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Assuming that the interionic forces can be modeled by the effective pair potential u(r) arising in

second-order pseudopotential theory, we have calculated the structure factor S(q) and some thermo-

dynamic properties of the alkali metals. The pair potential is derived from a local empty-core pseudopo-
tential including a core-valence exchange correlation. The calculations of the structure and thermo-

dynamics are performed with the self-consistent integral equation called the hybridized mean spherical

approximation (HMSA). The results presented in detail are in very good agreement with experiments

for all the alkali metals near their melting points as well as for Rb and Cs along the liquid-vapor coex-
istence curve.

I. INTRODUCTION

Over the last decade, thermodynamic perturbation
theories based on the hard sp-here reference system have
obtained real success in the calculation of the structure
factor of liquid metals (Kumaravadivel and Evans, '

McLaughlin and Young, Kahl and Hafner, Bretonnet
and Regnaut }. Meanwhile, attempts have been made to
develop new integral equations. In the earliest semiana-
lytic theories such as the Yvon-Born-Green, the Percus-
Yevick, and the hypernetted-chain (HNC}, the pair-
correlation function was only a weak functional depen-
dence of the structural properties on the pair potential so
that substantial differences in pair potential often provid-
ed modest changes in the structure factor. With the
modified HNC (MHNC) and variational modified HNC
(VMHNC} the liquid-state theory has reached a high lev-

el of accuracy over a large extend of the region of stabili-
ty (Rosenfeld and Ashcroft, Matsuda et al. , Gonzalez,
Gonzalez, and Silbert, Chen and Lai ). An alternative
procedure is to achieve thermodynamic consistency of
the virial and compressibility equations of state by inter-
polating between two standard integral equations (Rogers
and Young, Zerah and Hansen, ' Kahl" ).

In this paper, we present our results of the thermo-
dynamics and the structure of the alkali metals, using
such an interpolation procedure between the soft-core
mean spherical approximation (SMSA) and the HNC,
called the hybridized mean spherical approximation
(HMSA), by means of a switching constant chosen to
force thermodynamic self-consistency. It is found that
the HMSA results are close to the SMSA, confirming
that the SMSA is one of the most appropriate standard
equations for realistic metallic interactions (Madden and
Rice, ' Jakse and Bretonnet' ). Taking advantage of the
absence of adjustable parameter in the SMSA we also
proceed to study the response of the calculated structure
factor to variation of the cutoff distance of the pair po-
tential.

The contents of the paper are the following. In Sec. II,
mention is made of the local pseudopotentials as well as

the effective pair potential used and the HMSA. In order
to calculate the pair potential we use a pseudopotential
well adapted for alkali metals, for which the essential
feature is the departure from Coulombic behavior beyond
the core radius. %e also briefly present the technical
procedure used to solve the nonlinear integral equations,
which is no longer time consuming since the development
of scient algorithms. In Sec. III we discuss the results
of the structure factor and some thermodynamic proper-
ties for all alkali metals as well as the structure factor of
Rb at density close to the critical point, where the
electron-ion interaction becomes less amenable to a pseu-
dopotential description. Finally, we examine the role of
the attractive part of the pair potential on the structure
factor of Cs.

II. THEORY

2

Ftt(q}=
4m.Ze

2
11—

e(q)
w (q) . (2)

l —G q

The expression for F~(q) is dependent only on the

scattering momentum q through the Hartree dielectric
function e(q), the local-field correction G(q) and the
form factor, w (q), of the pseudopotential. To study the
effects of exchange and correlation on the structure fac-
tor we employ the two well-known local-field corrections
of Vashishta-Singwi' and Ichimaru-Utsumi. ' For Li,
we use the Hoshino and Young' pseudopotential
modified by Das and Joarder' to reduce some of the
drawbacks of the model. The interested reader should

A. Pseudopotential and effective pair potential

In the pseudopotential perturbation theory the pair po-
tential is expressed under the standard form

4Ze
u (r)= Id q z [1 Ftt(q)]e'q', —

8m

where Z is the valence and FN(q) is the normalized
energy-wave-number characteristic defined as
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refer to their original papers for mathematical details.
For the other alkali metals, we employ the new local gen-
eralized empty-core (GEC) pseudopotential proposed by
Hasegawa et al. ' The essential feature of this pseudopo-
tential is the inclusion of the core-valence exchange
correlation for which the tail of the electron-ion interac-
tion deviates slightly of the Coulombic form. The depar-
ture is hardly distinguishable for Na but becomes sub-
stantial for heavy alkali metals such as Rb and Cs. The
GEC pseudopotential is defined as

0 ifr&R, ,

u (r) = Ze2 [1+a exp( br)] —if r &R, ,r
(3)

r ~ ~

X 1+ 1+—tan(qR, ) exp( bR, )—mq b

b2+ 2
q

L ~ J

(4)

With the effective pair potential known, integral equa-
tions are able to provide us the liquid structure for alkali
metals.

