is

4n/L InL. —Since A.I L ~0 as L~ao, then the
leading asymptotic form of Pl is [see (3.11}]

= —x, +P' L/4m+0(PL) . (3.16) $r =— (m. /L ) if x, =0—(1), (3.25)

Therefore, when x, =O(1) the solution is PL =0(L )

and depends analytically on both x
&

and xz.

y, —=L, -'X"'(x„x,) if x, =O(1) . (3.17)

(ii) Under open boundary conditions in one space di-
mension, ~=0, the mean spherical constraint has the fol-
lowing solutions.

(a) Assuming PL +~ as $~0 and—L ~~, Eq. (3.14)
takes the form

(1/8m)in/ '+0(1)= —xi+/'~ L /4m+0(QL ) .

and does not depend on the scaled temperature (x, ) and
field (xi ) variables.

(2) Ifx =0(1),with shifted critical coupling

K,"L =K, —lnL /47TL, (3.26)

PL =-L X'"(x,,xi) if x, =0(1) . (3.27)

then Eq. (3.24) has a solution A, =A,I =0(L ) which is

an analytical function of the scaled temperature (x, ) and
field (xz) variables:

(3.18) IV. FINITE SIZE SCALING FOR THE MAGNETIZATION

Therefore, when x, =0 ( 1 ) the leading asymptotic form
of the solution is

Pr -=(lnL/L ) if xi =0(1), (3.19)

which agrees with the assumption Pi L ~ co and Pl ~0
as L ~ ao. Note that this solution is independent of the
scaled temperature (x i ) and field (x2 ) variables.

The mean spherical model permits one to obtain exact
finite-size expressions for the magnetization profile. By
inverting the transformation (2.3),

o (r) = g UA'(r, k)x (k),
keA

and evaluating the average values of the dynamical vari-
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ables x(k), one obtains the general expression

(o(r) &"=K ' y U" (r, k)
keA

X [/+~/'(k)] 'h "(k)
y (4.2)

where ( }"denotes a Gibbs canonical average with
the Hainiltonian (2.1). In the case under consideration

the right-hand side of (4.2} depends on the coordinate r,
only. Upon shifting the origin of the coordinate system
by setting r] =L/2+ j, and performing the summations
which appear in the expression for the magnetization
profile,

mL' (K, h j ) = ( o ( I r] =L /2+j, rz, . . . , rd j ) }", (4.3)

we obtain the explicit results

L/2 sin[2]r(2m —1)(j ,' )/—L —]

m' '(K, h, j)=—(hL /KL)
] sin [@(2m —1 ) /L ] [ 1+P l2 co—s[2m (2m —1 ) /L ] j

sgn( —,
' —j )

=(hL/4K)
sinh (z/2)

cosh[(L /4 —
Ij—

—,
'

I )z ]1—
cosh(Lz /4) cosh(z /2 )

(4.4a)

L/2 sin[m. (2m —1)(j ,' ) /L —]-
mL] '(K, h, j)=—(hL/KL)

] sin[]r(2m —1)/2L ] I 1+//2 —cos[]r(2m —I)/L ] j

sgn( —,
' —j ) cosh[(L /2 —

Ij —,'1)z ]
=(hL/4K)

sinh'(z /2) cosh(Lz /2)cosh(z /2)
(4.4b)

cosh[(j—
—,
' )z ] cosh[(L + 1)z/2) ]

'

sinh( jI', Iz )——
+ —1

cosh(z /2) cosh(z/2) sinh[(L + 1)z/2) ]

L/2 [1—( —1} cos[]rm I(L+1)]jsin[2nm(j —
—,')/(L+1)]m'"Khj = — KL, +1

sin[~m /(L+ 1)] [ I+]t]/2 cos[2m—m I(L+ 1)] j

sgn( —,
' —j )

=(hL /4K) 1—
sinh (z/2)

(4.4c)

