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Assuming that the interionic forces can be modeled by the effective pair potential u(r) arising in
second-order pseudopotential theory, we have calculated the structure factor S(g) and some thermo-
dynamic properties of the alkali metals. The pair potential is derived from a local empty-core pseudopo-
tential including a core-valence exchange correlation. The calculations of the structure and thermo-
dynamics are performed with the self-consistent integral equation called the hybridized mean spherical
approximation (HMSA). The results presented in detail are in very good agreement with experiments
for all the alkali metals near their melting points as well as for Rb and Cs along the liquid-vapor coex-

istence curve.

I. INTRODUCTION

Over the last decade, thermodynamic perturbation
theories based on the hard-sphere reference system have
obtained real success in the calculation of the structure
factor of liquid metals (Kumaravadivel and Evans, !
McLaughlin and Young,? Kahl and Hafner,® Bretonnet
and Regnaut*). Meanwhile, attempts have been made to
develop new integral equations. In the earliest semiana-
lytic theories such as the Yvon-Born-Green, the Percus-
Yevick, and the hypernetted-chain (HNC), the pair-
correlation function was only a weak functional depen-
dence of the structural properties on the pair potential so
that substantial differences in pair potential often provid-
ed modest changes in the structure factor. With the
modified HNC (MHNC) and variational modified HNC
(VMHNC) the liquid-state theory has reached a high lev-
el of accuracy over a large extend of the region of stabili-
ty (Rosenfeld and Ashcroft,’ Matsuda et al.,® Gonzalez,
Gonzalez, and Silbert,” Chen and Lai®). An alternative
procedure is to achieve thermodynamic consistency of
the virial and compressibility equations of state by inter-
polating between two standard integral equations (Rogers
and Young,® Zerah and Hansen, '° Kahl'!).

In this paper, we present our results of the thermo-
dynamics and the structure of the alkali metals, using
such an interpolation procedure between the soft-core
mean spherical approximation (SMSA) and the HNC,
called the hybridized mean spherical approximation
(HMSA), by means of a switching constant chosen to
force thermodynamic self-consistency. It is found that
the HMSA results are close to the SMSA, confirming
that the SMSA is one of the most appropriate standard
equations for realistic metallic interactions (Madden and
Rice, 2 Jakse and Bretonnet!?). Taking advantage of the
absence of adjustable parameter in the SMSA we also
proceed to study the response of the calculated structure
factor to variation of the cutoff distance of the pair po-
tential.

The contents of the paper are the following. In Sec. II,
mention is made of the local pseudopotentials as well as
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the effective pair potential used and the HMSA. In order
to calculate the pair potential we use a pseudopotential
well adapted for alkali metals, for which the essential
feature is the departure from Coulombic behavior beyond
the core radius. We also briefly present the technical
procedure used to solve the nonlinear integral equations,
which is no longer time consuming since the development
of efficient algorithms. In Sec. III we discuss the results
of the structure factor and some thermodynamic proper-
ties for all alkali metals as well as the structure factor of
Rb at density close to the critical point, where the
electron-ion interaction becomes less amenable to a pseu-
dopotential description. Finally, we examine the role of
the attractive part of the pair potential on the structure
factor of Cs.

II. THEORY

A. Pseudopotential and effective pair potential

In the pseudopotential perturbation theory the pair po-
tential is expressed under the standard form

1 47Z%?
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where Z is the valence and Fy(q) is the normalized
energy-wave-number characteristic defined as
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The expression for Fy(q) is dependent only on the
scattering momentum g through the Hartree dielectric
function e(q), the local-field correction G(gq) and the
form factor, w(q), of the pseudopotential. To study the
effects of exchange and correlation on the structure fac-
tor we employ the two well-known local-field corrections
of Vashishta-Singwil4 and Ichimaru-Utsumi.!’® For Li,
we use the Hoshino and Young'® pseudopotential
modified by Das and Joarder!” to reduce some of the
drawbacks of the model. The interested reader should
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refer to their original papers for mathematical details.
For the other alkali metals, we employ the new local gen-
eralized empty-core (GEC) pseudopotential proposed by
Hasegawa et al.'® The essential feature of this pseudopo-
tential is the inclusion of the core-valence exchange
correlation for which the tail of the electron-ion interac-
tion deviates slightly of the Coulombic form. The depar-
ture is hardly distinguishable for Na but becomes sub-
stantial for heavy alkali metals such as Rb and Cs. The
GEC pseudopotential is defined as

