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Spin fluctuations in p-Fe and in Fezpt Invar from local-density-functional calculations
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The electronic structure and the ensuing magnetic properties of p-Fe and Fe3Pt Invar are deter-
mined using the local approximation to spin-density-functional theory and the augmented-spherical-
wave method. A noncollinear constrained-moment procedure is described and employed to obtain
the total energy as a function of the volume and the magnetic moment arranged both in collinear
and noncollinear spiral structures. This, on a microscopic basis, establishes the connection between
the volume with longitudinal and transverse spin Huctuations. We determine the thermal expansion
coeKcients of p-Fe and Fe3Pt and give an explanation of their anomalous magnetovolume properties.

I. XNTRODUCTION

Since the time of discovery of magnetic alloys with
anomalously low thermal expansion coefficients by
Guillaume~ these alloys have been subject of numer-
ous investigations. Well-known cases are Fe Niq and
Fe Ptq for certain compositions, x; over a wide range
of temperature they possess approximately invariant
thermal expansion coeflicients which gave rise to the
name Invar. Detailed recent review papers are those
given in Refs. 2—6.

To understand the Invar effect theoretically there ba-
sically have been two different approaches, one start-
ing &om the localized electron picture the other &om
the itinerant electron picture. Wassermann2'3 summa-
rized the situation in some detail. It appears that, on
the basis of total-energy calculations, a consensus has
recently been reached in favor of the itinerant-electron
picture; early local-density-functional calculationsr' in-
dicated that there are two energetically nearly degenerate
states, a high-spin state (HS) with a large volume and a
large magnetic moment and a low-spin state (LS) with
a small volume and a small or even vanishing magnetic
moment. The energy difference of these states should be
in the thermal range to set up longitudinal spin Quctua-
tions that lead to unusual magnetoelastic properties. The
situation was reminiscent of the phenomenological two-
state Inodel postulated by Weiss. Following these early,
rather sketchy calculations, a large number of detailed
calculations appeared that provided a solid basis
for the itinerant electron theory of Invar. We emphasize
that in some notable cases, like for instance the calcula-
tion of Moruzzi cited in Ref. 3 and of others,
the total energies calculated as a function of the volume
and the magnetic moment [in the local approximation to
density-functional theory, LDA (Refs. 21 and 22)j were
used as a data base for a Ginzburg-Landau theory to
describe magnetovolnme properties quantitatively. Ini-
tially only longitudinal magnetic Quctuations were con-

sidered in what essentially were transitions between the
HS and LS states, but Wagner in a phenomenological
way incorporated transverse spin Quctuations, too, see
also Refs. 16 and 20.

In this paper for the first time we present ab initio
calculations for the total energy incorporating both lon-
gitudinal and transverse spin Quctuations. Our theory
rests on previous developments that enable us to treat in
a rather general manner noncollinear23 magnetic states
and incommensurate spin-spiral states. 2 Here we ap-
ply our theory to p-Fe and to Fe3Pt-Invar and find that
transverse spin fluctuations contribute in an essential way
to the formation of the Invar anomaly in FesPt; this leads
to an understanding of the Invar effect that, though it
relies on the existence of HS and LS states, does not re-
quire them to be near-degenerate. Thus our results yield
a magnetovolume anomaly without the somewhat artifi-
cial near-degeneracy that was thought to be so essential
in the previous theories. As in recent calculations for
FeNi-Invar (Refs. 20 and 27) we use the nonrelativistic
LDA for Fe3Pt that, unlike relativistic calculations, re-
sults in a ferromagnetic ground state in agreement with
experiment. We add that our calculations are restricted
to crystallographically ordered FesPt; we thus restrict
our attention to spin disorder and make no attempt to
discuss effects of crystallographic disorder.