B. Integral equations

where a and b are determined so that the pseudopotential
fits the potential calculated in the local-density-functional
approximation. They are tabulated by Hasegawa et al. '

for a large number of elements. One practical merit of
the GEC pseudopotential is to have only R, as fixed pa-
rameter. The second advantage is to procure a simple an-
alytic expression for the unscreened form factor, namely,

4~ze 2

m (q) = — cos(qR, }

ro is the position of the principal minimum of u (r). This
separation is particularly convenient to examine the role
of the different parts of u (r) that determine the structure
factor of metallic liquids. fo is a mixing function, which
presents under various forms (Zerah and Hansen, ' Lai,
Wang, and Tosi, Kahl"), chosen to force the thermo-
dynamic self-consistency (TSC}. Equation (6) has two
limiting cases according to the value of the mixing pa-
rameter f0, namely SMSA when f0 =0 and HNC when
f0= l. Between these two limits, the interpolation is car-
ried out by the variation of the parameter f0. Our choice
offo is motivated by the fact that the interpolation takes
place in a quite narrow region of g (r) and it is very con-
venient to observe the degree of contribution of the two
standard equations involved (Bretonnet and Jakse). '

The interpolation is performed to achieve the thermo-
dynamic self-consistency by requiring the equality be-
tween the relation arising from the compressibility route
in the grand-canonical ensemble [see for example Egels-
taff22], on one hand, which is the inverse long-wavelength
limit of the structure factor S(q):

P 1
P =1—4mp c(r)r dr=

Bp T S(0}

and that coming from the virial equation of state, on the
other hand,

(& 'p+Po+Pr' i+Pi" )T-
p T' p

where the number density p is related to the electronic
density n by p=nZ, Z being the valence. The different
contributions to the pressure P are explicitly defined as in
the paper of Hasegawa and Watabe:

The pair-correlation function g(r) of a classical fiuid
interacting through a pair potential, u (r), is determined
from the solution of the Ornstein-Zernike (OZ) relation

g(r) 1 —c(r)—=p f d r'[g(r') —1]c(~r—r'~)

8Uo(p)
p —p2

P

2np r Bu(r;p)2 3

3
g r;p r,

(10)

exp[fo jy(r) —Pu2(r)] ]—1
X ~ 1+ (6)

where P(=1/k~T). The effective pair potential u(r) is

split, according to the scheme of Weeks, Chandler, and
Anderson, into its sharp short-range repulsive part,
u, (r), and its weak long-range attractive part, u2(r):

u(r) —u(ro) if r &ro,
0 ifr&ro,
u (ro} if r & ro,
u(r) if r &ro .

—=y(r), (5)

where c(r} is the direct correlation function and p is the
number density. The OZ relation must be supplemented
by a closure approximation which, in our case, is that of
Zerah and Hansen

HMSA( )
— { p ( ) )

P . =27Tp p g p ~p l'p PBu (r;p)
p

(12)

While u (r;p) is the effective pair potential given by Eq.
(1), the term Uo(n) contains all the different volume-
dependent contributions to the total energy per ion of the
metal, E/( N ), derived by Finnis

Uo(p) =E,s p'B,s+P(r =0)—, (13)

Z e
P(r =0)= — f Fn(q)dq .

7T 0
(14)

Practically, the free parameter of the local pseudopo-
tential (Ro for Li and R, for the other alkali metals) is
fitted to obtain numerically the experimental value of the
long-wavelength limit of the structure factor. Simultane-
ously, fo is chosen to give the equality between Eqs. (8)

where E, and B, are the energy of the homogeneous
electron gas and the bulk modulus of the free-electron
gas, respectively, and P(r =0) is one half the electrostatic
interaction between an ion and its surrounding cloud
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and (9). Consequently the TSC is achieved at the ob-
served S(0). However, the use of pseudopotential theory
to obtain the pair potential leads to an electronic incon-
sistency (Brovman and Kagan ). As a result, the virial
pressure, calculated from the total energy, does not van-
ish and the two equations of state cannot be fully con-
sistent. To avoid this problem, the zero-pressure condi-
tion is forced in Eq. (9) to get a full TSC.