0 ifr<R,,

= 2
v(r) ——ZTe—[1+a exp(—br)] if r>R,, &)

where a and b are determined so that the pseudopotential
fits the potential calculated in the local-density-functional
approximation. They are tabulated by Hasegawa et al.'®
for a large number of elements. One practical merit of
the GEC pseudopotential is to have only R, as fixed pa-
rameter. The second advantage is to procure a simple an-
alytic expression for the unscreened form factor, namely,

_ 4nZe?
w(g)=— 3
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cos(gR.)
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X
b2+q

exp(—bR,)

1+§tan(ch)

(4)
With the effective pair potential known, integral equa-
tions are able to provide us the liquid structure for alkali
metals.

B. Integral equations

The pair-correlation function g(r) of a classical fluid
interacting through a pair potential, u (r), is determined
from the solution of the Ornstein-Zernike (OZ) relation

g(n—1—c(n=p [ '[g(r)—1lc(r—r])

=y(r), (5)

where c(r) is the direct correlation function and p is the
number density. The OZ relation must be supplemented
by a closure approximation which, in our case, is that of
Zerah and Hansen:!°

HMSA(r)=exp( —Bu,(r))

1+eXP[fo{Y(r);Bu2(r)}]—l ®
0

where B(=1/kyT). The effective pair potential u (7) is
split, according to the scheme of Weeks, Chandler, and
Anderson,!® into its sharp short-range repulsive part,
u,(r), and its weak long-range attractive part, u,(r):

g

X

u(r)—u(ry) ifr<ry,

uy(r)= lo ifr>rp,
%)

u(rg) ifr<ry,
W=V ifr>r,.
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ro is the position of the principal minimum of u (7). This
separation is particularly convenient to examine the role
of the different parts of u (r) that determine the structure
factor of metallic liquids. f; is a mixing function, which
presents under various forms (Zerah and Hansen, ' Lai,
Wang, and Tosi,?® Kahl!!), chosen to force the thermo-
dynamic self-consistency (TSC). Equation (6) has two
limiting cases according to the value of the mixing pa-
rameter f,, namely SMSA when f;=0 and HNC when
fo=1. Between these two limits, the interpolation is car-
ried out by the variation of the parameter f,,. Our choice
of f, is motivated by the fact that the interpolation takes
place in a quite narrow region of g (r) and it is very con-
venient to observe the degree of contribution of the two
standard equations involved (Bretonnet and Jakse).?!
The interpolation is performed to achieve the thermo-
dynamic self-consistency by requiring the equality be-
tween the relation arising from the compressibility route
in the grand-canonical ensemble [see for example Egels-
taff??], on one hand, which is the inverse long-wavelength
limit of the structure factor S (q):

oP 1
~— | =1—4mp [c(rridr=—— ®)
Bap , 1rpf r<dr

5(0)

and that coming from the virial equation of state, on the
other hand,

aP a _ ? L
35 T=B$(B Yo+P,+P_;+P!" )r, 9)
where the number density p is related to the electronic
density n by p=nZ, Z being the valence. The different
contributions to the pressure P are explicitly defined as in
the paper of Hasegawa and Watabe:?*

aU,(p)
=p2——07
. _=_27r2 r*du(r;p) .
P,_, —J’—3 f———P—ar g(r;p)dr , §§))
pi"_i=217-p2fr2£——£-au;;; )g(r;p)dr . (12)

While u (r;p) is the effective pair potential given by Eq.
(1), the term Uy(n) contains all the different volume-
dependent contributions to the total energy per ion of the
metal, E /(N ), derived by Finnis?*

Ug(p)=E,—p 'B+¢(r=0), (13)

where E., and B, are the energy of the homogeneous
electron gas and the bulk modulus of the free-electron
gas, respectively, and ¢(r =0) is one half the electrostatic
interaction between an ion and its surrounding cloud

Z%? =
— [ "Fun(q)dg . (14)

$(r=0)=—

Practically, the free parameter of the local pseudopo-
tential (R, for Li and R, for the other alkali metals) is
fitted to obtain numerically the experimental value of the
long-wavelength limit of the structure factor. Simultane-
ously, f, is chosen to give the equality between Egs. (8)
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and (9). Consequently the TSC is achieved at the ob-
served S(0). However, the use of pseudopotential theory
to obtain the pair potential leads to an electronic incon-
sistency (Brovman and Kagan®). As a result, the virial
pressure, calculated from the total energy, does not van-
ish and the two equations of state cannot be fully con-
sistent. To avoid this problem, the zero-pressure condi-
tion is forced in Eq. (9) to get a full TSC.