We begin in Sec. II with a brief description of the the-
oretical background and its implementation describing
our treatment of noncollinear and spin-spiral states for
arbitrary crystal structures; this generalizes our previous
formulation which was given for the case of an elemen-
tal metal only. We then explain in some detail how we
constrain the magnetic moment in a general magnetic-
moment arrangement to any desired value, m. This en-
ables us to obtain the total energy as a function of m, of
the vob~me and of the wave vector g that de6nes the spin
spiral. In Sec. III we present results of our calculations
which me use in Sec. IV to estimate finite temperature
properties of p-Fe and Fe3Pt. In Sec. V we offer our
conclusions.
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II. THEORETICAL BACKGROUND written in bispinor form as

A. The Hamiltonian

The Euler-Lagrange equations that minimize the to-
tal energy as functional of the density define an effective
single-particle Hamiltonian ' which for spin-polarized
electrons forming a noncollinear magnetic order may be

H(r) = —V' 1 + ) U+(8.„,P „)V„(r~ ) U(8~. , P. )

Here U(8~„,P~„) is the standard spin-2-rotation matrix,

( )
( cos(8~ /2) exp(i/~„/2) sin(8~„/2) exp( —if'„/2) )
q

—sin(8~ /2) exp(i/~„/2) cos(8~ /2) exp( —i/~„/2) y
(2)

which describes the transformation between a global
and a local spin coordinate system as defined below.
Throughout we use the label j to designate the unit cell
and the label v the basis atom. The polar angles 8~„, P~„
give the direction of the local magnetization,

mjv mv cos jv s&n ~jv &
s&n jv s&n ~jv &

cos Ojv

generate the spin transformation in the lattice of an in-
commensurate magnetic structure defined by q.

Hence the Hamiltonian may be written as

H~(r) = —V 1+) 4+(q R~)U+(8„,$„)V„(r~„)
jv

xU(8„,$„)4(q R, ) (7)

with respect to a global coordinate system and

V (, . ) ~

&-t(r~-)
0 v„g(r, ~) )

(4)

Next we use the definition of a generalized translation
operator (4(q R~)~T(R~)) given by Herring, 2s which
combines a spin rotation 4'(q R~) [Eq. (6)] with a space
translation by the vector R~ such that it transforms a
bispinor wave function as follows:

is the spin-polarized potential of the atom at site (jv) in

the local frame of reference. The potential is unambigu-

ously given by functional derivatives of the total energy
in the local-density approximation and it is centered
at rj„= r —7„—Rj. Designating by p.v the density
matrix integrated over the atomic sphere Oj„, i.e., p „=

P,.& „Q;(r)+,+(r)dsr, where the Q;(r) are eigen-

states of Eq. (I), we define the local frame of reference by
those polar angles for which U(8~„,P~„)p „U+(8~, Pz„)
is diagonal. Here we have made an atomic-sphere ap-
proximation by averaging over the local directions in each
sphere thus replacing a fine-grained mesh by the coarse-

grained mesh given by the atomic spheres. %hen the
polar angles are chosen to render the integrated density
matrix diagonal we call the angles self-consistent. A par-
ticular kind of self-consistent spin configuration that we

will use is given by spin spirals. Here the spin direction of
each atom in the unit cell rotates around the z axis with

a particular wave vector q which is defined by specifying
the polar angles as 8&„——8„, P~„= P„+q. R~, where

8„ is restricted to special values (see Sec. II C). The
spin-2-rotation matrices U(8~„,P~„) may then be sepa-
rated into an atomic contribution U(8„,P ) and a lattice
contribution 4 (q.R~ ):

(4'(q R~)~T(R~)) Q(r) = 4+(q R~) @(r —R~) . (8)

These generalized translations (4(q R~)~T(R~)) com-
mute with the Hamiltonian and they form an Abelian
group, isomorphic with the group of ordinary space trans-
lations (T(R~)).2 Therefore a generalized Bloch theo-
rem for the eigenfunctions exists which we can state as

(4(q R~)~T(R~) j Qi, (r) = exp( —ik R~) Qi, (r) . (9)

B. ASW implementation

Using the generalized Bloch theorem we expand the
wave functions Q&(r) in terms of the atomic bispinor
functions + L, (r) in the following form:

4i, (r) =).&-L, (k) 4i-r, (r)
vL cr

(Io)

This means that for any choice of the vector q it is the
chemical Brillouin zone that constitutes the domain for
the k vectors to be used for sampling the elements of the
density matrix.