C. A summary of the LMV method

N —1

C(q )=C' '(q )+ g C k[I (qk) —I ' '(qk)],
k=&

where the coeScients are defined as

2 N~' dI
C k= —&N, dI (r, )

X sin f) qk sin 7'; qj

(21)

(22)

r(r) = ry(r), (15)

C(r) =rc (r), (16)

as well as their explicit Fourier transforms in the discrete
form

aqN '- . mr(r)= g I'(q )sin r q; i =1,—. . . , N —1,2' j—]

(17)

One of the most attractive numerical procedure for
solving Ornstein-Zernike equation is based upon an ad-
vantageous combination of the Newton-Raphson and the
successive substitution methods, originally proposed by
Gillan. ~6 Labik, Malijevsky, and Vonka (LMV) em-
ployed a similar but several times more rapid, procedure
using a sine function basis set instead of Gillan's roof
functions. Following LMV, it is suitable to define the
functions

where Jj k is the Jacobian matrix elements

pC(q )

q
—pC(q, )

pC(qj )
X 2+

q,
—pC(q, )

J =5jk jk

C'kp) ly ~ ~ ~ yMo

8.8815 I I I ~ I I I I I I I I I I I ~ 3.8

! (a)
8.8818-

The NR method applied to Eq. (19) leads to the following
set of linear equations:

pC (q)
y Z, „Sr(q„)= ' —r(q, ); J=l, . . . , M,

pC(q )

N —1

C(q~)=4rrbr g C(r; }sin r;q—; j =1, . . . , N —1,
i=1

(18)

and

pC (q)
I (q, )=

qj
—pC(q~ )

(19)

where b,q [=trl(Nb, r)] is the grid mesh in reciprocal
space. The Fourier transform of the Ornstein-Zernike
equation [Eq. (5)] and the closure relation [Eq. (6)] may
now be written in terms of the new functions as

I I I I I I I I I I I I I I 1 I

3 4 5 6 7 8 9 18 11 12 13 14 15 16 17 1B 19 28
z- (a.u. )

F [r(r; )]=r;exp( —pu, (r, ) }

exp[fo[r(r, )jr, —Pu2(r, )]]—1

—I (r, ) —r, . (20)

The algorithm developed by LMV consists in solving the
nonlinear set of Eq. (19) for the first M Fourier com-
ponents using the Newton-Raphson (NR) method, while
the high-order components (j )M) are obtained by
direct iterations. In order to bring the NR scheme into
play, C(q. ) are approximated by a first-order expansion
around the initial estimates I ' '(q~ ), namely,

2.8 3.8
q (a.u. ')

FIG. 1. (a) Effective pair potential u (r) and pair-distribution
function g (r) of liquid Li (b} Structure factor of liquid Li; [emp-
ty dots: experimental data of Waseda (Ref. 30)].
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stronger tendency to cluster in the vicinity of the first
minimum of u(r) and the main peak of g(r) becomes
higher. At the same time, the peaks of S(q) undergo an
enhancement and the oscillations are slightly shifted to-
wards smaller values of q [Figs. 6(b) and 7(b)].

the TSC v
In Table I, we can see that, with the exce t' f N,p ion o a,
e C values of fo are below 0.5. It shows that SMSA

is much better adapted for the calculation of the struc-
ture factor of alkali metals than HNC. According to the
argument of Chihara, ' the SMSA

'
integral equation

might become less accurate at lower densities, but also in-
creasingly accurate at higher temperatures when the at-
tractive well of u (r) becomes more and more shallow. It
is of interest therefore, to compare the struct f t f

wtt the experiments, near its critical point to test the
model at high temperature and low density. A detailed

q, or and Cs,discussion of the low-q behavior of S( ) for Rb
is given by Jakse and Bretonnet. ' Comparing g(r) and
S(q) of Rb just before the metal-nonmetal transition hap-
pens, the results agree very well with th e experimental
data of Franz et al. and Winter et l Ir e a . n particular,

the position of the first maximum of S(q) does not
c ange when the critical point is approached, while its
height becomes lower and its width broader.

