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Time-dependent mean-field theory for tunneling in electron-phonon systems
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A semiclassical method is presented for tunneling of self-trapped states in many-body systems
with electrons and phonons. An overcomplete set of Slater determinants, lattice coordinates, and
lattice momenta is used to represent a functional integral. Stationary phase equations are solved
numerically without any constraint on the dynamics of electrons and phonons, i.e., without the
use of the adiabatic approximation. To evaluate transition amplitudes, we integrate over small
fluctuations in both electronic and phonon degrees of freedom, keeping their time order correctly.
This method can be applied to general electron-phonon systems and is useful when self-trapped
states have complex structures in charge or spin densities and lattice displacements. The effective
hopping strength is calculated for a self-trapped kink in the commensurate charge-density-wave
state in one dimension. At strong coupling in the Holstein and attractive Hubbard models, where
tunneling involves effectively a single tightly bound bipolaron, this method reproduces previous
analytic results. New results are obtained at intermediate coupling where the kink is extended over
a couple of lattice sites and for models with both electron-electron and electron-phonon interactions.

I. INTRODUCTION

Semiclassical methods are often useful to treat many-
body systems. When stoichiometric broken-symmetry
states of strongly correlated systems are doped with elec-
trons or holes, they usually form polarons or bipolarons
in the broad sense. They may accompany a lattice distor-
tion, a distortion of spin order, or both of them. As far as
response functions reflecting correlations of short range
in length and time, a semiclassical method of inhomo-
geneous Hartree-Fock and random-phase approximations
gives reasonably good results in a two-dimensional (2D)
three-band Hubbard model, a 1D two-band spinless
fermion model, and a two-site Peierls-Hubbard model.
Their limitations are discussed in Ref. 3. The above
method treats only small-amplitude Buctuations around
static mean-Beld solutions. The present work is devoted
to large-amplitude deviations from them: imaginary-
time-dependent solutions describing the tunneling pro-
cess and small-amplitude Buctuations around them.

If the distortion and additional charge density with
respect to the stoichiometry are self-trapped, their
low-temperature dynamics can be described through
tunneling. 4 Tunneling can be treated semiclassically once
evolution is treated in imaginary time. Another exam-
ple of tunneling in many-body systems is self-trapping of
excitons. When a free-exciton state is metastable and
separated from a self-trapped-exciton state by a poten-
tial barrier, a nonradiative process of trapping excitons
occurs via tunneling. There is a recent semiclassical work
on the possibility of small-polaron formation for an elec-
tron in a 2D lattice. Low-temperature electrical conduc-
tivity of charge-density-wave (CDW) condensates is also
another example because it is dominated by quantum-
mechanical tunneling associated with soliton-antisoliton
pair production. On the other hand, the real-time dy-
namics of almost freely moving solitons in 1D electron

and electron-phonon systems has been extensively inves-

tigated in a similar mean-Beld theory.
Self-trapping is a consequence of many-body effects: it

is determined by the balance between the itinerant na-
ture determined by transfer integrals between neighbor-
ing atomic orbitals and the localizing nature governed by
Coulomb repulsion and coupling with the lattice. Tun-
neling rates should be calculated with proper account of
the balance and from a microscopic Hamiltonian which
describes the many-body system well. In this work, the
whole system is treated instead of separating it into a few

degrees of freedom and a bath. In semiclassical treat-
ments, the exponent of a tunneling rate is determined by
classical paths, ' so that they need to be solved with
accuracy. Here, the shape of classical paths was not con-
strained, so that the paths really satisfy the stationary
phase condition.

Time-dependent mean-Beld equations depend on the
basis on which the functional integral is represented.
Because the functional integral is approximated by sum-
mation only over classical paths and small Huctuations
around them, the appropriate basis should be used to
describe classical paths. Here we use an overcomplete
set of Slater determinants for electrons and lattice co-
ordinates and momenta for phonons. Adoption of an
overcomplete set with continuous variables is needed be-
cause only continuous paths contribute to the functional
integral in the stationary phase approximation. Then,
we do not need to specify a complete and discrete set of
Slater determinants consisting of plane-wave or atomic
orbitals. The stationary phase condition automatically
chooses a classical path close to a plane-wave Slater de-
terminant at weak coupling, and one close to an atomic
Slater determinant at strong coupling.

The reason for the use of Slater determinants is
that the imaginary-time-dependent Hartree-Fock (HF)
equation becomes the electronic part of the mean-
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field equations. ' We do not introduce Hubbard-
Stratonovich auxiliary fields which lead to either Hartree,
Fock, or half of the Hartree-Fock mean fields on the sta-
tionary phase. We do not use Grassman variables be-
cause there is no direct way to apply the stationary phase
approximation: when auxiliary fields are introduced to
remove the Grassman variables, it leads to the same con-
sequence. Once Slater determinants are used, we must
carefully take the continuum limit in time to maintain
the correct order of fluctuation variables when integra-
tions are performed.

The formalism based on Slater determinants is de-
scribed in less detail in Refs. 12 and 13 than that based
on auxiliary fields: Gaussian fluctuations which are nec-
essary for completeness were not treated because a con-
tinuum limit in time is ill defined. We will below describe
the Slater-determinant functional integral rather in detail
and demonstrate how it is successfully applied to tunnel-
ing of self-trapped states. It produces accurate results,
for both adiabatic and antiadiabatic cases, at strong cou-
pling where the potential barrier is substantial. Here we

consider the 1D extended Peierls-Hubbard model in the
parameter space where the CDW is the ground state at
half filling. We calculate the effective hopping strength
of a self-trapped kink which connects the two degenerate
CDW phases.

The kink is laid on a periodic potential whose period is
two lattice spacings in the CDW background. We employ
the dilute-instanton-gas approximation ' to construct
classical paths, i.e., multi-instanton solutions. This is not
a unique way: a theory of spontaneous nuclear fission
does not rely on it, but it takes account of real-time-
dependent paths in a classically allowed region and con-
nects them to imaginary-time-dependent paths in classi-
cally forbidden regions. It is, however, tedious to extend
this general treatment to a periodic-potential problem. A
relation between this general treatment and the instanton
technique for a double-well potential is briefly described
in Ref. 13. We will derive mathematical properties of
imaginary-time-dependent solutions and the relation to
real-time-dependent ones more clearly than in Ref. 16.

In order to compare the present method with other
theories, we calculate the prefactor through Gaussian in-

tegration over lowest-order fluctuations with respect to
particle-hole excitations and phonons. In this process,
particle-hole fluctuation amplitudes are regarded as inde-
pendent variables, so that the orthonormality condition
for single-particle wave functions is not strictly satisfied
but only in the lowest order. It is equivalent to bosoniza-
tion through linearization of particle-hole excitations. In-
deed, if we treat real-time-dependent small fluctuations
around the stable static mean-field solution in the present
formalism, we obtain the same excitation modes as in
the most unrestricted form of the random-phase approx-
imation (RPA), which is called inhomogeneous HF plus
RPA '"

The semiclassical results of the effective hopping
strength for the self-trapped kink are consistent with pre-
vious analytic results. At strong coupling, bipolarons
are tightly bound and interaction between them is weak.
The kink is well localized and its tunneling involves es-

sentially a single bipolaron. The effective hopping can be
evaluated by the second-order perturbation theory with
respect to bare electron hopping, ' which shows expo-
nential behavior with respect to coupling in the Holstein
model and inversely proportional behavior in the attrac-
tive Hubbard model. These results are reproduced by
the present method. Furthermore, effects of on-site and
nearest-neighbor repulsions are studied. The tunneling of
the kink is enhanced by on-site repulsion and suppressed
by nearest-neighbor repulsion in a manner which has not
been given by previous analytic treatments.

The outline of this paper is as follows. In Sec. II,
a transition amplitude is represented in the functional
integral. In Sec. III, the stationary phase approxima-
tion is used to derive the time-dependent mean-field
equations. In Sec. IV, we describe mathematical prop-
erties and boundary conditions of the imaginary-time-
dependent mean-field solutions. The reduced action is

defined, whose imaginary part determines the exponent
of a tunneling rate. In Sec. V, small fluctuations around
the mean-field solutions are treated in the lowest order.
The instanton formula for the effective hopping is briefly
reviewed. In Sec. VI, we take the 1D extended Peierls-
Hubbard model to present semiclassical results for the ef-

fective hopping of the self-trapped kink. Comparisons are
made with the strong-coupling analysis for the Holstein
and attractive Hubbard models. New results are shown
for the extended Peierls-Hubbard model. In Sec. VII,
we summarize the present method and discuss its valid-

ity and limitations. Appendixes include the quantization
condition, the relation of the present method to the in-

homogeneous HF plus RPA, and some numerical details.
Part of the present work will be published elsewhere.

II. FUNCTIONAL-INTEGRAL
REPRESENTATION

To describe the formulation, we use a general Hamil-

tonian,

0 = ) T, ({u ))c,c~+ — Q (ig~V~lm)c, .c c cl

i)2 i,j,l,m,

1+) 2%~«u~+ ). pi ~

t,m
2Mt

where c~ creates an electron, c, annihilates it, u, repre-
sents a lattice coordinate, and p; stands for its conjugate
momentum. The index i denotes both site and spin for
electrons and both site and polarization for phonons. The
parameter T~((u )) is assumed to be linear in (u ).
The electron-electron interaction parameters are anti-
symmetrized, (ij~V~Im) = (ij~V~lm) —(ij~V~ml). The
parameter K~ denotes the spring constant between the
ions at l and m, and M~ represents the mass of the ion
at l.