U(8~„, P~.„)= U(8, P ) 4(q R~)

where

( ) ( exp(iq. R, /2) 0
0 p( —q R./2) (6)

Here the coefficients C„l, (k) are obtained by minimiz-

ing the expectation value of the Hamiltonian using the
variational method.

The bispinor basis functions Pi,„l, (r) for r on the
atomic sphere (p) are constructed as follows:2
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Q~z,~(r) = h„l, (r„)U„+X 6„„
I

+ ) G"", , (k) j„(r„)U+,g,6„„
(ii)

Here the quantities h„L,(r„) and j„I, (r„) are spheri-
cal Hankel and Bessel functions multiplied with spher-
ical harmonics, centered at the sites (v) and (v'); they
are solutions of the Helmholtz equation in the intersti-
tial space with a chosen energy of —15 mRy. Inside the
atomic spheres Eq. (11) has to be replaced by

pi, „L~(r) = h„l~(r„)U„+g
I

+ ) GL,"L...(k) & I (r )U+&
v'L'a'

where h„L, (r„) and j„I, r(r„r) are the corresponding

augmented mimerical solutions of the Schrodinger equa-
tion, defined to be zero outside their respective spheres,
and described in the spin-diagonal local &arne of refer-
ence. The information about the orientation of the indi-
vidual spin quantization axes is embodied in the prod-
uct of the spin-2-rotation matrices U with the bispinor
basis functions y .

Using the Korringa-Kohn-Rostoker (KKR) expansion
theorem one may expand a Hankel function at the site
(jv) in a linear combination of Bessel functions at the
site (j'v') by

The generalized structure constants appearing in Eqs.
(11) and (12) are then obtained as

r

( )
GI,"L,, (k —q/2) 0

GFi (k+ q/2) )
(14)

where

G~l, (k) = ) exp(ik Rz)BI,I, (Rz+ v„—~„)
E((m„)) = min E[m(r)]

the quantity Bl,l, is given by a standard formula &om
KKR theory and may, for instance, be obtained from Eq.
(16) of Ref. 26.

C. Constraining the magnetic moments

To describe the energetics of any kind of spin fiuctua-
tion it is advantageous to calculate the total energy as a
function of the magnetic moment.

For a ferromagnet this was achieved in the past by
the so-called fixed-spin-moment method (FSM), see, for
instance, Refs. 31—33, where the energy, E(m), of the
state having a magnetic moment m per unit cell (uc) is
obtained from a constrained variation of the form

where on the left-hand side (m„j is the set of desired
moments at the sites (y,). s I On the right-hand side the
vector parameters b„can be treated as magnetic fields
acting on the spin densities of the corresponding atoms.
The component of b„parallel to m„stabilizes the mag-
nitude of the moment and the perpendicular component
counteracts the torque that is produced by the nondiag-
onal density matrix.

In self-consistent spin arrangements the density matrix
by definition is diagonal in the local &arne of reference;
thus in Eq. (17) the vectors m(r), m„, b„are parallel
and we may drop the vector symbols. These conditions
apply to our calculations where we use planar spin spirals
which are defined by 8„=90' for all sites (v).

Thus the variation of Eq. (17) yields the following
Hamiltonian:

E(m) = min (8[m(r)] d- (mit(r|d r —m) ) . (16)
UC

The Lagrange parameter b can be treated as an external
magnetic Beld parallel to the direction of magnetization.
Here the magnetization is simply obtained by adjusting
two spin-dependent Fermi energies, e+ ——e+ 6 b, such
that the resulting magnetization is equal to the desired
value m.

In a general noncollinear spin structure Eq. (16) has
to be replaced by

H(r) = —V' 1+) U+(8~„,$,„)(V„(r;„)+ cr'b„(r, „) ]

jv
x U(8~„, (It'~„)

Here the constraining fields [b„(r~„) = b„ inside the
sphere (v) and zero outside] must be adjusted such
that the resulting moments coincide with those wanted:

m(r) dsr = m„. The Hamiltonian, Eq. (18), is
not diagonal in the spin quantum n»~bers, a fact that
leads to spin-hybridized energy bands. ' ' Therefore
the concept of two Fermi energies for bands with difFer-
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ent spin indices cannot be applied here. Thus to do the
actual constrained calculations for noncollinear conGgu-
rations we proceed iteratively as follows. We begin as in
the FSM by using two Fermi energies for each site (v):

b . If we start with any value b, the "cor-
rection" parameter b of the corresponding local Geld b

for an arbitrary moment m is given by

(19)