C. A summary of the LMV method

One of the most attractive numerical procedure for
solving Ornstein-Zernike equation is based upon an ad-
vantageous combination of the Newton-Raphson and the
successive substitution methods, originally proposed by
Gillan.?® Labik, Malijevsky, and Vonka?’ (LMV) em-
ployed a similar but several times more rapid, procedure
using a sine function basis set instead of Gillan’s roof

functions. Following LMYV, it is suitable to define the
functions
L(r=ry(r), (15)
C(r)=rc(r), (16)

as well as their explicit Fourier transforms in the discrete
form

I“l.:z_qg )sin %riqj, i=1,...,N—1,
17
—1
Clg ;)=4mAr 21 C(r;)sin F’ql j=1, ,N—1,
(18)
where Ag [=w/(NAr)] is the grid mesh in reciprocal
space. The Fourier transform of the Ornstein-Zernike

equation [Eq. (5)] and the closure relation [Eq. (6)] may
now be written in terms of the new functions as

_ Cug;)
r(qj)zp—_?"—— (19)
and
F[T(r;)]=r;exp( —Bu,(r;))
9 +exp[f0[F(r —Bu,(r;) 11—
fo
—T(r;)—r; . (20)

The algorithm developed by LMV consists in solving the
nonlinear set of Eq. (19) for the first M Fourier com-
ponents using the Newton-Raphson (NR) method, while
the high-order components (j > M) are obtained by
direct iterations. In order to bring the NR scheme into
play, C(q ;) are approximated by a first-order expansion
around the initial estimates T *)(q;), namely,
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C(g;)=C g+ zc [T(g)—T%%g)], @

where the coefficients are defined as

~ _ 2! dF
C. ==
ik E dr(r;) |r=r®
Xsin %riqk sin —]%r,-qj (22)

The NR method applied to Eq. (19) leads to the following
set of linear equations:

M - pCxq) .
2 JiAl(g)=———F——-T(g;); j=1,...,.M,
k=1 q; ‘PC(q])
(23)
where J; . is the Jacobian matrix elements
Cl(g))
J],k=8jk— P _gj__
C(g;) |.
2+p—€,~ Cis i=L...,M . (24)
q;,—pClg;)
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FIG. 1. (a) Effective pair potential u (r) and pair-distribution

function g (r) of liquid Li (b) Structure factor of liquid Li; [emp-
ty dots: experimental data of Waseda (Ref. 30)].
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TABLE 1. Input data: temperature 7, electronic radius r;,
pseudopotential parameters R, a, b, R, 3, and the TSC param-
eter fo.

Li Na K Rb Cs
T (K) 463 378 343 313 303
ry (a.u) 3.311 4.047 5.022 5.405 5.783
R, (a.u) 2.02 2.61 2.95 . 3.26
a 10 20 21 22
b 2 1.7 1.4 1.2
R, (a.u) 0.47
B 25.6
fo 0.10 0.64 0.42 0.33 0.15

As the right-hand side of Eq. (23) is known, the set of
linear equations can be solved for the unknown difference
AT'(g,) between the previous solution of T'(g,) and its
new one in the iterative procedure, which subsequently
yields a correct T'(g,). The procedure is then repeated
until the convergence is achieved and the correct correla-
tion functions are obtained. Even if the solution is not
exact, since the Jacobian is expanded to the first order
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FIG. 2. (a) same as in Fig. 1(a) for Na, (b) same as in Fig.
1(b), for Na [full dots: experimental data of Huijben and van
der Lugt (Ref. 28)].
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only, the efficiency of the method is very good. It de-
pends on the number M of equations involved in the NR
method, but the final correlation functions are not. If
M =N we are faced to a very large system of linear equa-
tions time consuming whereas M =1 corresponds to the
direct iteration method very slowly convergent when it
does. For the Lennard-Jones potential we had chosen M
between 15 and 30 with N=1024 (Bretonnet and Jakse?®!).
The results presented below are obtained with M current-
ly situated around 60.

III. RESULTS AND DISCUSSION

A. The structure factor

Table I lists the values of the input data entering the
calculations, as well as those of the mixing parameter f,
obtained with the procedure detailed in Sec. IIB. In
Figs. 1(a)-5(b) we show g(r) and S(q) calculated by the
HMSA with the local-field correction of Ichimaru and
Utsumi. !> Our results of S(g) are compared with the ac-
curate measurements of Huijben and van der Lugt? for
Na, K, and Cs as well as those of Copley and Rowe?®® for

2.026

.05

0.004

u(r) (an.)