We consider an initial state denoted by ~Pr) ~ur) at time

tr and a final state by (up ~(P~~ at time tF. Here ~Pr)
and (P~~ denote Slater determinants, in which a single-

particle state p has wave functions gr~(i) and P& (i),
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(2.2)

is written in a functional integral form by decomposing
the Hamiltonian

H = Hp[u]+ HM[p], (2.3)

with HM [p] = g& p& /(2M~), and alternately inserting the
closure relations

«i(ta)d4;(i, ta)d4, (i, ta)
l tiggocc

xe ~'"-. ""' "'"'[4a)lua&&ual(Pal (2.4)

and

respectively. The symbols lul) and (u~l represent lat-
tice coordinates ul~ and u~~, respectively. The transition
amplitude

not depend implicitly on the lattice variables here. The
relation between lga) and lua) in the stationary phase is
later given by the time-dependent mean-field equations.
If lga) were set to be the lowest-energy state for each
lattice state Iua) rather than expanded as above, the
product lga) Iua) would become, in the stationary phase,
a Born-Oppenheimer state where electrons are evolved
adiabatically. As we will demonstrate below, lga& in the
stationary phase is not an eigenstate of Hp[u] at time
ta, but it is evolved according to the time-dependent
(single-particle) Schrodinger equation. Therefore, the
optimum product lga)lua) is not a Born-Oppenheimer
state. The difference occurs when the state is dynamic:
the Slater determinant lga) depends not only on Iua) at
the equal time, but also on Iua ) (k' ( k). The difference
between the adiabatic and present approaches has been
pointed out in a difFerent and more familiar context in
Appendix H of Ref. 17.

In the Trotter formula, there appear factors

dpi(ta) d4; (i, ta) d4, (i, ta)
1 tip+OCC

x e ~' &-. "'""
lg a) lpa) (pal &Pa I

(2.5)

&u»l&&»le "'" IAa-i) l»a-i)

x (p2a il&$2a ile ~' '"
IP2a 2&luna 2), (2.6)

in the Trotter formula. The symbol lga) denotes a Slater
determinant at time ta, in which a single-particle state p
has a wave function P~(i, ta) and is regarded as occupied

(p E occ). The symbols Iua) and Ipa) represent lattice
coordinates and momenta at time ta, u~(ta) and p~(ta),
respectively. Note that any state can be expanded with

lga)lua& or lga)lpa). The Slater determinant lga) does
I

where e = (ty —tr)/L with 2I being the number of in-

serted closure relations, and k runs &om 1 to L. The state
IA)lup) is the same as 141)lur) by definition, &u2L I

=
(u~l due to the orthonormality, while &/sr, l

is not nec-
essarily the same as (P~l. Neglecting terms of order es,
the above factor (2.6) is rewritten as

(u2a I psa-1) &p2a-1 lu2a-2) &42a I42a-i) &42a-1[42a-2) exp
I

—$«[p2a-l, u2a-2, 0 2a i, 42a-2] (2.7)

where

+[p2a —1& u2a —2~ 4'2a —i& 4'2a —2]

I

P,.P+'(i, t)P& (i, t), and N, is the number of electrons,
the electronic one-body density matrix is written in a
simple form, ~4

(&»-ilHp[u»-2]l&»-2) H y ] ( )

The single-particle wave functions P (i, ta) and p (i, ta)
of the Slater determinants (pal and [4a) are indepen-
dent variables. To make it clear, we rewrite P'(i, t) and

P~(i, t) as P+'(i, t) and P (i, t), respectively Introdu. c-
ing a "normalized" bra wave function

pgocc
(2.iO)

By definition, the single-particle wave functions satisfy
the orthonormality condition

( t)= ).[M(t) ] ~ ( t)
Pgocc

(2.9)
( t)~ ( t) =~ (2.SS)

where M(t) is the N, x N, overlap matrix, M(t) p =
I

The products of overlaps are written, to the order of e,

1
(u2alp2a i)&p2a ilu2a 2) = &exp ie/~ ):pr(t2a i)&«(t2a) —«(t2a-2)&/~

2wh

(&2al&2a i&(&.+a il4'2a .&
= &4".al4sa)(Isa il&.a i) ex& (ie/~[64&. li&(l&2a) —l&2a, ))/e

+(Ca—il (l&2a —i) I4'» —2) &/ ]) .
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Finally, the transition amplitude is written as

(2.12)

where the measure is

L

&(p( ) u( ), 0+'( ), 0 ( )) = —
I pi(t2A, -i)«i(t2~)

k=1 /

2L
P

~ 4 h I

k=1 i,qgocc

dp+'(i, tg)

(i t )e E, ,,~...4, (~,&a)4, (~,ta)(y+~y ) (2.13)

Her~~fter JV denotes a normalization constant which generally takes different values in different equations. The action
S is a functional of the paths p{t), u(t), p+'{t), and p (t) defined by

Cp

S[p(t) u(t) &'"(t) 4 (t)l = «).p(t) —u(t)+ ) 4"(i,t)i~~ 4, (i t)
Bt

i,pgocc

-&[p(t) (t) &'*(t) & (t)] —&I (d t(&EI& (tE))) (2.14)

where

(2.15)

The overlap (pE~p (tE)) = (QE~$21) is given by the de-
terminant of the N, x N, matrix, p,. pE (i)p& (i, tE),
and denoted by det(QF]p (tE)). It is necessary for the
gauge invariance of the action. i4

III. STATIONARY PHASE APPROXIMATION

Time-dependent mean-field equations are derived by
the stationary phase condition. By equating the variation
of S[p(t), u(t), P+'(t), P (t)] with respect to P+*(i, t) [not

P~'(i, t)], P (i, t), p((t), and u~(t) to zero, we obtaini

h[ (t) (t)]' = T' (( (t)))

+) {itl&ljm)p(t)-i .
lm

Here we have Axed the arbitrary phases of the vectors
(P+(t)] and ~P (t)). So far, the formulation is generally
applied to any Slater determinant in which single-particle
states are arbitrarily occupied.

Hereafter, we consider the Slater determinant where
the lowest-energy single-particle states are occupied at
the initial time. Quantization is achieved as follows. En-

ergy eigenvalues constitute poles and branch cuts of the
trace of the resolvent operator2~

i&—4 (i t) = ) I [p(t) u(t)]* & (j t), (3.la) G(E) —= tr
1

E —0+ xg
(3 3)

which can be written in the functional integral form

0 1

&
ui(t) =

M pi(t)Bt M)

&&pi(t) = —) g,', p(t), ; —) Ki u (t),

(3.1c)

(3.1d)

~(@) dT i ET/ht iHT/—
o

dT i ET/h

o

x V(p(t), u(t), y+'(t), P
—

(t))
PBC

x exp —S[p(t), u(t), P+*(t),P (t)]
fi

)
(3 4)

where g;~ = OT;~ ((u j)/t9ui denotes the electron-phonon
coupling strength, and h[p(t), u(t)] is the HF matrix

with periodic boundary conditions (PBC) in time direc-
tion. Mean-6eld solutions would dominantly contribute
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to the action. Summing up contributions Rom a class of
them yields the quantization condition. We describe the
outline in Appendix A since it is a rather straightforward
generalization of Refs. 12—14 for interacting electron-
phonon systems. The occupied states are precisely de-
fined in the Appendix.

We first consider small fluctuations around a stable
static mean-6eld solution. Fluctuations evolve in real
time because of the stability of the solution. The lowest-
order terms of the mean-6eld equations constitute the
RPA equation in the most unrestricted form. Though
the derivation of the RPA equation itself is a straight-
forward generalization of Ref. 22, the calculation of the
RPA total energy needs attention to the continuum limit.
We describe this in Appendix B so that the connec-
tion with Ref. 17 is made clear. Here, fluctuation of
the single-particle wave function for an occupied state
is expanded with the zeroth-order wave functions for the
unoccupied and occupied states, whose components cor-
respond to particle-hole and hole-hole fluctuations, re-
spectively. Particle-hole fluctuations are dominant when
the amplitudes are small, as easily derived &om the or-
thonormality condition. In Gaussian integration for the
total energy, the particle-hole amplitudes and their con-
jugate quantities are integrated over the entire complex
plane, while the hole-hole amplitudes are merely sup-
pressed. The Pauli exclusion principle is thus violated at
the large-amplitude regime. However, the contribution
&om the large-amplitude regime is small and it does not
harm the formulation whenever the average fluctuation
amplitudes are small. This treatment indeed corresponds
to bosonization of particle-hole excitations.