30

20

where the quantities N y(s, b„) are the partial spin-
projected densities of states of the atom (v) in its local
frame of reference obtained in the last iteration. For the
next iteration the new magnetic Geld is assigned as

30

bnew bold + gV V V (20)

With Eqs. (19) and (20) the parameters b are iter-
ated to self-consistency, such that eventually b„= 0 for
all sites v. This means that in the self-consistent solu-
tion one works just with a single "physical" Fermi en-

ergy c++ ——c . In analogy with the FSM we may call
this method the noncollinear Gxed-spin-moment method
(NCFSM). It allows us to calculate the total energy not
only as a function of the volume, but also as a function
of the magnitude of the magnetic moments and for arbi-
trary values of the spin-spiral vector, q.

III. RESULTS

Although the case of fcc or p-Fe has received theo-
retical attention before, ' ' we want to begin with
this case again brie8y sketching its peculiar properties
and adding some new results. This will set the stage for
our results concerning Fe3Pt which we will contrast with
those of p-Fe.

A. p-Fe

Even though the NCFSM-method allows us to carry
out calculation of the total energy for an arbitrary value
of the atomic moment m we will start the discussion with
Fig. 1 where the results of unconstrained calculations are
represented and therefore all states shown here supply an
extremum of the unconstrained functional. Thus Fig. 1
shows the total energy of bcc and fcc Fe as a function of
the Wigner-Seitz radius, S, in various diferent magnetic
structures. New in this set of data is the inclusion of
spiral magnetic order, whereas in all other respects it is in

2.55 2.65

S (a.u. }

2.75

FIG. 1. Total energy per atom of p-Fe in bcc and fcc crys-
tal structures as a function of the signer-Seitz radius, S.
NM, nonmagnetic; FM, ferromagnetic; AM, antiferromag-
netic; and SM, spiral magnetic.

agreement with older work, e.g. , Refs. 38—40. It should
be noted that the low value of the total energy for fcc
Fe compared with bcc Fe is known to be a LDA defect
that disappears in a nonrelativistic calculation, see, e.g. ,

Ref. 32. It is seen that for p-Fe the magnetic structure
depends sensitively on the volume (see also Table I).

In contrast to bcc Fe, where the ground state is fer-
romagnetic, i.e., q = 0,4s in fcc Fe over a wide range of
volumes the spin-spiral configuration is the state of low-
est energy with a spiral vector q = (0, 0, q, ) —close to

q, 0.6. It occurs because, at this particular q„ the
3d bands of opposite spin hybridize along the k, axis at
the Fermi energy, as was shown in detail in Ref. 26. In
addition, our calculations give further locally stable con-
figurations with q = (1,0, 0.25) —at 2.60 ( S ( 2.65 a.u.
and q = (1,0, 0.5) —at 2.67 ( S ( 2.72 a.u. , which is in
agreement with neutron diKraction experiments on p-Fe
precipitates in copper.

Using the NCFSM method described in Sec. II C we
extended our calculations to arbitrary values of the local
magnetic moments to obtain the total energy as a func-
tion of volume, v, the local magnetic moment, m, and
magnetic structure, q, i.e. , E(v, m, q). Our numerical
experiments showed that the total energy can be written

TABLE I. Dependency of spin configuration in p-Fe on atomic radius and magnetic moment.

2.53 (
2.60 (
2.76 (

Atomic radius (a.u. )
S ( 2.53
S (260
S ( 2.76
S

0.0 (
1.0 (
2.5 (

Magnetic moment (ye)
m = 00
m & 1.0
m ( 2.5

Spin configuration
Nonmagnetic (NM)
Antiferromagnetic (AM)
Spin-spiral magnetic (SM)
Ferromagnetic (FM)
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FIG. 2. Conntours for p-Fe of the collinear contribution to
the total energy, E„see Eq. (21), in mRy per atom. S,
Wigner-Seitz radius in atomic units and m

e magnetic moment in p~. The locus of points defined

by BE,/Bv = 0 is indicated by the heavy dashed line.