According to the finite-size scaling hypothesis, ' the
magnetization mL(K, h) of a system with linear size
L »1, placed in a uniform magnetic field h (in units of
kz] T), should have the following leading asymptotic form
in the neighborhood of a second-order critical point
(h =O, t =0):

Here we will check if the coordinate-dependent magne-
tization profile mL"(K, h, j) obeys some extended version
of the finite-size scaling, which is expected to include an
additional dependence on the coordinate j through the
ratio j/L. Consider first the finite-size scaling regime
x] =O(1), when [see (3.17), (3.22), and (3.27))

mL]'](K, h )= CzL p/'Y]'](C]tL—' " CzhL ") (4.5) ]t]L =LX"(x,,x—z), r=p, 0, 1 . (4.7)

P=], v ——1, a=-,', C, =K, , C =K (4.6)

Here t=T/T, —1; P, v, and b, =P+y are the standard
critical exponents; Y"( ) is a universal scaling func-
tion which may depend on the boundary conditions (r);
and C, and Cz are nonuniversal metric factors. For the
three-dimensional spherical model with short-range in-
teractions one has

z=L'[X"—(x],xz)]' =L 'y, (x],xz) . (4.8)

Therefore in this case the exact expressions (4.4) for the
magnetization profile reduce to

Note that under periodic boundary conditions (r=p ) the
finite-size shift in the critical temperature is O(L '); '

therefore the variables x] and x] are equivalent (differing
by a constant). From (2.16) and (4.7) it follows that

CzxzL '" cosh[(-,' —
IJ IL

I )yp(x]»z )]
mLP'(K, h, j)=-sgn(h)

y (x],xz ) cosll yp x] pxtz /4
(4.9a)

mL (K,h,j)—=sgn(h)
C2x2L

yo(x»xz)

cosh[(-,' —IJ /L I )yp(x]»z }]1—
cosh[yo(x„xz)/2]

(4.9b)

CzxzL ' cosh[( —,
' —jI/L I )y, (x],xz)]

mL '(K, h, j)—=sgn(h) 1—
y, (x],xz ) cosh[y, (x],xz)/4]

(4.9c)
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mz '(K, hj )-=sgn(h}(C2xzL '~ /ln L)

X [1—exp[ —
Ij IlnL/L] . (4.10)

Finally, under fixed boundary conditions, ~=1, the re-
gime x& =O(1) leads to z =in—/L .[see (2.16) and (3.25)],
and after substitution in the right-hand side of (4.4c) we

Consider next the asymptotic regime x, =O(1) in the
case of open boundary conditions, r=0. From (3.4) and
(3.19) it follows that z -=lnL/L, and after substitution in
the right-hand side of (4.4b} we obtain

obtain

mL'"(K, h, j)=—sgn(h)(Czx2L '~ /n. )

X[cos(rj /L)+sin(m. Ij I/L) —1] . (4.11)

An independent derivation of (4.11) can be given by ap-
plying the mathematical technique of Barber and Fisher
to sum in the right-hand side of the first equality (4.4c).
Thus, by setting At L ~ (L /(L ) =0, which implies

1+PL /2=cos[n. /(L+1)], and considering j /L =p
=O(1), one arrives at the evaluation of the leading-order
sum

[(L+2)/4] cos[n(2k —1)/2L]sin[2np(2k —1)] 3
" sin[2np(2k —1)]

sin[m(2k —1)/2L ][cos(m/L ) —cos[2n(2k —1)/L ] k &
(4k —1)(4k —2)(4k —3)

=(L /m )[cos(np)+sin(mIpI) —1] . (4.12)

mL (K,hj ) =CzL '—Z "(x„x2,j /L ), (4.13)

Taking into account the factor —
hL /KL, one recovers

exactly (4.11).
The results (4.9) are in full conformity with the extend-

ed finite-size scaling hypothesis

universal asymptotic form

X"(x,,xz)—= Ix, I

' (x~~ —00) (5.1)

and the magnetization profile freezes [see (4.8) and (4.9}].
The corresponding temperature-independent scaling
functions are

where x„x2 are the scaling variables (3.1), (3.2b); expres-
sion (4.11) agrees with it apart from the fact that the
magnetization profile is frozen, i.e., independent of the
scaled temperature variable. Obviously, expression (4.10)
contains terms logarithmic in L which violate (4.13).