In spite of the numerous theoretical calculations of the
structure factor for liquid metals to kno h h
ofS c

now w ic regions
o (q) contain information about the repulsive and the
oscillatory parts of u (r), it still seems difficult to separate
the structural effects attributable to th 1

'
o e repu sive part

from those attributable to other features in the pair po-
tential. To examine these effects, some attention has been
ocused on the influence of the cutoff' distance of the pair

cu ations with the SMSA (f0 =0) that is particularly well

adapted for it. The results of g (r) and S (q) are shown, in
igs. 8(a) and 8(b), for Cs at 1373 K in order to be com-

pared with those of Matsuda, Hoshino, and Watabe
who analyzed this problem in determining the structure

though our procedure of cutting is somewhat different we
can observe the same results as these authors. The trun-
cation of u(r) at its first minitnum (ro) decreases the

8.886 3.8
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3.8

8.884- -2.8 -2.8
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FIG. 6. Influencence of the pseudopotential parameter a. (a)
Effective pair potential and pair-distribution function f l 'd

. (b) Structure factor of liquid Na, at 378 K. a=2:
unc ion o squid

———,a=10. , a=18: ———

FIG. 7. Influence oce of the pseudopotential parameter b. (a)
Effective air otp

'
p ential and pair-distribution function of li uid

Na, at 378 K. (b) Structure factor of liquid Na, at 378 K.
ion o iquc

b=1.6: ———,b=2: , b=2.4:
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TABLE II.II. Contribnttons to the internal energy EI(N ) given in 10 a.u. an
perimental values E f G h 'd,„~ o sc nei ner (Ref. 37)~

given in 0 a.u. and compared to the ex-

Li
Na
K
Rb
Cs

E;

2.20
1.80
1.63
1.49
1.44

E
—76.65
—81.53
—79.87
—78.26
—76.45

—21.96
—9.21
—1.14

0.68
2.05

P(r =0;p)
—164.86
—136.96
—113.79
—106.87
—101.47

2.91
—1.69
—4.38
—5.04
—5.61

EI(N)
—258.36
—227.59
—197.55
—188.00
—180.04

Eexp

—259.00
—232.00
—195.60
—187.00
—175.70

8.884- -2.8

magnitude of the first peak of g(r) and causes the subse-
quent peaks to be strongly damped when they are com-
pared to the correct g (r) given by the full curve of u (r).
For the structure factor, the main peak is much lower
than that of the correct S(q) and the long-wavelength
limit reaches its lowest value; the same remark can be
made for Rb. Then, if u (r} is truncated at the following
nodes (r& and r2), the oscillations of g(r) and S(q) be-
come slightly enhanced but the long-wavelength limit lies

either over the correct S(0) for the cutoff distance r, or
below for r2. The behavior of S(0) for the next cutoff dis-
tances, which is not presented in the figure for clarity,

f
converges on the correct values of S(0). An interestin
eature can be seen when u (r) is cut off at its first max-

imum (r', ) because g(r) is shifted upwards the correct
g(r} and goes slowly to unity at large distances. This
unexpected behavior has also been observed by Matsuda,

oshino, and Watabe, who suggest that it might be relat-
ed to a metastable supercooled state. From these obser-
vations we conclude that the effect of the long-range at-
tractive part of u (r) is to increase the amplitude of the
oscillations in g (r) and S(q) without changing their posi-
tions and the cutoff distance determines drastically the
behavior of the structure factor for small values of q.

8.882-
B. The thermodynamic properties

We now return to the calculations of the energy, pres-
sure and bulk modulus that are necessary to perform the
TSC. The internal energy

-8.882-

E
(N )

id+ Uo(P}+Est (2&)

2.88

(b)

1.88-

-8.884
6 9 12 15 18 21 24 27 38

r (a, .u. I

where Uo(p) is determined as stated in Sec. II B, is com-
pared with the experimental values of Gschneidner in
Table II. As expected, the most important contribution
comes from the self-energy volume term, P(r=0), which
increases when we go from light to heavy alkali metals.
In contrast, the ideal term E;d =3p '/2 and the structur-
al term E„,= (1/2N) g;~~ u (r J;p) always keep moderat-
ed values.