4;(i, r) = y;(i, t = —ir), (4.la)

y+ (i, r) = y+ (i, t = -ir), (4.1b)

ui(r) = ui(t = -ir), (4.1c)

pi(r) = —ipse(t = —ir) . (4.1d)

Note the factor i in Eq.—(4.1d).
We consider a mean-field state self-trapped in a local

minimum of the adiabatic (i.e. , pi = 0) HF total en-

ergy as an initial state I, and another state self-trapped
in a nearest-neighbor minimum as a final state F. The
imaginary-time transition amplitude is written, with sin-

gle insertion of a closure relation, as

(E]exp — ]I) = ) (E]n)(n~I) exp
r' Hr, &

l2h )

„z;)
2h )

(4.2a)

where n denotes energy eigenstates. It is also written in
the functional-integral form as

and stationary paths, but it is not the case in imaginary
time. We write the imaginary-time-dependent variables

as

IV. BOUNCE SOLUTIONS

When discussing tunneling, we need mean-field solu-
tions which are periodic in imaginary time t = —iv for

T2/2 & r & T—2/2. The single-particle wave functions
P+'(i, t) and $ (i, t) of the Slater determinants (P(t)]
and ~P(t)) are independent variables so that they need
not be complex conjugates in the stationary phase. In
real time, they are complex conjugates on the periodic

I

&(p(r) u(r) 4"'(r) 4 (r))
I-+F

x exp SE[p(r), u(—r)—, P+'(r), P (r)], (4.2b)
h

where the Euclidean action is given from Eq. (2.12) by
setting r = it:

0

S@[p(r),u(1 ), Q (r), Q (r)] = dr ) pi(r) u((r) + ) —
Qp (l, r)5—Q (E, r)

mT

i,pCocc

+'R[p(r), u(r), P+'(r), P (r)] —bin det(Py ~P (0)) (4.3)

Note that the integration in Eq. (4.3) is over Tq/2 &—
r & 0. In the expression for 'R[p(r), u(r), 4+'(r), P (r))
above, the lattice kinetic energy should be replaced by

8—n—y;(i, r) = ) h[p(r), u(r)];, y;(q, r), (4.4a)

2M) ,
- 2M) &—4~'(i r) = ) &[p(r) u(r)]2'4'(~ (4.4b)

The energies of the band states are obtained by compar-
ing the two equations (4.2) in the T2 ~ oo limit. i

The time-dependent mean-6eld equations are
(4.4c)



K. YONEMITSU 50

—p(r) = ) y', ,p(r),;+) K) u (~), (4.4d)
u, (r) = u,*(—~), (4.10c)

(4.10d)
with the self-consistently determined, electronic one-
body density matrix

P(7);~ = ) P~ (i, ~)P~*(j,7-) .
pgocc

(4.5)

The HF total energy is independent of imaginary time
on the stationary phase with the help of the negative
kinetic energy to overcome the potential barrier. Now,
the lattice displacement follows the Newton equation in
the inverted potential.

The single I ~ I" tunneling process is called an instan-
ton. The bounce solution considered here consists of an
instanton for T2/2 —& 7 & 0 and an anti-instanton for
0 & ~ & T2/2. For a technical reason, the bounce solution
is sought instead of the instanton solution: the boundary
values are determined self-consistently for a given value
of T2, but they are not known before solution. Note that,
for the I ~ F transition, there are generally n + 1 in-
stantons and n anti-instantons.

The boundary conditions for the bounce solution are2

) P '(i, —~)Pp (i, ~) = b p, (4.11)

S(r)V = ) &, (~ ~)&, '(» ~).
pgocc

(4.12)

The quantity W(E) = S,[T(E)]+ET(E)[see Eq. (A9)]
becomes purely imaginary,

W(E) = iW2(E), (4.13)

where

W2(E) = d7 ) p((7') —u((~)
l97

Because the boundary values satisfy the above relations
and the differential equations are of 6rst order, these re-
lations always hold. The HF matrices, h[p(r), u(r)] and

h[p( —r), u( —w)], are therefore conjugate. With the vari-
ables (P (i, r)), the orthonormality condition and the
electronic one-body density matrix are written as

because we have fixed the phase in Eq. (4.4a), and

(4.6) ) p '(i, —7)h—Q (~, 7)7 g~ Y

i,yQocc

+h )
yQocc

(4.14)

(4.7)

(4 8)

to Gx the relative phase. The electronic current density
and the lattice momenta become imaginary quantities
when they evolve in imaginary time. To construct contin-
uous paths which evolve in real and pure imaginary times
in classically allowed and forbidden regions, respectively,
these quantities must vanish at the boundary

(4.9)

Note that the self-trapped states can be regarded as
on the boundary. For the same reason, u~(T2/2)
u~( —T2/2) must take a real value there.

Prom the mean-Geld equations and the boundary con-
ditions, we can take

&~*(~ r) = 4, *(~ —~) (4.10a)

(4.10b)

It is shown in Appendix C that A~ takes a real value. The
single-particle states of the lowest A~'s, which correspond
to the lowest o.~'s in real time, are regarded as occupied
and summed over for the electronic one-body densities
(4.5). It is convenient to set

Note the minus sign in P (i, 7) above. —The quan-
tity A~ is defined by the boundary condition (4.6). The
quantity W2(E) takes a real value, as easily derived from
the relations (4.10). For different kinds of solutions, in
which the path returns without retracing the instanton
path, W2(E) can be complex as happens for a particle of
half-integer spin. 24

The classical contribution of one instanton to the Eu-
clidean action S@,(T2/2) is given by substitution of the
instanton solution into Eq. (4.3),

(T2 l T2 1
Sa.

I

—
I

= EHF(T2) —+ -W2[EHF(T2)] .
&2J 2 2

Note that W2(E) in Eq. (4.14) is defined for the period
T2/2 & r & T2/—2 We will later . take the T2 ~ oo limit,

where the HF total energy, EHF(T2), becomes that of the
static self-trapped solution, EHF.

We will mention a difference between the present pa-
per and Ref. 16. First note that the quantity P '(i, —w)

is denoted by P~(i, —w) in the latter. The latter used
Hubbard-Stratonovich auxiliary 6elds to start from the
Hartree (not Hartree-Fock) equation. A.n adjoint op-
erator had to be introduced to derive the equation for

P~(i, —w) &om that for P~(i, r) there. Meanwhile, we

use Slater determinants for the functional integral so
that we have the HF equations for both P (i, w) and

'(i, —7) from the beginning. In a more general situa-
tion not treated here, paths need to be connected between
classically allowed and forbidden regions. This occurs
when the quantization condition is imposed on tunnel-
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ing paths. ' It is clear in the present representation

that the quantity p7'(i, t) = p *(i,t) is connected with

P7+'(i, r) = P *(i,—r) at the boundary between classi-
cally allowed and forbidden regions.

Numerical solution of the set of partial differential
equations (4.4) needs some tricks. First, the boundary
conditions must be satisfied. For many degrees of free-
dom, a classical trajectory does not generally return to
the arbitrarily chosen initial point. For a given period of
T2, we must search for a self-consistent motion of elec-
trons and phonons during T2/2—( r & T2/2 including
initial values at r = T2/2—. For this purpose, a method
introduced in Ref. 16 was used for the electronic part.
For the lattice part, the initial values were determined as
described in Appendix C. Second, because the bounce
solution for a given value of T2 is on a saddle point of
the action functional, ordinary iteration methods fail to
converge. We imposed a constraint which vanishes at the
saddle point, as described in Appendix C.

where O„and I'„(l) are the eigenfrequency and eigen-
function of the bare phonon, determined by Eq. (B3)
below. The quantities i)7(i, r) and g'(i, r) are expanded

with the use of the orthonormal wave functions @s(i,r)
and )(()7 (i, r), respectively, which are classified into the
unoccupied (a E unocc) and occupied (P E occ) ones
according to the A~ values, A & Ap. Because the "hole-

hole amplitudes, "
Qp7(r) and Qp (r), are second order

with respect to the "particle-hole amplitudes, " C 7(r)
and C' (r), due to the orthonormality condition (4.11),
we neglect them as we did in Appendix B for real time.
The quadratic term SBq(Tq/2) is obtained straightfor-
wardly:

"([H ()] ~)l C( )

C(r') i

V. GAUSSIAN FLUCTUATIONS

To calculate the prefactor of a tunneling rate, quantum
Quctuations around the classical path must be integrated
over. Hereafter 5 = 1. We denote the instanton solution
of Eqs. (4.4) with superscript 0 and consider

with b = b(r —r') and

( ( )], ( s +0+KA(r) KB( )
KB( 7.) ——z + 0+ KA( r) )—

(5.4)

Here the vector C(r) denotes

(i, r) = e ~~ [g (i, r) +r17(i, r)],

g+'(i, r) = e [@' (i, r)+rl'(i, r)],

(5 1.)

(5.1b)

(5.1c)

()=I
g C7(r)

and satis6es the boundary condition

& T, lt
C Pi ——=O'P(0) =0,

(5.5)

(5.6a)

J i(r) = p('(r) + e(r) (5.1d)

for small r17(i, r), g'(i, r), v&(r), and q&(r). Equa-

tion (4.10a) relates Q* (i, r) with vPo(i, r) above. The
fluctuations are expanded as in Appendix B:

C7 i

——
i
+ C'

i

——= C7(0) + C'(0) = 0 . (5.6b)2) 4 2)
The vector C(r) is the transpose of C(r). The matrices
0, KA(r)q and KB(r) are defined by

) q.o(i, r)C.,(r)
a&unocc

+ ).&p(i r)Qp7(r)
Pgocc

g, (i, r) = ) @. (i, r)C.*,(r)
agunocc

+ ) gp (i, r)Qp (r),
Pgocc

(5.2a)

(5.2b)

)( —A)qI; P v7
~

~'
& lP T,(&;P &7) ( 0 6„0 )

(5.7)

with A7 defined by the boundary condition (4.6),

A(r) A(r) )
K () ~K„,.P K„,,

~

„.P() &„()&,
KA(r) KA(r)

~
gq ( r) 0

i

(5.8a)

" ( ) = ). 1'-(&)[C-( ) + C:( )],v('2M)O„

q~(~) =) )t
' "r-(r)l—c-(~)+c:(~)I,

(5.2c)

(5.2d)
where

KB(r) KB(r) I g~ (r) 0
qI;~P q )7 ) E &P

(5.8b)
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~~„.p(~) = (&PIVII ~}(r),

(~) = (x~lvl»}(~)

(5.9a)

(5.9b)

Gaussian integration, by

( T2 1
exp

l

—EHF(~2) ~2[@HF(T2)]
l

(Aalvl yP}(r) = ) (Lalvlmb}
l,a,m, b

"&A (t )&* (a ~)&y(m r)&p(5 7)
(5.10)

and

gA", (&) = ).&' &A (~ ~)&, (& r) I' (~) (511)g2Mn. "

The above matrices satisfy

KA(7) = K~( 7), —Kn(7) = Kg(T)

because of

vl»}(~) = (»lvlx~}'(-r)

n, (~) = &,"~(-~) .