V. DISCUSSION

Z"I(x„x2j /L ) =sgn(h )(xz/2)

1

4

for v=p, 1, and

Z' '(x„x2,j /L)=sgn(h)(xz/2)

(5.2a)

In the critical regime x, =O(1) the finite-size correla-
tion length gL, defined in terms of the gap parameter A,t
as gL =A.L ', increases proportionally to the linear size
L of the system, i.e., gL ~ L. That fact ensures the proper
scaling of the dependence on the coordinate j as

j /(I ~j /L, which is observed in our explicit results
(4.9). The profile under periodic boundary conditions
(4.9a) has been obtained by Patrick' in the case of the
spherical model of Berlin and Kac. To our knowledge,
the results for nonperiodic boundaries (4.9b} and (4.9c)
are new. Rather surprising is the symmetry and similari-
ty of these expressions. The symmetry of the magnetiza-
tion profile in the mean spherical model under fixed
boundary conditions has been noticed by Abraham and
Robert, ' and interpreted as a physically interesting
decoupling effect in their study of the phase separation
problem in a bulk inhomogeneous field. Expression (4.9c)
clearly manifests that the magnetization profile near a
boundary at which the spin value is fixed to zero,
Ij /L I

=+—,', is the same as the one near the boundary

jI/L I
=0, at which one half of the system is in contact

with the other half, subject to the opposite field. That
decoupling e6'ect explains the identical form of the
profiles under periodic and fixed boundary conditions
[compare (4.9a) and (4.9c)].

In the low-temperature region, when x, ~—~ as
L ~~, the finite-size scaling functions (4.7) attain the

2

—(-')'
2

(5.2b)

mtI '(K, h,j ) ~1—exp( —
Ij I/PL ) . (5.3)

From (4.10) one may conclude that the observed spatial
behavior resembles that of a weakly correlated system in
which distances scale with the finite-size correlation
length rather than with the size I.. However, since
g't ~ ao as L ~ oo, one may adopt the alternative finite-
size scaling form,

mLI'(K, h,j ) =C2 gL
~ "Z"(C—, tgL ",C2hgL ',j /gL ),

(5.4)

for r=0. The shape of (5.2a) repeats the frozen profile
found in Ref. 17.

The presence of nonperiodic boundaries changes the
asymptotic behavior of the correlation length near the
bulk critical temperature, where x, =O(1), so that two
different macroscopic length scales L and (L appear. In
the case of open boundaries gt increases more slowly
than L, since (L /L ~ 1/lnL ~0 [see (3.19)],and the loga-
rithmic corrections break the standard finite-size scaling.
In a system with finite correlation length one would ex-
pect an exponential dependence on the coordinate j of the
type
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which has been discussed in the context of the correlation
function in the presence of long-range interactions. ' ' '

The hypothesis (5.4) explains why the profile (4.10) is
frozen: in conformity with the standard finite-size scaling
we have assumed that x, =C—, tL '~"=O(1), but since now

gL /L~Oas L~ao we obtain that Citgt "~0
The fixed boundary conditions have the opposite efFect

of abnormally large fluctuations (see also Ref. 16) when

gL /L ~(lnL)'~ ~~ as L~~. From the finite-size
scaling form (5.4) one would expect in this case the spa-

tial dependence to disappear in the limit L ~~, due to
the fact that ~j ~

is bounded from above by L /2. Howev-
er, expression (4.11) exhibits a smooth dependence on

~j ~(/L. The problem why in this case the magnetization
profile scales with L, instead of gL, remains open.
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