The various contributions to the pressure according to
Eqs. (10), (ll), and (12) can be seen in Table III. While
the volume term contributes rather largely to the pres-
sure, in contrast to the situation of the internal energy
the term P,', , coming from the derivative of u (r;p) with

2.8 3.8
q (a.u. ')

TABLE III. Contributions to the pressure P according to
Eqs. (10), (11),and (12).

FIG. 8. Influence of the cutoff distance of u (r). (a) Effective
pair potential and pair-distribution function of liquid Cs, at
1373 K. (b) Structure factor of liquid Cs, at 1373 K. The full
curves are obtained with the total effective potential and the
others are obtained with the cutoff distances o. ———,r:

I
0 ~ rl

~ ~ ~ , rl..

Li
Na
K
Rb
CS

pPid Ip pPO Ip
—14.35
—20.85
—24.97
—28.08
—28.78

PP; Ip

17.61
15.49
11.97
12.03
10.01

PP ';Ip
—0.30

0.52
0.14

—0.20
—0.28

PP Ip

3.96
—3.84

—11.87
—15.25
—18.05
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TABLE IV. Contributions to the bulk modulus P(dPIdp}r according to Eq. (26), which has been
Stted to the experimental values of (a). Ruppersberg and Speicher (Ref. 31) and (b) Webber and

Stephens (Ref. 32).

PP;"; Ip I— Bl B3 8 Pp [8 U (p}IBp ] P(dPIdp} = IIS,„(0}
Li
Na
K
Rb
Cs

—1.31
—0.48
—0.86
—1.20
—1.28

—8.68
—9.29

—12.89
—16.32
—18.57

5.44 39.29
4.89 42.87
8.21 40.75

11.72 43.35
12.35 42.49

—5.34
—1.85

1.14
2.82
2.31

9.06
7.42
5.31
5.08
4.36

38.46'
43.56
41.66b

45.45b

41.66b

respect to r, is comparable to I'0 with the opposite sign.
The term P;"; taking account of the density dependence
of the pair potential is very small compared to Po.

An expression for P(dP/dp)~T may also be obtained,
which reduces to that of simple liquids when the density
of u (r;p) is dropped:

aP
BP r

P P;"; t) Uo(P) 4

p p dp

(26)

where P and P;"; are those of Eqs. (9) and (12), respec-
tively. The other four terms, B are defined as

Bi= 2+Pp jr g(r;p) ' dr,rp 8 u(r;p)
3 BP87'

B2=2npp Jr g(r;p)P ' dr,2B u(r;P)
p'

(27)

(28)

2 2 Bg (r;p) r du (r;p)
Bp 3 dr

83= —2m p r ' — ' dr,

8=2nIBP Jr '
p

' dr
8 (r; ) du(r )

P P

(29}

(30)

Table IV shows the individual contributions of
P(BPIBP)z. While the volume term Uo(p) is crucial for
describing energy and pressure of liquid metals, it can be
ignored, as well as the density dependence of the pair po-
tential when the bulk modulus is calculated. It is found
that P(t)P/t)p) z can be determined with a good degree of
accuracy in considering the assumption that the pair po-
tential is independent of the density, with the term B3
only. This fact as been previously pointed out by Finnis

in calculating the elastic constants in the solid state, from
the effective interionic potential

IV. CONCLUSION

We have presented the results of the structure of the
alkali metals by using the HMSA, which combines both
the integral equation, and the thermodynamic perturba-
tion theories. Comparison of our results with the experi-
mental data of S(q) establishes the validity of the HMSA
for direct application to fluids with continuous effective
pair potentials. It clearly demonstrates that our self-
consistency procedure, based on a conjointed study of
structure and thermodynamics, provides very good re-
sults, as much for the structure factor as for the therrno-
dynamic properties.

We also have examined the influence of the parameters
of the pseudopotential, and the local-field correction on
the structure. Concerning the influence of the tail of the
pair potential and the cutoff distance, we found that the
presence of long-range attractive part of u (r) enhances
the oscillations of g(r) and S(q) but does not modify
their location. The knowledge of all these behaviors has
been helpful to set up the HMSA procedure.

We are presently performing the calculations of the
structure of liquid transition metals with the HMSA, for
which a theoretical pair potential has been recently ob-
tained (Bretonnet, Bhuiyan, and Silbert3 }. The results,
which will be published shortly, are very encouraging,
therefore we have planned to apply the inversion tech-
nique, allowing extraction of the pair interaction from
the structural data, to test the resulting effective pair po-
tential for transition metals.
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