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We consider the slave-boson method within the coherent-state functional integral representation of the
partition function, and show how to deal with the continuum imaginary-time limit required by the very
definition of the functional integral. We find that a correct treatment of the continuum limit modifies the free
energy when fluctuation (1/N) corrections beyond the mean-field solution are considered. Numerical results
are presented for a two-level single-site model system (with an infinite Hubbard repulsion), for which the
additional terms in the free energy introduced by the correct continuum limit act to validate the 1/N expansion.
Our analysis calls for a revision of several outcomes of the slave-boson method with the inclusion of fluctua-

tion corrections.

The slave-boson method' has been extensively applied in
recent years to a variety of problems involving strong elec-
tronic correlations, like the Kondo impurity and lattice,” the
Anderson Hamiltonian,®> and the Hubbard model(s).* The
method maps the physical electron (hole) destruction opera-
tor ¢, with spin ¢ into products of (pseudo)fermions d,, and
(slave) bosons b. In particular, when the local repulsion U is
infinite the mapping c,—d b’ requires only one boson,
which keeps track of the number of empty sites in the lattice.
In'terms of the operators d, and b, the requirement that there
cannot be double occupancy when U~ at any given site is
expressed by the local constraint

> dld,+btb=1. (1)

o

The slave-boson method has been usually treated within a
functional integral representation of the partition function
since this representation suitably enforces the constraint (1)
and allows for a large-N expansion, which is free from in-
frared divergences in the so-called radial gauge.>® In this
gauge the complex boson field b=re'? is represented via its
amplitude and phase at each site, with the real variables r
and 6 being integrated independently in the functional inte-
gral. (The gauge where one keeps the integration over the
real and imaginary parts of the complex field b is instead
referred to as the Cartesian gauge.)

Notwithstanding the large literature in the field, it appears
that the importance of representing properly the boson com-
mutation rules in the functional integral formulation has been
so far overlooked, as it has always been assumed that the
continuum imaginary time limit (which is implicit in any
path integral definition) can be safely taken at the outset in
the effective action.
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In this paper we show that a correct treatment of the con-
tinuum limit is actually required in both gauges to implement
the boson commutation rules, and that this in turn modifies
the free energy when fluctuation (1/N) corrections beyond
mean field are considered. For the sake of clarity, we carry
out our analysis for a multiband (d-p) model with infinite
Hubbard repulsion at d sites since this model involves one
boson field only. However, our results apply quite generally
to other cases with additional bosons like to the finite-U
single-band Hubbard model.’

To illustrate the relevance of the additional contributions
generated by the proper continuum limit, we shall eventually
specify our treatment to a two-level single-site model for
which the slave-boson approach was critically examined in
Ref. 8. In that reference it was pointed out that (i) there exists
a spurious phase transition and (ii) the large-N expansion is
inaccurate even far from this spurious transition. We shall
find that our correct treatment of the continuum time limit
completely solves point (ii) while point (i) remains an open
problem to be kept in mind. Additional work will thus be
needed to assess fully the validity and limitations of the
slave-boson approach.

The functional integral representation of the partition
function for the model at hand is formally given by

Z= f DpDpDdDdTb Db*d\ exp{—S}. )

Here, p (p) and d (d) are Grassmann variables, b (b*)
complex numbers, and the action is given by

B _
S=f dr 12 413137V dig+ S, Bio(91T+A)pj
0

i,o Jj,o
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where an N-spin generalization of the physical model with
N=2 has been considered and the field A has been intro-
duced to enforce locally the generalized constraint
sN_did,+bTb=N/2.

With a suitable choice of ¢;; and €;;/, (2) and (3) represent
the three-band model which has been widely used to describe
the CuO, planes characteristic of the high-temperature super-
conductors. The case i=i, describes a single impurity local-
ized at site iy, while the choice ¢;;=¢ and €;;, =0 with i and
Jj restricted to a single site reproduces the two-level single-
site model considered in Ref. 8. Since the details of the
model are immaterial for most of the following analysis, we
shall specify them only whenever necessary.