.03

.02

0.001

9.020

-9.001 4

-0.002-

-0.003

-0.004 T T I I T T T T T T T T T T
3 45 6 7 8 % 18111213 14 15 16 17 18 19 20
r (au.)

(b)

s(q)

2.0 1.0 2.0 3.0
q (au)

FIG. 3. (a) same as in Fig. 1(a), for K, (b) same as in Fig. 1(b),
for K (full dots: experimental data of Huijben and van der
Lugt, Ref. 28).
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Rb. For the sake of comparison, we also have reported
those of Waseda® for S(g) and g(r). On the scale of the
figures, the curves are indistinguishable except in the
range of the first peak of S(gq). The theoretical results of
S(q) agree quite well with the experiments particularly
for small g, since R, has been fitted on experimental S(0)
of Ruppersberg and Speicher’! for Li and those of
Webber and Stephens®? for the other elements. It is also
interesting to observe that for K, the second peak of S (q)
goes slightly towards the large-g region whereas for Cs it
is shifted towards the low-g region. For Li, Na, and Rb
the second peak of S(q) has excellent position with
respect to the experiment.

It is worth mentioning that the results for Na, K, Rb,
and Cs are comparable to those of Chen and Lai® who
used the VMHNC and a nonlocal pseudopotential. The
pair potential described in this paper has also been used
by Matsuda et al.® to perform the calculations of the
structure factor with molecular-dynamics simulation.
The results obtained by these authors are in excellent
agreement with the experimental structure factor of al-
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FIG. 4. (a) same as in Fig. 1(a), for Rb, (b) same as in Fig.
1(b), for Rb (full dots: experimental data of Copley and Rowe,
Ref. 29).
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kali metals. We therefore tested the accuracy and
efficiency of the HMSA method to experiments in order
to spare computer time.

If the calculations are performed with the Vashishta
and Singwi!* dielectric function, the pair-correlation
function is hardly affected though the pair potential is
quite sensitive to it. Also, no discrepancy is visible be-
tween the curves of the structure factor as a consequence
of the used procedure, which consists of fitting the
theoretical long-wavelength limit to the experimental
S(0).

Incidentally, we explore the influence of the two pa-
rameters a and b of the Hasegawa et al.'® pseudopoten-
tial by changing their values arbitrarily. The roles of a
and b are, roughly speaking, opposite and the inspection
of Figs. 6(a) and 7(a) shows that their effects on the pair
potential extend only a small distance outside the core re-
gion. The increase of b — or the reduction of a — causes
the displacement of the short-range repulsive part of u (r)
towards larger distances and the reduction of the width
of the attractive well. Consequently, the ions have a
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FIG. 5. (a) same as in Fig. 1(a), for Cs, (b) same as in Fig.
1(b), for Cs (full dots: experimental data of Huijben and van der
Lugt, Ref. 28).
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stronger tendency to cluster in the vicinity of the first
minimum of #(r) and the main peak of g(r) becomes
higher. At the same time, the peaks of S(g) undergo an
enhancement and the oscillations are slightly shifted to-
wards smaller values of g [Figs. 6(b) and 7(b)].

In Table I, we can see that, with the exception of Na,
the TSC values of f, are below 0.5. It shows that SMSA
is much better adapted for the calculation of the struc-
ture factor of alkali metals than HNC. According to the
argument of Chihara,®® the SMSA integral equation
might become less accurate at lower densities, but also in-
creasingly accurate at higher temperatures when the at-
tractive well of u (r) becomes more and more shallow. It
is of interest therefore, to compare the structure factor of
Rb with the experiments, near its critical point to test the
model at high temperature and low density. A detailed
discussion of the low-g behavior of S(gq), for Rb and Cs,
is given by Jakse and Bretonnet.!*> Comparing g (r) and
S (g) of Rb just before the metal-nonmetal transition hap-
pens, the results agree very well with the experimental
data of Franz et al.’* and Winter et al.3® In particular,

g(r)

-0.022

—r—TT T T T T T T T T T T T T
4 5 6 7 8 9 1011 12 13 14 15 16 17 18 15 20
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(b)

FIG. 6. Influence of the pseudopotential parameter a. (a)
Effective pair potential and pair-distribution function of liquid
Na, at 378 K. (b) Structure factor of liquid Na, at 378 K. a=2:
—_——,a=10: ,a=18 — — —,
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the position of the first maximum of S(gq) does not
change when the critical point is approached, while its
height becomes lower and its width broader.