term on the right-hand side, E„we may call the coll'
e secon, q, the noncollinear contribution to the

total energy. We graph in Fig. 2 the collinear energy sur-

g. "e aoncollinear contributionface E (v, m& andinFi . 3t ' '
on

Eq m, q, ).
Althou h ag aL& excited states contribute to the thermal

properties of a crystal, these contributions depend cru-
cia y on the energy of the states decreasing rapidly with
increasing energy. Therefore, to gain a qualitative under-
standin of tern eg p rature trends, we can concent t
certain

nrae on

and E m

'n special features of the energy f t' E,unc lons ~ Cps m
an q(m, q). Thus it is the separation of the total en-
ergy given in Eq. (21) that allows us to rather easil find

, q~ which for a given value of the mag-
o ra er easi y nd

netic moment m minimize the total energy. Indeed, the
corresponding value of q, or here in particulic ar q„can

3 an
e etermined by using the curve BE 8e q~ q~ =0, see Fig.
, an the value of v may be read ofF & F' .o om ig. 2 using
e equa ity BE,/Bv = 0. The relation between m and

q, thus obtained is identical to that given in Table I, be-
cause in both cases they are determined b thne y e equation

q q, =0.

B. FeqPt

E(v, m, q) = E,(v, m) + n(v)E~(m, q)

ere a(v) is a slowly varying scaling factor which for the
volume range investigated is a(v) (vo/v)4. The first

Fe3Pt crystallizes in the Cu3Au structure it '
dure; i is or ere

c a Pt occupies the cube corners and Fe the fa
centers. TThe atomic-sphere approximation used in our

an e e ace

calculations requires the choice f ho sp ere ra ii for the

Eq (m, q)

E(

0

-10

FIG. 3. Contours and surface for p-Fe of
the noncollinear contribution to the total en-

ergy, Eq, see Eq. (21), in mRy per atom
m, magnitude of the magnetic moment in p,~
and q, magnitude of the spiral vector in units

points defined by BE~/Bq, = 0 is indicated
by the heavy dashed line.

0 0
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constituents which was such that the atomic spheres were
neutral to within about 0.2 electrons per sphere. To a
good approximation this leads to a minimum in the total
energy at a given volume and is found to require equal
sphere radii for all volumes and states of magnetic order
considered.

In contrast to p-Fe the ground state of Fe3Pt is fer-
romagnetic for a sphere radius, S, of S = 2.79 a.u.
possessing magnetic moments of mF, —— 2.67p~ and
mpt, ——0.27@~. The corresponding lattice constant is
a = 3.77 A which is somewhat larger than the experi-
mental lattice constant of a = 3.73 A.44 The calculated
magnetic moment corresponds to m = 2.07@~ per atom
which is slightly smaller than the experimental value of
m = 2.16pB per atom quoted by Shimizu. 5 In Fig. 4 we
show the total energy per cell as a function of the tA'igner-

Seitz radius, S. Figure 4 differs from older calculations
in a number of details (see Refs. 17 and 3); these are the
numerical values of the total-energy difference between
the ferromagnetic and non-magnetic states, the values of
the equilibrium lattice constant and the equilibrium mag-
netic moment. This is so because our calculations are not
relativistic in contrast to the older calculations where the
scalar-relativistic wave equation (SRWE) was used. As
we pointed out in the Introduction, our results are closer
to experimental ground-state properties than those ob-
tained with the SRWE. The same observation was made
in Sec. III A for fcc and bcc Fe. This is our only justifi-
cation for neglecting relativistic corrections here.

Continuing with the discussion of our results we notice
in Fig. 4 that the spin-spiral states possess the lowest
total energy for a wide range of volumes, but, in contrast
to p-Fe these states are seen to occur at volumes smaller
than the calculated equilibrium volume. Furthermore,
the collinear antiferromagnetic state (not shown in Fig.

4) is higher in energy than the ferromagnetic state. In
particular see Table II.