Due to Eq. (4.10a), the Jacobian for changing the vari-
ables from those in Eq. (B12) below to the present ones
is unity. The contribution of one instanton to the right
hand side of Eq. (4.2b) is then formally given, through

I

x
l
det(11@ (~) [II@(~)] h}l ~, (5.12)

T2
l
det(II@ (w)[II@(w)] b}l ~ = JK

2
' (5.13)

where J denotes the Jacobian and K represents the —2th
power of the determinant with the zero mode excluded
divided by the determinant for the static solution. Nu-
merically, it is easy to get the quantity JK (Appendix D).

The well-known dilute-instanton-gas approxima-
tion ' leads to, in the T2 ~ oo limit,

where II@&&(7.) is for fluctuations around the stable static
solution. This formula is formal because a continuum
limit is ill de6ned. Proper ordering of Buctuation vari-
ables in time must be maintained. The correct ordering
is recovered once the discrete-time representation is used.
Details are described in Appendix D.

It can be shown that, in the T2 ~ oo limit, there is a
zero mode corresponding to translation of the instanton
solution along the imaginary time. We need to treat the
zero mode differently &om the other modes. By transfor-
mation of a variable from the zero-mode coordinate to a
collective coordinate, the factor appearing in Eq. (5.12)
can be formally written as

m+n

m)A

d8; s t' T2 ~2 (EHF )—e' exp
l

——(EHF —25JKe» cos 8)
l2~ q 25

(5.14)

where h is retained for clarity and m and n are num-
bers of instantons and anti-instantons. Thus, the ener-
gies of the band states are given, through comparison
with Eq. (4.2a), by

W2 (EHF )
Eg ——EHF —2hJKe» cos 0 . (5.i5)

W2 (+HF )
t 0 ——hJAe (5.i6)

The assumption here is diluteness of the instanton gas.
Because the instanton density per unit imaginary time is

W& &@HF) yogiven by JKe», this formula for t g is good as
long as it is small.

VI. ONE-DIMENSIONAL EXTENDED
PEIERLS-HUBBARD MODEL

In this section, we apply the semiclassical method to
the 1D extended Peierls-Hubbard model:

The HF total energy of the static self-trapped solu-
tion determines the midpoint. Since 0 is regarded as a
momentum, the above is the same as in the 1D tight-
binding model with the nearest-neighbor hopping,

II= t) (c+, —c, +c, c+, )
—p) lu, ——ln,

+U) (n;t —~)(n, g
—-') + V) (n, —1)(n;+g —1)

(6.1)

where c,. (c, ) creates (annihilates) an electron with spin

a at site i, n; = c,. c, , n,. = ~ n, , and u; and p,
~ ~

represent the lattice coordinate and its conjugate mo-
mentum at site i, respectively. Hereafter the spin in-
dex o is retained for electrons. The parameter t de-
notes the transfer integral, P the on-site electron-phonon
coupling, K the spring constant between ions, M the
ionic mass, U the on-site repulsion, and V the nearest-
neighbor repulsion. We call the above the Holstein model
for U = V = 0, and the Hubbard model for A = V = 0.

There are three important parameters concerning the
dynamics of phonons relative to electrons. Nonadiabatic-
ity is determined by the ratio of the bare phonon fre-
quency
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(6.2a)
2'+-'(r) =

2 [p(7)' .'+i~ —p(r)'+i, ' ] (6.4b)

to the bare electron hopping t. The dimensionless
electron-phonon coupling strength is defined by

Kt (6.2b)

It is proportional to the usual definition appearing in
the conventional theory of superconductivity since 1/t is
proportional to the density of states at weak coupling.
Another dimensionless parameter can be defined by

2K(u
(6.2c)

A. Phonon frequency dependence
in the Holstein model

We first consider the strong-coupling case. For t =
U = V = 0, the Hamiltonian becomes H = P,. H;, where

The parameter g measures the multiphonon nature. 25

Here we take such parameters that the ground state is
a CDW state at half filling [i.e., P2/K —U+ 2V ~ 0 (Ref.
26)]. We remove one electron &om a half-filled periodic
system with an odd number of sites. The system is taken
long enough so that the finite-size effect does not affect
the effective hopping: we found, for all u values taken
below, the size of the lattice N = 13 is enough for A = 2,
N = 9 for A = 5, and X = 5 for A = 10. For the width
of an imaginary time slice Lv, we took up to uAw 0.2
at the mean-field level, and further to uA7 0.1 at the
Gaussian level. For the period of the bounce solution T2,
larger values are used for the lower potential barrier, as
shown below. In numerical calculations, we always set
t=1.

K
'T (6.5a)

the lattice kinetic energy by

respectively. We took T2 large enough so that EHF(T2)
and Wq[EHF(T2)] take almost the T2 -+ oo values, EHF
and W2(EHF), respectively. At x = T2—/2, the config-
uration of charge densities and lattice displacexnents is
close to that of a stable static mean-field solution, where
two bipolarons are located on the first and fourth sites.
The kink is localized between the second and third sites.
Around 7 = —Tq/4, which is in the middle of Fig. 1, the
bipolaron on the fourth site is once broken. Then, the
charge density and the lattice distortion How on different
time scales into the third site to form another bipolaron
there. Effectively, the bipolaron is shifted &om the fourth
to the third site and the kink is shifted from the 2—3 to
the 4—5 sites. At v = 0, the configuration is close to that
of another static solution. The xnotion after v = 0 is re-
lated to that before r = 0 by Eqs. (4.10). The quantities

j;+i (r) and pi (7 ) are finite locally in space and time, and'+2
they are odd functions with respect to v because all the
quantities in Eqs. (4.10) are real here.

When the quantities near the kink are closely looked
at, the difference in the electronic and phonon time scales
is evident [Fig. 2(a)]. Here are shown the quantities on
the third site of Fig. 1. The charge density varies more
rapidly than the lattice displacement at r = T2/4. Be--

cause the whole motion must be periodic in time, the lat-
tice displacement starts moving earlier than the charge
density and finishes moving later. Thus, at time distant
from r = +T2/4, the motion of the lattice displacement
is faster than that of the charge density.

Evolution of partial energies is shown in Fig. 2(b).
Here, the lattice potential energy is defined by

H;= p;+ —~u; — n;
~

+g(u[1——(n; —1) ].p
2M' 2 K

(6.3)

Small bipolarons are formed, each of which consists of a
pair of electrons on a site with lattice distortion of 2P/K.
Degeneracy of the ground states is lifted in the second
order with respect to t. This results in the commensurate
CDW state at half filling, where a bipolaron is located
on every second site. Upon removal of one electron &om
a half-filled periodic system with an odd number of sites,
a place is created where two consecutive sites are empty,
which is regarded as a kink or a soliton connecting the
two degenerate CD% phases.

The kink tunnels into the neighboring equivalent posi-
tions, which are at two lattice spacings distance (Fig. 1),
so as to form a band of Bloch states. Here the charge
density and the ixnaginary part of the electronic current
density are defined by

(6.4a)

(6.5b)

and the electronic part of the total energy (for U = V =
0) by

t ) [p(7 )iu,i+1cr + p(7 )i+1cr,icr]

-p). l .-()- —
~ p(),-,.-- (65). t' pl

K

During the tunneling process, the amplitude of the lattice
alternation decreases locally. This lowers the lattice po-
tential energy and raises the site potential experienced
by electrons. Note that the total energy is conserved:
the potential barrier is overcoxne with the help of the
negative kinetic energy. The electronic part of the total
energy also varies on the time scale of the lattice dis-
placement in Fig. 2(a). The lattice time scale determines
the width of an instanton.

Evolution of the scaled lattice displacement Ku;{r)/P
on the ith site into which the bipolaron tunnels is ap-
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(d) Lattice momenta

FIGG. 1. (Continued).
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proximately given by

Ku;(r)
r=i+ tanh! ! (6.6a)

p (r), +„„h!rr+&~/4&
)

(6.6b)

and that of the charge densitarge ensity p;(7) on the same site bsic y

to p;(r) at r = T-
0 ~

increases with u an
unity in the u ~ oo limit. The in

11 b i oes not vanish.
es
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and further b a s uey a squeezing transformation

Sg SsSg S e

where

(6.7a)

(6.7b)

(a)N0

N 1
4P
A

Lattice
o+

~e

0 '

e
~ e 82 ——) n;(bt —b ) (6.7c)

allowin
'

g variational parameters p,.

on site (and spin). The o era me asin . e operators are transformed as

10
~ 1 ~

Lattice
potential

Sg b
—SgIe = b~ + g l '7~ + 71CT IIJ (6.8a)

0
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IC

—10—e

FIG. 2. Evolut ' '
ary mmevo utzon in imaginary t

(T = 12) of ( ) th
'( )/

po gy
ergy, and the electronic artP

are =10, ~=1, and U=V=O

TABLE I. dependence of Ku. 7.

h h h

Ku, (r)/P
0.79
1.46
3.0

OO 4.5

p'(r)
2.8
4.0
5.7
4.5

Ratio
0.28
0.37
0.53
1.0

pi o'

0.050
0.100
0.24

1
2
5

Th

1.0

This row is obtained from the e uiv
model.

e equivalent attractive Hubbard
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e 'c; e ' = c; exp[gp, (bt —b;)], (6.8b)
(a)

e '(b +b;)e ' =(b +b;)e+ (6.8c)

(6.9a)

Minimizing the expectation value of H for the product of
a Slater determinant and the phonon vacuum, we obtain
the relations

CQ& 10—
+=5

I I I I
[

I

10
I I I

)
I

(6.9b)

e ' ' =(u (u'+2g'(ut) p,
'

b,

1
2

(6.9c)

0
0 10

where

b,~ 6,—i, ,,~(c,~c~ —i~ + c~ i~cd~)

+8;, ,+~i(c ~+.ic~+c~~c;+i~) ~ (6.10)

FIG. 3. (a) Ws[EHF(Tq)]/(25) and (b) EHF(T2) —EHF, for
diferent u values. Parameters are A = 10 and U = V = 0.
The lattice contribution to Wq[EHp(Tg)]/(2h) is also shown
in (a).