It should be realized at this point that, although the action
(3) is apparently written in terms of a continuum imaginary
time 7 (with 0<7<8=1/T, T being the temperature), the
functional approach is based on a coherent-state representa-
tion of normal-ordered products on a discrete imaginary time
mesh. It should be then understood that the action S is de-
fined on such a mesh, with the continuum limit safely taken
only at the end of the calculation.’ However, this point has
been overlooked in previous literature and the action (3) has
been extensively studied by taking the continuum limit at the
outset. We outline briefly the main outcomes of taking the
standard continuum limit.

In the saddle-point solution (which is exact for
N=x) b;,(7)and \; equal their time- and site-independent
values by and —i\y (A being real) determined by the sta-
tionary condition for the mean-field free energy at fixed total
density p=2/N=V_ ,(d f,d st p’;pa). In the zero-temperature
limit, the boson field b condenses, irrespective of the param-
eters appearing in S when p#1: by= \/IV/ErO #0. The case
p=1, for which the model presents at the mean-field level a
“Brinkman-Rice” transition corresponding to ro=0, is then
recovered as the limit p—17%.

To carry out the 1/N fluctuations, one expands S about
the saddle-point  solution by setting b;(7)=r/(7)
X exp{if(1)}=by+b{(7) in the Cartesian gauge and r;(7)
=by+r;(7) in the radial gauge, respectively. Once the fer-
mionic degrees of freedom are integrated out, one obtains, to
the leading order, the following quadratic actions in the
bosons fields:

SO=1> (br b_,)

IM,(w,)

_l.(l),,+Ao+Hll((l)v)
X
i(l),,+ )\0+H22(w,,)

HZI(wV)

x| _ 4
B,

and

X()-*-I-Irr(wu) b0+nr)\(wv)
bo+1(w,) I (w,)

;_D)
5
i) ®)

sP=3 (7, Xv)(

where the subscript ¢ stands for the continuum limit and the
superscripts C and R refer to the Cartesian and radial gauge,
respectively. For brevity, we have not indicated explicitly the
sum over the wave vector which appears for the lattice mod-
els. The polarization bubbles IT in (4) and (5) decay at least
as w; ! for large w,. By carrying out the Gaussian integra-
tion over the boson fields, the fluctuation corrections to the
free energy are then given by

AFER=(1/28) 3 In DetT'CP(w,), ©)

where I'(“*®) are the fluctuation matrices in (4) and (5).!°

Although the continuum time assumption for S does not
pose any problem at the mean-field level, this may be no
longer the case when fluctuations are included. This point
emerges clearly when considering how the discontinuity of
the equal-time bosonic correlator (b(7)b*(7")) needs to be
handled in the radial gauge. Here, 7" =71+ § with §= /M
[M being the number of steps considered in the interval
(0,8)], and the bosonic operators are understood to corre-
spond to a given site. A naive transformation to the radial
gauge would yield (b(7)b*(7%))=(r?(7)) provided the
continuum (M — and §—07) limit is taken at the outset.
It is evident that this result is not consistent with the bosonic
commutation relation since it would imply ([b,b7])=0 in-
stead of unity. This warns us that, within the functional inte-
gral approach, it may not be correct to identify simply
b*b—r? in the radial gauge.!! More generally, proper care
should be taken of the fact that the functional integral itself is
defined through the limit of a sequence of mesh points in the
imaginary time interval.

Following an analogous argument we can show that (6)
cannot be correct even in the Cartesian gauge because an
additional term is missing. Owing to the presence of the
slave-boson condensate, the Cartesian Gaussian fluctuations
are described by the matrix in (4), where the boson fields
with Matsubara frequencies w, and — w, are coupled by the
off-diagonal polarization bubbles I1,, and IT,; (which are ir
fact proportional to the condensate r(). The logarithm of the:
Cartesian determinant in (6) is thus an even function of w,
and no regularization factor e =“+ is required. This contrasts
with the fact that, in the absence of condensate (when
I1,,=11,,=0), the upper and lower diagonal terms of
FEC) would independently give the same contribution to the
free energy with regularization factors e’“»® and e '+, re-
spectively. To avoid this doubtful procedure and settle unam-
biguously the correct expression for the free energy, it is
necessary to carry out a careful analysis of S over the dis-
crete imaginary time mesh (see below). However, we can try
to guess the correct answer by observing that the equal-time
upper and lower bare diagonal elements of I’EC) represent
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INobThb and INobbT, respectively, when a common regular-
ization factor e’“»® is assumed. In analogy with Nambu
spinor formalism for superconductivity, we should then sub-
tract I\ from (\o/2)(bTb+bbT)=No(bTb+}) to represent
correctly the term \ob'b in the Hamiltonian.