In spite of the numerous theoretical calculations of the
structure factor for liquid metals to know which regions
of S(g) contain information about the repulsive and the
oscillatory parts of u (r), it still seems difficult to separate
the structural effects attributable to the repulsive part
from those attributable to other features in the pair po-
tential. To examine these effects, some attention has been
focused on the influence of the cutoff distance of the pair
potential on g(r) and S(q). We have performed our cal-
culations with the SMSA (f,=0) that is particularly well
adapted for it. The results of g (r) and S (q) are shown, in
Figs. 8(a) and 8(b), for Cs at 1373 K in order to be com-
pared with those of Matsuda, Hoshino, and Watabe, 36
who analyzed this problem in determining the structure
factor of liquid Cs with the MHNC approximation. Al-
though our procedure of cutting is somewhat different we
can observe the same results as these authors. The trun-
cation of u(r) at its first minimum (r;) decreases the

g(r)

2.0021

-0.0224

-0.004 1

—rT T T T T T T T T T T T
6 7 8 9 1811 12 13 14 15 16 17 18 19 20
r (au.)

c ; (b)

. po
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FIG. 7. Influence of the pseudopotential parameter b. (a)
Effective pair potential and pair-distribution function of liquid
Na, at 378 K. (b) Structure factor of liquid Na, at 378 K.
b=1.6: ———,b=2: ,b=24: — — —,
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TABLE II. Contributions to the internal energy E /(N ) given in 1073 a.u. and compared to the ex-

perimental values E.,, of Gschneidner (Ref. 37).

Eq E, —p B é(r=0;p) Eg. E/{(N) E.p
Li 2.20 —76.65 —21.96 —164.86 2.91 —258.36 —259.00
Na 1.80 —81.53 —9.21 —136.96 —1.69 —227.59 —232.00
K 1.63 —179.87 —1.14 —113.79 —4.38 —197.55 —195.60
Rb 1.49 —78.26 0.68 —106.87 —5.04 —188.00 —187.00
Cs 1.44 —76.45 2.05 —101.47 —5.61 —180.04 —175.70

magnitude of the first peak of g(r) and causes the subse-
quent peaks to be strongly damped when they are com-
pared to the correct g(r) given by the full curve of u (7).
For the structure factor, the main peak is much lower
than that of the correct S(q) and the long-wavelength
limit reaches its lowest value; the same remark can be
made for Rb. Then, if u (r) is truncated at the following
nodes (r; and r,), the oscillations of g(r) and S(q) be-
come slightly enhanced but the long-wavelength limit lies

9.006 +

g(r)

0.004 +

u(r) (a.u.)

.22

-0.0024

ro{a.u.)

s(q)
o

0.0 1.0 2.0 3.0
q (au™)

FIG. 8. Influence of the cutoff distance of u (). (a) Effective
pair potential and pair-distribution function of liquid Cs, at
1373 K. (b) Structure factor of liquid Cs, at 1373 K. The full
curves are obtained with the total effective potential and the
others are obtained with the cutoff distances ro: ———, r;:
- — —,r;: N ST

either over the correct S(0) for the cutoff distance r, or
below for r,. The behavior of S(0) for the next cutoff dis-
tances, which is not presented in the figure for clarity,
converges on the correct values of S(0). An interesting
feature can be seen when u (r) is cut off at its first max-
imum (r}) because g(r) is shifted upwards the correct
g(r) and goes slowly to unity at large distances. This
unexpected behavior has also been observed by Matsuda,
Hoshino, and Watabe, who suggest that it might be relat-
ed to a metastable supercooled state. From these obser-
vations we conclude that the effect of the long-range at-
tractive part of u(r) is to increase the amplitude of the
oscillations in g (r) and S (g) without changing their posi-
tions and the cutoff distance determines drastically the
behavior of the structure factor for small values of g.

B. The thermodynamic properties

We now return to the calculations of the energy, pres-
sure and bulk modulus that are necessary to perform the
TSC. The internal energy

_E__
(N)

where U,(p) is determined as stated in Sec. II B, is com-
pared with the experimental values of Gschneidner®’ in
Table II. As expected, the most important contribution
comes from the self-energy volume term, ¢(r=0), which
increases when we go from light to heavy alkali metals.
In contrast, the ideal term E,; =3B"!/2 and the structur-
al term E =(1/2N) 3,;+; u (r;;;p) always keep moderat-
ed values.