(6.ii)

and the HF equation depending on the above parameters.
They are solved numerically. In the nonmagnetic case
considered here, p; is independent of spin o. The scaled
lattice distortion is given by

K(u, ) = p, + ) p, (n, ) = (n,), (6.i2)

where p, represents a component which is uncorrelated
with the electronic state and p, stands for the extent of
a correlation between electrons and phonons. At half
filling, " as the parameter changes &om the adiabatic
(w ~ 0) to antiadiabatic (ur ~ oo) limits, the nature of
the lattice distortion changes from p;-dominant to p,. —

dominant correlations. In the former, the lattice is un-

correlated with the motion of electrons. In the latter, it
follows the motion completely. This holds for the doped
systems considered here. The quantity p; increases with
~ as shown in the rightmost column of Table I. Now,
it is reasonable to regard the ratio of Ku, (r)/P to p, (r)
in the semiclassical study as a measure of the electron-
phonon correlation: its behavior and that of p, show
similarity. When the ratio is far from unity, the retarda-
tion of phonons is important so that the model cannot
be described by the attractive Hubbard model.

The imaginary part of the reduced action,
W2[EHp(T2)]/(2h), and the HF total energy relative to
that of the static solution, EHp (T2) —EHp, vary with the
period T2 as shown in Fig. 3. Note the T2 —+ oo limit of
W2[EHp(Tz)]/(25) determines the exponent of the effec-
tive hopping. It decreases as m increases [Fig. 3(a)]. The
quantity W2[EHp(T2)] has contributions from the lattice
motion [the first term in the parentheses of Eq. (4.14)]
and &om the electronic motion [the rest of Eq. (4.14)].

Here shows also the lattice contribution to W2[EHp(T2)].
As ~ increases, the electronic contribution becomes more
substantial. It should be noted that the electronic con-
tribution is not always negligible in the ~ + 0 limit.
It plays a decisive role in quantization of the molecu-
lar pseudorotation of Nas, s through the adiabatic sign
change. si (Recall that the quantization condition is writ-
ten with the reduced action as shown in Appendix A. )
The magnitude of the lattice kinetic energy at 7 = +T2/4
is smaller than the barrier height (Table II). The discrep-
ancy is due to contribution from electrons to the total
kinetic energy, so that it increases with u.

The HF total energy EHp(Tz) is a decreasing function
of the period T2 [Fig. 3(b)]. In the T2 +oo limit, t-he

bounce solution starts from the state identical with the
stable static solution. The HF total energy EHp(T2) be-
comes that of the static solution EHF. The latter quan-
tity is already subtracted from the former in Fig. 3(b).
For finite T2, the bounce solution starts from a higher-

energy state on a small but finite slope of the poten-
tial. As T2 approaches a critical value Tq, from above,
EHp(T2) rapidly increases toward that of an unstable
static solution on the top of the barrier. Below T2„ there
is no time-dependent solution so that W2[EHp(T2)] = 0.
The flat part to the left of Fig. 3(b) thus represents the
barrier height, EHp(T2 ( T2, ) —EHp(T2 = oo). Infinites-
imally above T2, the bounce solution corresponds to a
small-amplitude harmonic oscillation around the unsta-

1
2
5

Max [lattice kinetic energy]
1.26
1.06
0.75

Barrier height
1.60
1.60
1.60

TABLE II. cu dependence of the absolute value of the lat-
tice kinetic energy at r = +T2/4 and the barrier height

EHF(Tq ( T2, ) —EHF. Parameters are A = 10 and U = V = 0.
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. (+0(n}(n~ —0}(—o~n'}(n'( + 0)
n+ n'+ 2g~

(6.13)

where
~
+ 0) and

~

—0) denote the ground states of the
oscillator with equilibrium positions 2P/K and 0, respec-
tively, and ~n) denotes the nth excited state of the oscil-
lator centered at P/K. With the use of the well-known
formula for the overlap between displaced phonon wave
functions, t is given by

2t' z ~ . (—2g')
~- m!(m+2gz)

' (6.14)

For large g, it can be decomposed into an exponential
and a prefactor,

2t2t= F(g )e (6.15)

where Il(g ) is a slowly varying function of g . The
quantity —ln(t) is also shown in Fig. 4 for comparison,
though we need the prefactor to complete the calculation
of —ln(t, tr).

The prefactor of the effective hopping, fcJK, is calcu-
lated as described in Appendix D. Compared with the
calculation of Wz(EHF)/(2h), smaller A7 = Tz/L (as de-
fined in Appendix C) and larger Tz are necessary to get
convergent results of hJK. The calculation of 5JK is less
accurate than that of Wz(EHF)/(2h), and the error esti-

ble static solution, which has a characteristic period of
Tq . As u increases, the instanton width becomes shorter,
so that Tq, becomes smaller and the quantities in Fig. 3
approach faster to the values in the Tz -+ oo limit.

The absolute value of the exponent of the effective hop-
ping, Wz(EHF)/(25), varies with u as shown in Fig. 4.
At strong coupling, bipolarons are tightly bound and the
kink is well localized. Only a single bipolaron effectively
participates in the tunneling as in Fig l. In this case, the
effective hopping can be evaluated by the second-order
perturbation theory with respect to t. ' Intermediate
states have two consecutive singly occupied sites with
phonons excited around the equilibrium position P/K:

mation is harder. As u decreases, the instanton density
becomes exponentially small and Huctuations around the
instanton solution become small as 5JK does. Thus, the
dilute-instanton-gas approximation works better. Nu-

merically, however, the instanton width becomes longer
so that necessary memory or numerical error increases.
The quantity JK is roughly proportional to ~:

JK (6.16)

B. Coupling dependence in the Holstein model

At weak coupling, bipolarons are loosely bound and
the CDW has a smaller amplitude. The kink is delocal-
ized with a coherence length of about vF/6 where vF is

the Fermi velocity of the noninteracting system and b, is
a gap in the electronic spectrum at half filling. Because
of the weaker binding of bipolarons, the barrier between
the stable static mean-Geld solutions is lowered. In other
words, it costs less energy to break up a bipolaron. It
reduces the velocities at 7 = +Tz/4. Thus the instanton
width becomes longer. The lattice displacement can fol-
low more closely the slowed-down motion of the charge
density (Table III). Note that the relation between the
ratio of Ku;(7)/P to p;(r) at w = STD/4 and the vari-
ational parameter p; is similar to that in Table I. The
cu dependence and the A dependence are understood in a
unified way when we consider them as the g dependence.
Tables I and III both show the cases for g~ = 1, 2.5, and
5. For the same g value, the phonon dynamics relative

10—
I I I I

(
I I I I g I

(a)

for A = 10 [Fig. 5(a)], though the points for ur = 1 and
~ = 2 here are not so accurate as the size of the points
indicates.

Finally, the quantity —ln(t, ir) is plotted in Fig. 5(b)
and compared with the strong-coupling result —ln(t).
The semiclassical method reproduces the correct expo-
nential behavior (6.15) at large g.
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FIG. 4. Wq(EHF)/(2h), as a function of u for different A

values. Parameters are U = V = 0. The lines connecting
the points are guides to the eye. The smooth lines show the
strong-coupling results, —ln(t) 4g = 2At/w

F1G. 5. (a) Prefactor hJK and (b) —ln(t Ir), as functions
of u. Parameters are A = 10 and U = V = 0. The line in (b)
shows the strong-coupling result, —ln(t) 4g .
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2

5

10

Ku, (r)/P
0.35
0.68
0.79

p;(r)
0.52
1.72
2.8

Ratio
0.67
0.39
0.28

f'LCT

0.26
0.101
0.050

TABLE III. A dependence of Ku, (v. = T—q/4)//3,
p, (r = T—2/4), their ratio, and the variational parameter
p;, on the ith site where the kink is located. Parameters are
u = 1 and U = V = 0.

A

2

5

10

Max ]lattice kinetic energy[
0.059
0.46
1.26

Barrier height
0.087
0.62
1.60

TABLE IV. A dependence of the absolute value of the
lattice kinetic energy at r = +T2/4 and the barrier height
EHp(T2 ( Tq, ) —EHp P.arameters are u = I and U = V = 0.

JK 11

2c
(6.17)

for Id = 2 [compare Figs. 6 and 8(a)]. Finally, the quan-
tities —in(t, tr) and —ln(t) are compared in Fig. 8(b).

80

(a)
- —Total& 10 —--r tt

to the electronic one [the ratio of Ku; (7 )//3 to p;(7) and
p; ] is similar even if A and u values are different.

The longer instanton width results in larger T2, and
slower saturation of the quantities in Fig. 6 for smaller
A. Recall that the imaginary-time evolution corresponds
to the real-time one in the inverted potential, and that
the HF total energy EHF(T2) is a constant of motion. The
reduced barrier height [Fig. 6(b)] means the reduced po-
tential energy at the initial time. Therefore, it decreases
the magnitude of the kinetic energy at r = +T2/4 as well
as the magnitude of purely imaginary velocities (i.e. , the
electronic current density and the lattice momenta). It
results in the decrease of W2(EHF)/(25) [Fig. 6(a)] and
the increase of t,tr The .electronic contributions to the
reduced action and the total kinetic energy are evident
in Fig. 6(a) and Table IV, respectively.