A detail should be noted here. For reasons of symme-
try we chose the spiral vector to be parallel to the (1, 1, 1)
axis: q = q (1, 1, 1)—.This leaves all three Fe positions
of the Fe3Pt unit cell magnetically and chemically equiv-
alent. The spin-spiral magnetic order of lowest energy for
a wide range of volumes of Fe~Pt is given approximately
by q = 0.25. This can be translated into the angle be-
tween the spins of two neighboring ferromagnetic planes
to be about 90 which is close to the angle in p-Fe of
108'.

As in the case of p-Fe the total energy can be writ-
ten as a sum of a collinear contribution, E,(v, m), and a
noncollinear contribution, E~(m, q), see Fig. 5 and Fig.
6, which, as was pointed out in Sec. III A, facilitates
the discussion greatly. Thus from Fig. 6 we find for a
given local moment, m, the value of q corresponding to
the state with the lowest total energy and from Fig. 5
the relevant value of the volume, n. Figure 6 shows that
in the case of Fe3Pt for m ) 2.6p~ the energy is lowest
in ferromagnetic order and for m & 2.6p,B the energy
is minimized by a spin-spiral structure with values of q
lying in the interval &om 0.2 to 0.3.

For the discussion that follows it is important to note
that the noncollinear portion of the total energy E~(m, q)
has a clear tendency to increase for large m, see Fig. 6. In
particular the noncollinear contribution, E~(m, q), is neg-
ative for states with small moments, (m ( 2.6p, g), and
positive for states with large moments, (m ) 2.6y~).
Therefore, this contribution with heating leads to a
preferable occupation of noncollinear states having local
magnetic moments smaller than the ground-state value
of mo ——2.67pn (see also Sec. IV).
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FIG. 4. Total energy per unit cell of Fe3Pt as a function
of the Wigner-Seitz radius, S. NM, nonmagnetic; FM, ferro-

magnetic; and SM, spiral magnetic.

FIG. 5. Contours for Fe3Pt of the collinear contribution
to the total energy, E„see Eq. (21), in rnRy per unit cell;
S, Wigner-Seitz radius in atomic units; and m, magnitude of
the magnetic moment in p, ~. The locus of points de6ned by
BE,/Bv = 0 is indicated by the heavy dashed line.
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TABLE II. Dependency of spin configuration in Fe3Pt on atomic radius and magnetic moment.

2.60 &
2.76 &

Atomic radius (a.u. )
S & 2.60
S & 2.76
S

0.0 &
2.6 &

Magnetic moment (y,n)
m = 0.0
m & 2.6

Spin configuration
Nonmagnetic (NM)
Spin-spiral magnetic (SM)
Ferromagnetic (FM)

We may add that for the ferromagnetic ground state
of Fe3Pt our calculations give a hyper6ne field for Fe of
—290 kOe which is in reasonable agreement with exper-
imental values. 4 Our calculations show a distinct ten-
dency for a decrease of the hyper6ne Geld when the angle
between neighboring spins increases; e.g. , for q = 0.25 the
calculated hyper6ne 6eld is —200 kOe without a notice-
able change in the value of the local magnetic moment.

The information on the total energy of spiral struc-
tures can be used for a rough estimate of both the
Curie temperature, T~, and the spin-wave stiffness con-
stant, D. The Curie temperature T~ can be estimated
within the mean 6eld approximation to the Heisenberg
Hamiltonian. Neglecting the magnetic contribution of
platinum, the Curie temperature is given by T~
s'+ J(0). Here the exchange parameter J(0) is cal-

culated by J(0) = 0&& j&&d qb, E(q), where b,E(q) =
[E(vo, mo, q) —E(vo, mo, 0)j/3 is the total energy per Fe
atom counted from the ground state and OBz is the

volume of the Brillouin zone. Our calculations give
Tc = 435 K, which is in good (probably fortuitous)
agreement with the experimental value of ordered FesPt,
Tc = 430 K.s 4s We hasten to point out that we do not
imply here the localized-electron picture is appropriate
for a description of the magnetovolume effects.

To estimate the spin-wave stiffness constant D we

use the following expression: " D = —hm~

with b,E(q) defined above, we obtain the value of D =
135 meV A.~ which should be compared with the value of
D = 80 meV A. for Fer2Pt2s.