The various contributions to the pressure according to
Egs. (10), (11), and (12) can be seen in Table III. While
the volume term contributes rather largely to the pres-
sure, in contrast to the situation of the internal energy
the term P;_;, coming from the derivative of u (r;p) with

Eid+U0(p)+Estr 5 (25)

TABLE III. Contributions to the pressure P according to
Egs. (10), (11), and (12).

BPi4/p BPy/p BPi,—i/p ﬁPi“—i/p BP/p
Li 1 —14.35 17.61 —0.30 3.96
Na 1 —20.85 15.49 0.52 —3.84
K 1 —24.97 11.97 0.14 —11.87
Rb 1 —28.08 12.03 —0.20 —15.25
CS 1 —28.78 10.01 —0.28 —18.05
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TABLE IV. Contributions to the bulk modulus S(3P/3p)r according to Eq. (26), which has been

fitted to the experimental values of (a).
Stephens (Ref. 32).

Ruppersberg and Speicher (Ref. 31) and (b) Webber and

BP!_./p—1 B, B, B, B, Bp*[82Uy(p)/3p*] B3P /3p)r=1/S:,(0)
Li —1.31 —8.68 544 3929 —5.34 9.06 38.46°
Na —0.48 —9.29 489 4287 —1.85 7.42 43.56°
K —0.86 —12.89 821 40.75 1.14 5.31 41.66°
Rb —1.20 —16.32 11.72 43.35 2.82 5.08 45.45°
Cs —1.28 —18.57 1235 4249 2.31 4.36 41.66°

respect to r, is comparable to P, with the opposite sign.
The term P;’_; taking account of the density dependence
of the pair potential is very small compared to Py,.

An expression for (3P /dp)|; may also be obtained,
which reduces to that of simple liquids when the density

of u (r;p) is dropped:

P | _,BP_ .
% |r p

5 azUo(p) 4

B ap2

BP;_;
p p

(26)

where P and P;”_; are those of Egs. (9) and (12), respec-

tively. The other four terms, Bp are defined as

2
- 2 (o) TR OU(rip)

B, 27erfr g(r;p) 3 3par dr , 27)
2, (0.
BZ=21erfr2g(r;p)p2§£a(Lz’P—ldr , (28)

o
og(r;p) r du(r;p)
- 2 (.2 r
By=—2app* [ r 3 o (29)
_ 2 (,208(r;p) Odu(r;p)
B,=2upp? [ r % P o dr . (30)
Table IV shows the individual contributions of

B(OP /dp)r. While the volume term U,(p) is crucial for
describing energy and pressure of liquid metals, it can be
ignored, as well as the density dependence of the pair po-
tential when the bulk modulus is calculated. It is found
that B(OP /9p) can be determined with a good degree of
accuracy in considering the assumption that the pair po-
tential is independent of the density, with the term B,
only. This fact as been previously pointed out by Finnis**

in calculating the elastic constants in the solid state, from
the effective interionic potential

IV. CONCLUSION

We have presented the results of the structure of the
alkali metals by using the HMSA, which combines both
the integral equation, and the thermodynamic perturba-
tion theories. Comparison of our results with the experi-
mental data of S (q) establishes the validity of the HMSA
for direct application to fluids with continuous effective
pair potentials. It clearly demonstrates that our self-
consistency procedure, based on a conjointed study of
structure and thermodynamics, provides very good re-
sults, as much for the structure factor as for the thermo-
dynamic properties.

We also have examined the influence of the parameters
of the pseudopotential, and the local-field correction on
the structure. Concerning the influence of the tail of the
pair potential and the cutoff distance, we found that the
presence of long-range attractive part of u (r) enhances
the oscillations of g(r) and S(g) but does not modify
their location. The knowledge of all these behaviors has
been helpful to set up the HMSA procedure.

We are presently performing the calculations of the
structure of liquid transition metals with the HMSA, for
which a theoretical pair potential has been recently ob-
tained (Bretonnet, Bhuiyan, and Silbert3®). The results,
which will be published shortly, are very encouraging,
therefore we have planned to apply the inversion tech-
nique, allowing extraction of the pair interaction from
the structural data, to test the resulting effective pair po-
tential for transition metals.
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