The quantities W2(EHF)/(25) and —ln(t) vary with
A in a similar manner, as shown in Fig. 7, though we
need hJK to complete the calculation of —ln(t, tr). The
prefactor hJK decreases at weak coupling [Fig. 8(a)]. It
is almost inversely proportional to T2,

The semiclassical results would be closer to the strong-
coupling results for ur ( 2 [see Fig. 5(b)], though the
numerical calculation of hJK becomes more difficult.

C. Attractive Hubbard model

The Holstein model is reduced, in the ~ ~ oo limit,
to the attractive Hubbard model of coupling strength
U,Ir = —P /2K. ~ The imaginary-time evolution of elec-
tronic densities, p, (r), j;+ i (7 ), etc. in the latter is there-'+2
fore similar to that in the former with large ~. When the
Holstein model with A = 10 and u = 5 in Sec. VIA
is compared with the attractive Hubbard model with
U = —10 (corresponding to A = 10 and w = oo), the
charge density of the latter changes more rapidly than the
scaled lattice displacement of the former at w = +T2/4.
But it changes more slowly than the charge density of
the former at the same time (Table I shows this result of
the attractive Hubbard model in the last row).

In the antiadiabatic limit of Eqs. (4.4c) and (4.4d) for
the Holstein model, MI -+ 0, pI(w) ~ 0, and the right
hand side of Eq. (4.4d) vanishes. The lattice displace-
ments follow the change of the charge density instanta-
neously and completely: their time scales are the same.
For ~ = 5, the charge density has to move faster than
the u —+ oo limit to drag phonons, but the whole motion
determined by the lattice is still slower.

The quantity W2(EHp)/(2h) increases with [U]
[Fig. 9(a)]. Its behavior is consistent with Figs. 4 and 7
for large ~. Because the absolute value of the exponent is
small here, the behavior of the prefactor is equally impor-

P I L

0
I I I

X=10

5 10
I

]
I I I I

[
I I I I

15

80—

CQ

10—

p
0 10 15

0
0 10

FIG. 6. (a) W2[EHp(Tq)]/(25) and (b) EHp(Tq) —EHp, for
difFerent A values. Parameters are cu = 1 and U = V = 0.
The lattice contribution to Wq[EHp(T2)]/(2h) is also shown
in (a).

FIG. 7. W2(EHp)/(25), as a function of A for different ~
values. Parameters are U = V = 0. The lines connecting
the points are guides to the eye. The smooth lines show the
strong-coupling results, —ln(t) 4g = 2At/cu
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4 ' ' I '
I

(a)

with respect to t becomes relevant for the effective hop-

ping. We define t by the perturbational result obtained

by summing the contributions from the two intermediate

states,

2t
(6.18)

0 i i i i I i ) i i I

0 5 10

10—
This is obtained also by taking the (d ~ oo limit of
Eq. (6.14). The quantities t,fr and t are shown in Fig. 9(c)
on a linear scale. Calculating both the exponent and the
prefactor, we can reproduce the inversely proportional
behavior of the effective hopping at strong coupling by
the present semiclassical method.

0
0 10 D. Extended Peierls-Hubbard model

FIG. 8. (a) Prefactor AJK and (b) —ln(t, s), as functions
of A. Parameters are ~ = 2 and U = V = 0. The line in (b)
shows the strong-coupling result, —ln(t) 4g .

Here we study the effects of electron-electron interac-
tions on the effective hopping of the kink in the Holstein
model at strong coupling. In view of the fact that the
effective attraction strength is given by

tant for the effective hopping. The quantity liJK varies
with ~UI as shown in Fig. 9(b). For large IU(, it increases
with the coupling as in Fig. 8(a), partially compensat-
ing the decrease of the exponential function. At strong
coupling, bipolarons are again tightly bound, the kink is
well localized, and the second-order perturbation theory

U,s= —P /K+U (6.19)

2V = —P'/K+ U (6.20)

in the ~ m oo limit, and that the phase diagram in the
half-filled case is divided by

4 I I I I
I

I I I I
I

I

(a)

for t = 0, it is conjectured for V = 0 that

t,fr oc exp ——(p /K —U)
2 2 (6.21a)

0 I & )» I

0 5 10

On the other hand, the exponential behavior of t for
the Holstein model is determined simply by the over-

laps between the displaced phonon wave functions. The

4

(b)

~ ~

24
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0 I i i i i I

0 5 10

1—
(c

16
0

24

(b) U=O

0 i I i s I & ) & & I

10
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FIG. 9. (a) Ws(EHF)/(2h), (b) AJK, and (c) t,s, as func-
tions of ~U~. Parameters are A = V = 0. The line in (c) shows
the strong-coupling result, t = 2t /~U~.

FIG. 10. Wq(EHF)/(2h) (a) as a function of U for V = 0;
and (b) as a function of V for U = 0. Parameters are A = 10
and u = 1. The line is a guide to the eye.
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overlaps are determined by the distance P/K between the
centers of the oscillators for different occupancies. This
quantity, however, does not depend on U or V for t = 0.
Therefore, the effective hopping should not depend on U
so strongly as Eq. (6.21a), but it should remain near

t,~ oc exp
2/2

(dK
(6.21b)

for small and finite t. For finite t, the CDW amplitude is
decreased by U and increased by V. Consequently, the
effective hopping is enhanced by U and suppressed by V.
They modify the effective hopping, but their effects are
not as strong as Eq. (6.21a) for small t.

The latter conjecture is supported by our semiclassi-
cal method. Because the prefactor hJK is affected little
by repulsions, we show the absolute value of the expo-
nent W2(EHF)/(2h). The on-site repulsion U decreases
Wq(EHF)/(25) much more weakly than 2(At —U)/u
[Fig. 10(a)]. Meanwhile, the nearest-neighbor repulsion
V increases it [Fig. 10(b)]. Though the effects of electron-
electron interactions are small for large A, U enhances
the tunneling of the kink and V suppresses it, because U
weakens the binding of bipolarons and V strengthens it.

VII. SUMMARY AND DISCUSSION

We present a semiclassical method for many-body sys-
tems with electrons and phonons based on an overcom-
plete set of Slater determinants for electrons, in which
single-particle wave functions satisfy the orthonormal-
ity condition (4.11) and are otherwise arbitrary. Small
Huctuations around the stable static mean-field solu-

tion describe the same excitation modes as in the in-

homogeneous HF plus RPA. Bosonization is effectively
achieved by linearization of the orthonormality condition
for single-particle wave functions.

For the 1D extended Peierls-Hubbard model near
half filling, we numerically solved the imaginary-time-
dependent mean-field equations and integrated over
small Huctuations around the instanton solution in or-

der to evaluate the effective hopping strength of a self-

trapped kink connecting the degenerate CDW phases.
The method is easily extended to more complex systems.
(For the grand partion function at finite temperature,
Slater determinants may not always be convenient. ) At
strong coupling, where tunneling of the kink involves

essentially a single bipolaron, the semiclassical method
reproduces the strong-coupling result for a bipolaron.
It gives repulsion-strength dependences, which have not
been treated with sufBcient accuracy. At weak coupling,
the kink is delocalized with a finite coherent length. The
potential barrier is not given by the dissociation energy
of a single bipolaron, but it is determined in a more col-
lective manner.

In numerical solutions, we did not constrain the shape
of classical paths, i.e., the phonon dynamics relative to
the electronic one. The lattice variables evolve on a time
scale different from the charge density. %'e observed how

their evolutions vary with the bare phonon frequency
and the electron-phonon coupling strength. Apart from

the semiclassical study, we numerically obtained varia-
tional wave functions, through generalized Lang-Firsov-

type and squeezing transformations, to observe a correla-
tion between electrons and phonons. Both the semiclas-
sical and variational studies show that the lattice motion
follows the motion of the charge density more closely for
smaller g, i.e., for larger ~ if A is kept constant; and for
smaller A if u is kept constant. The phonon dynamics
relative to the electronic one is roughly determined by
a single parameter g. This parameter g determines the
exponent of the effective hopping at large g. The semi-

classical method is thus useful in the sense that it enables
us to see the correlation between different degrees of &ee-

dom directly.
When the barrier height is more than some fraction of

t or ~, the instanton density per unit imaginary time,
t,s/5, is so small that the dilute-instanton-gas approx-
imation is valid. The dispersion relation of the kink is

therefore described by the tight-binding model. On the
other hand, when the barrier is negligible, a continuum

approximation in space becomes relevant. The disper-
sion relation of the kink would be described, up to some

maximum momentum, by a free-particle model of mass

determined by a collective coordinate method as in field

theories (Chap. 8 of Ref. 11).
Finally, we mention spin coherent states. They are

very useful in spin tunneling problems. At half filling,

the Slater determinants used in this work contain the

spin coherent states in the limit of single occupancy on

every site. In this limit, the second term in the integrand
of Eq. (2.14) becomes the corresponding term for the the

spin coherent states, as it should be. Slater determi-
nants would be useful when itineracy of electrons needs

to be considered, e.g. , when a hole is introduced into an
antiferromagnet. Once electronic degrees of freedom are

split into localized spins and mobile holes, it can be in-

accurate when magnetic moments are locally suppressed.
When the spin polaron accompanies a local lattice dis-

tortion and locally quenched magnetic moments, the
scenario of its effective hopping may be altered.
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APPENDIX A: QUANTIZATION CONDITION

We consider the trace of the resolvent operator (3.4),
where the paths are periodic in time t for T/2 ( t (—
T/2. The stationary phase condition leads to the time-

dependent mean-field equations (3.1) with the boundary
conditions

(Al)
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where o.~ is a path-dependent real number, and

(T't ( Tl
(2) (A2)

phase modifies the quantization condition in such a way

as should be due to the zero-point lattice fiuctuations [see

Eqs. (B21b) and (Dl) below]. The quantity W(E) can

be written as

Note that the phase factor e ' & should be kept above
since we have fixed the phase of [P (t)) in Eqs. (3.1). If
we took Q (i, t) = e"~ ("P (i, t) as a variable instead,
the phase would appear in the mean-field equation, but
not in the boundary condition. The quantity o.~ thus
corresponds to e~T/h. The occupied single-particle states
are those of the lowest o.~'s. In real time, it is convenient
to set

|9
W(E) = dt ) p, (t)—u&(t)

ri)—a, .
ygocc

(Ag)

(A3)

to fix the relative phase. The stationary phase condition
with respect to the boundary value, ui ( 2 ) = ui (—2 ),
yields

It has contributions from the lattice motion (the first

term in the parentheses) and the electronic motion (the

rest). The electronic contribution is not always negligible

even in the adiabatic limit: it is crucial when a geomet-

rical phase arises.