IV. DISCUSSION OF THERMODYNAMIC
PROPERTIES

In this section it is our purpose to show that the in-
formation accumulated in the total-energy surfaces dis-

Eq (m, q)

E(

30

20

10

-10

FIG. 6. Contours and surface for Fe3Pt of
the noncollinear contribution to the total en-
ergy, Eq, see Eq. (21), in mRy per unit cell.
m, magnitude of the magnetic moment in p, gy

and q, magnitude of the spiral vector in units
of —"along the (1, 1, 1) axis. The locus of
points defined by BEq/Bq = 0 is indicated by
the heavy dashed line.

0.5
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cussed above supplies a good description of the anoma-
lous tendencies in the temperature variation of the spe-
cific volume. However, we do not attempt to construct
a consistent statistical mechanics scheme but within a
rather simple scheme for statistical averages we show
that excited states modeled by noncollinear arrangement

of magnetic moments give an important contribution to
thermodynamic properties.

For the averaging process which we want to use here we
will make use of all calculated states; therefore the phase
space is parametrized by v, m, and q. The probability
function of any state is defined as

p(v, m, q; T) = f~(v, m, q; T) D(v, m, q) fp(v, m, q;T) (22)

where

fg(v, m, q; T) = exp( —E(v, m, q) / kpT) (23)

is the Boltzmann factor and

Dv, m, q = dv mdm d q (24)

denotes the integration over all three parameters. On
the basis of this probability function we calculate the
distribution of any variable z(v, m, q) by

and its average value by

(*)i')) = f~* .(*.; T) *v (26)

As the variable x we may choose any physical quantity
characterizing the crystal, in particular the specific vol-
ume, the magnitude of the local magnetic moment, or
even components of q.

The integral over q extends over the entire Brillouin
zone and we integrate over Huctuations of the volume,
the magnitude of the magnetic moments, and over trans-
verse spin Buctuations. For temperatures up to about
600 K no artificial cutoff parameters are needed in these
integrals, therefore the integrals pose no problems for low
and intermediate temperatures. To sample the spin-wave
states in the Brillouin zone we used for p-Fe a mesh of
256 q vectors spread uniformly over the full Brillouin
zone. For Fe3Pt, however, we are limited presently by
symmetry (see Sec. III B) and computer time to use q
vectors along the (1, 1, 1) axis. We employed five such q
vectors, which we believe supply a representative set of
noncollinear excited states for a qualitative study of their
role in thermodynamic properties.

Our main result is shown in Fig. 7 where the calculated
temperature dependence of the magnetic contribution to
the expansion coefficient, cx(T), is presented for p-Fe and
FesPt. The coefficient n(T) was calculated as the deriva-
tive with respect to temperature of the average value of
the specific volume (v(T)). The calculations were done
with and without taking into account noncollinear states.

v, )vv;T) = fD(v, m, )qp(v, , mT)q8[ vv), mq) —vv)

(25)

20

I

&0
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.. -'Fe3Pt (c+q)

200

T(K)
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FIG. 7. Expansion coefBcient o. as a function of tempera-
ture T calculated for p-Fe and Feqpt; (I) using only collinear
states (c) and (II) including collinear and noncollinear states
(c+ 0).

For p-Fe in both approaches we obtain a large positive
thermal expansion coefficient. This is completely differ-
ent for Fe3Pt, where accounting for noncollinear excita-
tions changes the sign of the thermal expansion coeffi-
cient. It is seen that with the use of only collinear mag-
netic states the coefficient a(T) is positive at very low
temperatures and nearly zero for higher temperatures.
Inclusion of noncollinear configurations leads to a nega-
tive sign of a(T) over a wide temperature interval. The
thermal expansion coefficient due to magnetic effects has
been obtained experimentally for FesPt (Ref. 5) only.
Its sign and order of magnitude are in agreement with
our results, although the functional form, especially an
experimental peak slightly below T~, is not brought out
by our calculations.