The term —1/2)\ (for each boson degree of freedom) is
what is missing in (6) for the Cartesian gauge. We then ob-
tain for the fluctuation contribution to the free energy

AF©O=AF© =\, @)

One may wonder whether the above arguments, which hold
for a “pure” bosonic system, might be irrelevant for the
slave-boson approach because of the gauge-invariant cou-
pling with the fermionic degrees of freedom. To solve this
problem and get the correct additional terms for the free
energy, we have explicitly carried out the evaluation of the
free energy in both gauges for the two-level single-site prob-
lem, keeping the discretized action throughout the calcula-
tion. That is to say, in evaluating the 1/N corrections we
have kept the finite mesh both for bosons and fermions and
taken the limit §= 8/M — 0 only at the end of the calculation
for the free energy.!? In the Cartesian gauge we have con-
firmed the result (7), while in the radial gauge we have ob-
tained

AF® =AF® I\ —15F o/ ob}, 8)

where F is the mean-field free energy. Because of the sta-
tionary condition, — }0F O/o"b(z) vanishes when evaluated at
the saddle point; this term is, however, relevant in determin-
ing the 1/N shifts to the mean-field values bﬁ and \g.

Equations (7) and (8) are the main results of this paper.
They evidence the additional terms which are introduced by
the proper treatment of the regularization at large frequencies
(and which thus represent the “contribution from infinity”).
In (8) the term —3\, reflects the discontinuity of
{r(7)6(7*)), which is in turn related to the bosonic commu-
tation rules. The origin of the second term [which vanishes in
evaluating (8) at self-consistency] is more subtle since it is
related to the discontinuity of (6(7)6(7')) at 7=’ (which
is absent in the continuum limit) and involves both bosons
and fermions. For this reason, — 3\ represents a “real”” con-
tribution to the free energy, independent of the alternative
ways of regularizing the continuum limit on a discrete mesh.
The term — }9F /3b{ in (8) is instead related to our regular-
ization procedure. The essential point is that a regularization
procedure is required to get consistent results, implying that
the continuum limit cannot be naively taken at the outset in
the functional integral.

To show in detail the quantitative relevance of the addi-
tional terms resulting from the correct handling of the con-
tinuum time limit, we perform numerical calculations for the
two-level single-site model system. This calculation will en-
able us to compare the results of the 1/N expansion with the
exact solution readily available for this simple system for
N =2, or even for larger values of N as discussed in Ref. 8.
Our numerical results will solve some apparent contradic-
tions found by the authors of Ref. 8 for the very same model
when considering the 1/N expansion without including the
additional terms in (7) and (8). We will demonstrate that
these additional terms are, in fact, necessary to validate the
1/N expansion.
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The mean-field total energy (at 7=0 and 0<p<?2) is
given by

Enp/(N/2)=pE _+\o(r§—1), ©)

where E_=3A+\g—€) and e=+(A—\g)*+ 4t2r(2). r(z,
and A\ are obtained numerically from the mean-field equa-
tions by requiring Eyf to be stationary. In the special case
p=1 (ie., at “half-filling”) the mean-field equations can be
solved analytically.®'? In particular, when A>2¢ one gets
r%= 0, E_=\g, and two solutions for Aq which correspond
to the limits p—1* and p—1~.12 For both solutions one
gets E =0 independent of A. The special value A =2t rep-
resents the “critical”” value for the “Brinkman-Rice” transi-
tion for this problem. However, as pointed out in Ref. 8, the
presence of this transition is an artifact of the large-N expan-
sion and caution should be exerted in trusting the large-N
results just near this point.