In the evolution in reaL time t, it can be shown that

APPENDIX 8: SMALL-AMPLITUDE
FLUCTUATIONS

p+'(i, t) = p (i, t),

(t) = (t)

(A5a)

(A5b)

(A5c)

We consider small Buctuations around the stable Btatie

mean-field solution, extending Ref. 22 to interacting
electron-phonon systems. Because P~+'(i, t) = P~ '(i, t)
in real time, we here rewrite P '(i, t) and P (i, t) as

P*(i, t) and P~(i, t), respectively We ta. ke orthonormal

wave functions in the Slater determinants and set ti = 1.
The variables are expanded, around the static solution

denoted with superscript 0,

(A5d)

and the HF matrix (3.2) is Hermitian.
The classical contribution to the action S,(T) is given

by substitution of the mean-field solution into Eq. (2.14).
For a given E, the period T is determined through the
stationary phase condition with respect to T,

where

0( t)= '[~,()+ ( t)1

ut (t) = u, y v((t),

pi(t) = e(t)

(Bla)

(B1b)

(Blc)

(A6) ( t) = ). ~ ()c- (t)+ ). p ()Q (t)

The HF total energy EHF (T) is given by substituting the
mean-field solution into Eq. (2.15) and is independent of
time. Here, the fact is used that the time derivative of
the last term in Eq. (2.14),

agunocc Pgocc

(B2a)

(B2b)

(T'i—ihln det Py P ~

—
~

= —li ) ca~,
E2)

(A7)

cancels a term &om the second term in the integrand of
Eq. (2.14). If T = T(E) is a solution of Eq. (A6), so is

nT(E) for any positive integer n. Summing up contri-
butions from the multiperiod solutions produces poles of
G(E) at

(t) = ) 2""r„(l)[- c„(t)+ ic„'(t)1, (B2c)

with O„and I'„(l) being the eigenfrequency and eigen-

function of the bare phonon,

W(E) = 8 [T(E)]+ ET(E) = 2m'. h, (AS)
) K( I'„(m) = O„r„(l) .

M( M
(B3)

for any non-negative integer m, if the phase arising from
8uctuations around the turning points is neglected. The

The quantity rl~(i, t) is expanded with the use of the or-

thonormal wave functions @ (i), which are classified into



2916 K. YONEMITSU 50

the unoccupied (u E unocc) and occupied (P E occ)
ones according to the HF eigenvalues, e ) ep. From
the orthonormality condition, the "hole-hole amplitude"

Q~~ (t) is shown to be of second order with respect to
the "particle-hole amplitude" C ~(t),

where EHF is independent of the period T. The linear
term with respect to Huctuations vanishes because of the
stationary phase condition. Therefore, there is no term
linear in Q~~(t) or Q& (t). In the second order, we only
have to retain terms which are bilinear with respect to
C ~(t) and C* (t):

(t) = —— ). C, (t)C (t)
exp unocc

(B4)

and neglected in the 6rst order. Assuming a single mode
of &equency u,

T

d (T) = —f dtdt' Ct(t)C(t)
2.([11(t)]- ~) ~

(B9)
C~(t)=x~e ' '+Y*e' ',

C„(t) = X„e ' + Y„'e'

(B5a)

(B5b)

where b = 6'(t —t'),

and substituting the above into Eqs. (3.1), we get the
RPA equation [(B6) of Ref. 17]: the vector C(t) denotes

Pn+K„K~ l (x) 5 xl
K~ 0+Kg) ( Y) ( —Y)

where the vector denotes

(B6)
C(t) =

I

E
C (t) )

(Bl1)

x=
I iY)' (B7)

with n unoccupied and P occupied. The quantities 0,
K~, and K~ are the same as in Ref. 17, while X and Y
here correspond to g' and p* there, respectively.

For the mode n of &equency ~„, the period T„must
satisfy ~„T„=2m' for an integer m. The phase n~"
is given by o,~" = &~T„. With the use of these equa-
tions, substitution of Eqs. (Bl) into Eq. (A9) leads to
the normalization condition, (B13)of Ref. 17. The equa-
tions above are straightforward generalizations of those
in Ref. 22.

Below we will derive the total energy. It has not ex-
plicitly been derived with the Slater-determinant repre-
sentation because a continuum limit is ill de6ned. We
will show how to handle it to get the correct result. The
classical contribution to the action S,(T) is given by

and C(t) its transpose. The Fourier transform of the
quantity II(t) is the same as that in (Cl) of Ref. 17 [see

(C4), (C6), and (C7) there]. Note that C ~(t), C' (t),
Q)s~(t), and Q& (t) are not independent because of the
orthonormality condition. But the orthonormality con-
dition for the integration variables P~(i, t) and P (i, t)
needs to be satis6ed to first order. In other words, in-

tegrations over Qp~(t) and Q& (t) are suppressed and

those over C ~(t) and C' (t) should be performed. The
measure is thus written as

&(C (t) C, (t) C (t) C (t))

L

dC'p (ts) dC p (tI, ) dC*(ti, )dC~ (tg)
k=1 a,P 'v

(B12)

S,(T) = EHFT, — (B8)
The trace of the resolvent operator is thus evaluated
through Gaussian integration as

G(Z) —i dTe' ' f 17(C' (t), C (t)Cte(t'), C, (t))
0

x exp — dtdt' Ct(t)C(t) ] ([II(t)] h)
~

( C(t') )
2 T

OO

i dTe*&T '&"F&—(—det (—i[n(t)]-'S) )
')'

JV
(B13)

where the normalization constant N subtracts the vac-
uum energy from the exponent of the integrand. We can
write the constant as

N = (det (—'[n, (t)]-'S))-"',
with the noninteracting polarization IIO(t) given by

From the middle of Eq. (B13)and the property of Gauss-
ian integrals, it is easily understood that elements of II(t)
are nothing but response functions.
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With the use of

II,(t) [II(t)]-' = 1 —11,(t)K, (816)

the other tr symbol takes summation over time compo-
nents as well. The integrand can be expanded with re-

spect to K as

l K~ Kg j (817)

dc'
.tr (in[1 —Ilp(~)K])

4mi

we rewrite the determinant as

—(det (—i[II(t)] bj )

= (det (IIo(t)[II(t)] b) )
= exp ( —2tr (in[1 —Ilp(t)Kb]) )

l(d= exp iT — .tr {in[1—IIp((u)K]) . (818)
~ 4m'i

Here the symbol tr inside the &equency integral denotes
summation over nP, p, o.P', and p' components, while

[

) —tr [IIp(td)K] ~ (819)
du . 1

4+i m
m=1

The first or-der term (m = 1) in the integrand behaves
like 1/u as [u[ ~ oo so that care must be taken. In the

i~0~ordinary perturbation theory, a factor e' specifies the
correct order of creation and annihilation operators and
determines how the integration contour is closed.

Let us go back to the discrete-time representation for

IIp(t) in order to keep the correct order and to see how the
contour should be closed. The noninteracting electronic
part of S~(T) is

e) ) C'p(ti, )i —C'p(tg)(e —cp)C p(tg i)
.C p(ta) —C p(tq i)

A; aP

—(e —cp)e' "' C p((u„),

where e is the width of a time slice and e' of a &equency
slice. The particle-hole component of Ilp(~) is thus given

by the e -+ 0 limit of

(
G(E) E — EHF + —) 0„

e%476
—(e —ep)e' ' 1 . 1) (u„——tr(A + K~)

2 2 )fL jca)~)0

(821b)

The contour should be closed in the lower half plane while
the pole is in the upper half plane. Therefore, the first-
order term (m = 1) vanishes. The &equency integration
is performed as in Sec. 15.9 of Ref. 14:

d
. ) —tr [Ilp(~)K]

4+i m

which has a pole at the RPA total energy (but with dou-
ble counting of the second-order term with respect to the
electron-electron interaction). It should be noted that, if
coherent states are used to describe phonon states after
the second quantization (i.e., after the lattice variables
are regarded as operators and written with the use of
creation and annihilation operators), the bare zero-point
lattice energy is included at the "classical" level.

where ~ is the eigenvalue of the nth mode in Eq. (86).
Among the pairs of positive and negative eigenvalues
with the same magnitude, ku„(~„&0), only the posi-
tive ones are summed in the first term.