We can give a simple interpretation of these results
using the information we have for the total energy,
E(v, m, q). Beginning with p-Fe, we read off from Fig.
1 that the ground state is nonmagnetic. At finite tem-
peratures the states with a finite local magnetic moment
will be occupied. In Fig. 8 we show the distribution
of the magnitude of local magnetic moments calculated
with Eq. (25). Here with increasing temperature T the
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n(m, T)
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FIG. 8. Contours and surface of the distri-
bution of magnetic moments, m, in p,~ with
temperature T in K for p-Fe.
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maximum and, as a result, the average value of the dis-
tribution is shifted to larger values of m. However from
the energy contours shown in Fig. 2 it becomes clear
that an increase of the moment costs more energy for the
states with smaller volume. Therefore the occupation of
the states with larger volume increases faster than for the
states with smaller volumes. This conclusion is valid for
both calculational approaches, i.e., with and without in-
cluding noncollinear states. Accounting for noncollinear
states increases the number of magnetic excitations and
leads to a faster increase of the average moment and cor-
respondingly to a faster increase of the average volume.

We point out that g-Fe d.oes not exist as a stable phase
at low temperatures and, therefore, for a comparison with
experimental results one must take into account the state
in which p-Fe has been stabilized. However it is worth
mentioning that our results are in agreement with recent
experimental findings of Acct et al.

The situation is different in Fe3Pt. Here the ground
state is ferromagnetic with an iron moment of mo
2.67@~. Therefore excited states can have both smaller
magnetic moments, m ( mo, and larger magnetic mo-
ments, m ) mo, see Figs. 5 and 6. Let us first restrict
our attention to collinear states only. In Fig. 5 one sees
that low-energy excitations form energy contours which
are almost symmetric with respect to the direction of
variation of the parameters m and e. With increasing

excitation energy the contours lose their symmetry and
the states with smaller m and v increase slowest in energy
making energetically preferable a decrease of the average
values of m and v with heating. However, the factor ms
in the integration formula, Eqs. (22) and (24), opposes
this tendency and accounts for a larger number of states
with larger m. Our calculations show that both effects
almost compensate each other and for a wide tempera-
ture interval the value of the expansion coefBcient is very
small.

The inclusion of noncollinear states, Fig. 9, breaks
the balance in favor of states with smaller moments and
correspondingly smaller volumes. This is caused by the
preferable occupation of noncollinear excited states with
m (mo cBscussed in the previous section. Large occupa-
tion of noncollinear states with smaller values of m and
n gives a negative magnetic contribution to the thermal
expansion coeKcient. A negative value of the magnetic
contribution agrees with experiment and together with
the usual positive thermal expansion leads to the Invar
anomaly in Fe-Pt Invar alloys.

V. CONCLUSION

Our treatment of the electronic and magnetic prop-
erties of itinerant-electron systems presented here has
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n(q, T)

FIG. 9. Contours and surface of the distri-
bution of the spiral vectors q = q(l, 1,1)—
with temperature T in K for Fe3Pt.
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grown out of a long development connected with the work
of Korenman, Heine, Moriya, and many others.
This is not the place to discuss the similarities and dif-
ferences in our work compared with the many previous
theories. Let it be said that Korenman et al.5 treated
the vector nature of the magnetic moments formed by the
itinerant electrons like we do. But unlike Korenman's,
our calculations are self-consistent concerning the charge
and spin densities and the interatomic magnetic moment
arrangements. We thus succeeded in describing the vec-
tor nature of the magnetic moments whose magnitude
and direction are treated in a noncollinear constrained
moment calculation as independent variables for an ab
initio calculation of the total energy. This supplies the
energetics of spin fluctuations and enabled us to make a
step —although crude —in the direction of determining
finite temperature properties.

Our calculations describe the magnetovolume proper-
ties of p-Fe and Fe3pt. While the results for p-Fe are
not easily compared with experimental data, the results

obtained for FesPt agree semiquantitatively with exper-
imental facts, notably with the Invar behavior. On first
sight it does not appear surprising that in Fe3pt with
increasing temperature the magnetic moment and thus
the specific volume decrease. One should bear in mind,
however, that the decreasing magnetic moment is not the
usual decreasing thermal average but is brought about by
longitudinal spin fiuctuations that are triggered by trans-
verse fluctuations. These, in fact, in p-Fe cause the non-
intuitive initial increase of the magnetic moment when
the temperature increases and thus lead to an anoma-
lously large thermal expansion here.
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