To evaluate the 1/N corrections, we limit ourselves to
consider the radial gauge. According to (8), the fluctuation
corrections to the free energy are given by the sum of the
“contribution from infinity” plus the standard contribution
where the continuum (§—07) limit is taken before evaluat-
ing the frequency sum. For the present case, the zero-
temperature limit of (6) reduces to

AF®  Ya—e) (10)
ﬁ——»oo

with a= (A —2\g)%+4¢%r2.'213 Adding the “contribution

from infinity” to the result (10) we obtain for the total fluc-

tuation contribution to the free energy

AF(R) — Ya—e—X\y) (11)
ﬁﬂm
with the parameters r3 and A taken at the mean-field level.
Finally, the total energy is obtained by adding (11) to the
mean-field value (9):

E)/(N/2)=pE _+\o(r3—1)+(2/N)(a—e—\g)/2, (12)

where no 1/N correction is required for 7§ and A also in the
mean-field contribution.

Expression (12) for the total energy is a single-valued
function of the parameters p and A. In particular, at “half-
filling” the two solutions for A, when A>2¢ correspond to
the same value of the fluctuation contribution (11). Notice
that to obtain this result it is essential to include in (11) the
“contribution from infinity”> —\,/2. Otherwise, the fluctua-
tion contribution (10) in the continuum limit would yield two
solution-dependent values for the free energy. This short-
coming has been pointed out in Ref. 8, where it was signaled
as a failure of the 1/N expansion for the slave-boson ap-
proach. We have proved that this is not the case, provided the
continuum limit is taken appropriately in the functional inte-
gral.

Our results can be used to check the validity of the 1/N
expansion for the slave-boson approach. To this end, we bor-
row from Ref. 8 the exact results obtained up to N=16 by
diagonalizing the two-level single-site slave-boson Hamil-
tonian for the generalized N-component spin system. In Fig.
1 we compare the exact results reported in Ref. 8 for
N=24,...,16 when p=1 and A/t=0.4,1.3, with our ex-
pression (12) versus 1/N for the same values of p and A/t.
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FIG. 1. E{®/(N/2) vs 1/N for two values of A/t with (full line)
and without (broken line) the contribution from infinity. Full circles
stand for the mean-field results; empty squares and triangles are the
exact results borrowed from Ref. 8 for A/t=0.4 and 1.3, respec-
tively.

For comparison, we plot also the corresponding expression
omitting the “contribution from infinity” (2/N)(—\¢/2).

It is evident from this figure that 1/N expression (12) fits
rather accurately the exact results up to the lowest N values,
at least for the chosen values of A/t. Specifically, expression
(12) appears to have the correct slope to reproduce the exact
results at large N, thereby establishing the validity of the
large-N expansion. Omitting the ““contribution from infinity”
from (12) leads instead to a sizable deviation with respect to
the exact result and apparently does not reproduce the lead-
ing 1/N corrections. This implies that the contribution from
infinity, which has so far been omitted in the slave-boson
literature, is indeed essential to carry out a correct large-N
expansion and make the slave-boson method working in
practical cases.

It is also worth verifying to what extent the spurious
“transition” at A/t=2 affects the total energy (12) as a func-
tion of A, by comparing with the available exact solution for
N=2 (i.e., for the case of physical interest where the agree-
ment with the exact solutions is expected to be the worst).
We have found that for p=1.0 it is possible to isolate a
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FIG. 2. n},N ) vs 1/N. Conventions are as in Fig. 1.

“critical”” nonconfidence window of width ¢ about A=2t¢,
where our 1/N expression does not match the exact solution
and higher-order fluctuations become important. By contrast,
for p=1.5 the agreement between the exact solution and the
1/N expression appears to be really quite good.

As final check for the validity of the 1/N expansion, we
calculate the fraction of particles n, in the p level. For any
given N, nﬁ,N ) can be obtained by differentiating the expres-
sion (12) with respect to A. Exact results for nf,N ) are avail-
able from Ref. 8 for N=2,4,...,16 and p=1. Comparison
of these exact results with our 1/N results (with and without
the inclusion of the contribution from infinity to E&y) is
reported in Fig. 2. Once more, this picture shows that the
contribution from infinity in the functional integral must not
be missed.
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