Finally, &om Eqs. (813) and (818)—(820), we get

G(E) = E EHF + — ) ~—„——tr(A+ K~)
~

)nw )0
(821a)

If the Quctuations around the turning points were in-
cluded, this would be replaced by

APPENDIX C: NUMERICAL DETAILS

Equation (4.4a) was solved in such a way as taken in
Appendix D of Ref. 16. The wave functions are evolved
discretely &om w to 7 +A7 through the HF matrix at the
intermediate time r + Ar/2. In the HF matrix, the elec-
tronic one-body densities and the lattice displacements
are averaged over ~ and w+ Ar. The periodic boundary
condition (4.6) is fulfilled by the solution of an eigenvalue
equation. The eigenvalues correspond to e "&'s. One re-
mark on the eigenvalue problem is that the matrix to be
diagonalized (M; in Ref. 16) is Hermitian because the
HF matrices, h[p(r), u(r)] and h[p( —r), u( —r)], are con-
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jugate. This fact and the normalization condition for the
wave functions lead to the fact that A~ is a real number
(mod 2z i).

Equations (4.4c) and (4.4d) were solved by evolving
the lattice variables discretely from ~ to v+ 47. through
the right hand sides at w+ b,7 /2, in which the electronic
one-body densities and the lattice displacements are av-
eraged over 7 and w+ 67. The initial value pi( T2/—2) is
zero. Because of Eqs. (4.10c) and (4.10d), we only need
to compute ui(v) and pi(r) from w = T2—/2 to w = 0.
The boundary conditions, Eqs. (4.7) and (4.9), are au-
tomatically satisfied. The condition (4.10d) at w = 0
determines the initial value, ui( —T2/2).

Iteration is performed as follows. First, some values
are assigned to "old" values for p(7),~ and ui(~) to de-
fine h(w) and Fi(r). These "old" values can be taken
from "new" values in the previous step. But it is better
to mix "new" values in the last, e.g. , two steps to slow
down changes between successive iteration steps and to
suppress possible oscillations of these quantities. To sim-

plify the explanation below, we suppose here that the
"new" values are chosen to be the "old" values in the
next step.

The electronic wave functions are evolved through h(w)
till w = T2/2, as described above. Then "new" p(w), i can
be obtained &om these "new" wave functions as shown in
Eq. (4.12). The 'new' pi(w) can be obtained by adding
Fi(w) to the zero initial value. The initial value of 'new'

ui (—T2/2) is unknown at this moment. So, let us take the
initial value of the "old" ui (—T2/2) for that. Then a 'new'

ui (v ) can be obtained by adding the 'new' pi (w) divided
by the mass. The real part of the 'new' pi(0) becomes
zero only if the appropriate initial value is chosen for the
"new" ui (—T2/2). Note that we have distinguished 'new'

from "new" here.
Second, the "new" p(w), i and the 'new' ui (w) are used

to define a 'new' Fi(w). Then a temporarily defined

pi(7) is obtained by adding the 'new' Fi(~) to the zero
initial value. This generally leads to a finite value for
the real part of the temporarily defined pi(0). The cor-
rect "new" ui(w) would be obtained by adding a site-
dependent, time-independent, real-number constant to
the 'new' ui(w). When site-dependent constants were
added to the 'new' ui(w) values, the 'new' Fi(w) and
the temporarily defined pi (w) values are changed linearly.
Therefore, the appropriate real constants are easily ob-
tained from the temporarily defined pi(0) so that the
"new" ui(w) leads the real part of the "new" pi(0) to
be zero. It should be noted that, in this second process,

I

ui(~) does not need to be evolved again.
The above iteration process is repeated until conver-

gent p(7);~ and ui(v) are obtained. In the iteration
process, we actually imposed a constraint in order not
to change time-averaged "old" p(7)U and/or ui(7) val-

ues near the kink between two successive iteration steps.
Otherwise, p(w);i and ui(w) change violently as iteration
proceeds, and the configuration finally reaches a stable
static mean-field solution as observed in Ref. 16. (If T2
is smaller than a critical value T2, the configuration al-

ways reaches an unstable static mean-field solution at the
top of a barrier. ) This instability is related to the fact
that we are searching not a local extremum but a saddle
point: there is always an unstable mode around a bounce
solution. Even if iteration started Rom very near the so-

lution, the configuration would deviate from it without a
constraint.

Because of the constraint, the (mixed) "new" values
are generally not the "old" values. We first obtained con-
vergent p(w), ~ and ui(w) with a few difFerent constraints
by the ordinary iteration method. We changed the con-
straint through the Newton method in such a way that
the convergent constraint makes "new" and "old" time-
averaged quantities equal. This process converges very
rapidly in several Newton-method steps.

APPENDIX D: DISCRETE-TIME
REPRESENTATION

Because a continuum limit is ill defined, the discrete-
time representation should be used for calculations of
the determinants. As mentioned in Appendix B, the
discrete-time representation keeps the correct order of
creation and annihilation operators. We will use here the
coherent-state representation for phonons. Wave func-

tions of electrons and phonons are represented in a sim-

ilar manner. This representation actually changes the
ordering of phonon variables with respect to time (see
below). Symbolically, the oscillation of the lattice coor-

dinates and momenta, q(t) = gl/(2MB)[(t)(t) + P'(t)]
and p(t) = /MA/2[ —i41(t) +i/*(t)], is described by the
rotation of the coherent-state variables P(t) and (t)*(t).
Thus, the mathematical difficulty caused by the turn-

ing points disappears. The bare zero-point lattice energy

emerging from the turning points is actually included at
the classical level since the variables P(t) and P*(t) are

introduced after the second quantization. Therefore, the
time ordering with respect to P(t) and P*(t) is more con-

venient. The quantity TV(E) is to be replaced by

T

W(E) = f dt ) p+ (i) fi—p„(t)+ ) $+'(i, i)ih p( , )( —ifi i)—
i,pgocc pQocc

where P (t) and i)t)„+*(t) = P+*(t) are for the mode v of the bare phonon. Inclusion of the bare zero-point lattice

energy should be understood for quantization.
Repeated insertion of the closure relation

1 (x dP+*(t), )dP (ti, )dP+'(i, t), )dP (i, ti, )e ~"~" ~'"l~. ~'"l ~' «&.-~» l"'"~~» l"'" I@i. )(O'+„I,
~ I

v i,ppocc

(D2)
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for k = 1, . . . , L/2 (—T2/2 ( r ( 0) in the Trotter formula leads to the Euclidean action

L 2

@+*( ) @
—

( )] ) ) y+*( )4 (rk) 4 (rk —i) ) 4+ (
~

)
p ( ~) p ( ~ i)

i,pgocc

+'8[4+*(rg), 4 (rg i)] —ln det(Pz!P (0))

where

&[@+'(ra),@ (ri -i)]

We consider fluctuations (5.1a), (5.lb), (5.2a), and

(5.2b) for electronic wave functions at each discrete time,
and

g ~ (rIC i) = P~(rg 1) + C~(rg i), (D6a)

&-'(")=@(.)+C:(.) (D6b)

+).II [4+'(rl )4. (r~-i) + —,'], (D4)

where Po(r) and P'„(r) denote the classical lattice tra-
jectory related to u& (r) and p& (r) by

with p(rI, )'~ = E,...&, ( ~ i)&'*(~ -r~)

T;z((u = 0)), and

(D5)

u, (r) = ) I'„(t)[P (r) + P'„(r)], (D7a)
2M' 0

po(r) ) ' I (t) [ P (r) + P, (r)] (D7b)

For phonons, we used the notation P„(r) = P„(t = —ir),
4+ (r) = y+ (t = -ir).

Note the factor —i in Eq. (4.1d). The quadratic term
S@~[C'(r),C(r); T2/2] is obtained in a straightforward
manner,

(D8)

T, 1'". |' T, & rC(„,) &S, C*(r),C(r); —' =- ) Ct(,)C(,) 2 ) ( C (rg ) )

—) ) (C (rg)[C~p(rg) —C~p(rg i)] + [C(zp( g) r—C~p(rg i)]C p(rie))
k=1 a, j9

+) (C (ry)[C~(rg) —C~(rg i)] + [C~(rg) —C~(rie i)]C~(rr)) +ee C (rI, ) C(rI i)

~ II + KA(rg —1 ) KB(rg —i ) t ~ C(rg i) 'l

K/( —rg i) fI+ KA( —rg i) ) I C*(rk)

with the boundary condition

C(rp) = C*(rr,(2) = 0 . (DO)

The above equation defines the quantity II@(r~,rq, 2').
Here KA(rz i ) and K~(r& i ) are approximated as

2 2

[KA(r&) + KA(ri, i)]/2 and [K~(ri, ) + K~(rI, i)]/2, re-
spectively. Finally, the contribution of one instanton to
the right hand side of Eq. (4.2b) is given by

T2 1
exp! —EHF (T2)———W2[EHF (T2)] !2 2

X
! d«[11@(rg,rg., 2 ) ]! (D10)

!det[II~p(rl„ri, , ~)—
]!

—'~

A special treatment is necessary for the zero mode. In
analytic treatments in field theories, a Jacobian is needed
for the transformation from the zero-mode coordinate to
a collective coordinate. In our numerical treatment, how-

ever, the zero mode has a finite eigenvalue because T2 is
finite. Consequently, the quantity T2/2 is easily factored
out &om (D10) as

! det[IIE(rg„rg, 2') ']! '~2 T2= JK—.
det[IIEo(ra rt' ~) ]I / 2

(D11)

The product JK is obtained numerically by dividing the
quantity on the left hand side by T2/2 and taking the
T2 m oo limit.
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