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We present in this paper a variational calculation for the ground state of the donor and light- and
heavy-hole excitons in triangular quantum wells. The binding energy and the lateral and vertical exten-
sions of the wave function are calculated for several well-height values, all as functions of the well width.
Compared with a square-well structure or a 8-doped well, the triangular quantum well presents a greater
restriction to the donor and exciton. As a result, the lateral and vertical extensions of the ground state
are smaller, while the binding energy and the probability inside the well are larger. We conclude in this
paper that a triangular quantum-well structure may be significant for theoretical research and practical

application.

I. INTRODUCTION

Gossard et al.! have grown triangular quantum bar-
riers using molecular-beam epitaxy. Obviously, a tri-
angular quantum well can also be grown using the same
technique. Suppose there is such a structure to be grown,
whose potential is shown in Fig. 1. Region I (|z|>d) is
Ga,_,Al, As, and region II (—b <z <b) is Ga;_,Al As.
In region II the Al concentration y varies with |z|, so that
the band-edge profile is triangular, with y =0 at the
quantum-well center. Note that, for both the electron
and hole, the potential is a triangular barrier in this mod-
el. First, we use the variational method to calculate the
ground-state binding energies for the donor and heavy-
and light-hole excitons. We then calculate the lateral and
vertical extension of the exciton. The results are ex-
pressed as a function of quantum-well width for several
values of potential-well heights (or the Al concentration x
in region I). Finally, we compare the results with those
for a 8-doped well and a square well. In the §-doped
structure, for the electrons the effective potential is a tri-
angular well, while for the holes it is a triangular barrier.
Our results for the donor for large x and small width are
similar to those of Crowne, Reinecke, and Shanabrook?
(for an infinite triangular §-doped potential well). Our re-
sults differ, however, from those of a square well.

II. THEORY

In a cylindrical coordinate system, the Hamiltonian of
a donor in the center of a triangular quantum well (within

FIG. 1. Triangular quantum well potential profile along the z
axis.
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the framework of the effective-mass approximation) is
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Here the origin of coordinates O coincides with the well
center, as shown in Fig. 1. m, is the effective mass of the
conduction electron and € the static dielectric constant.
For the conduction electron, the potential well is

V,lzl/b, —b <z <b,
Ve=1v., |z|>b, @

where V, and V,, the potential-well height for the hole,
are assumed to be about 60% and 40% of the total
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FIG. 2. Variation of Epp, the binding energy of the donor
ground state, as a function of the well width L at Al concentra-
tion x =0.96 (solid line), 0.37 (dashed line), and 0.041 (dot-
dashed line).
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energy-band-gap difference between |z| =b and z =0.

In this paper, we have chosen to use the effective Bohr
radius ap as the length unit and the effective Rydberg R
as the energy unit. According to a variational approach,
we use the following trial wave function:

|
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Yp=/f.(2)g(p,2,0), (3)

where the function f,(z) is the exact (unnormalized)
ground-state solution to the finite triangular well prob-
lem. It can be written as

¢, Ai[(V, /b)*(z —bE, /V,)]+¢,Bi[(V,/b)*(z —bE, /V,)], 0<z <b,
f.(2)={c3Ai[(V,/b)"(—z —bE /V)]+c,Bi[(V, /b)'/*(—z —bE,/V,)], —b <z <0, 4)

csexp[ —(V,—E,)"V%(|z|—b)], |zI>b.

Here, Ai(x) and Bi(x) are Airy functions. E, is the ener-
gy of the lowest conduction-electron subband. c,, c,, c3,
¢4, €5, and E, are obtained from the continuity condi-
tions of f,(z) and its first derivative at the interface
(z=0,|z|=b). The function g(p,z,¢) for the ground
state of the donor is

g(P,Z,d)):Nexp[—(pz/a2+22/32)l/2] ) (s)

Here N is the normalization constant, and a and S are
variational parameters. We first evaluate the expectation
value of H, at the donor ground state, i.e. (assuming the
wave function is normalized),

Ep=[ [ [vbHpippdpdzds, (6)

and minimize this expression as a function of a and S.
The donor binding energy Eg;, of the ground state is now
obtained by subtracting E, from the lowest electron-
subband energy E,, i.e., Ezp =E,—Ej,.

We then calculate the binding energies of the ground
states of heavy- and light-hole excitons in a triangular
quantum well. The exciton Hamiltonian can be ex-
pressed as
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FIG. 3. Variation of Epc, the binding energy of the ground
state of a light-hole exciton, as a function of L at x =0.96 (solid
line), x =0.37 (dashed line), and x =0.041 (dot-dashed line).
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Here m . are the heavy- and light-hole mass along the z
direction, and p is the reduced mass corresponding to
the heavy- and light-hole bands in the plane perpendicu-
lar to the z axis. The positions of the electron and hole
are indicated by r, and r, respectively, with p, z, and ¢
the relative electron-hole coordinates. V7, is similar to
V.. of Eq. (2), but takes z, as its variable. V* can be ex-
pressed as

h Vhlzhl/b, —b <Zh <b,

", lz,0>b.

Now we shall take a variational approach and use the fol-
lowing form for the trial wave function of the exciton
ground state:

b=1.(2,)f1(z,)8(p:z2,8) . 9)

The functions f,(z,) for the electron and f(z,) for the

(8)
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FIG. 4. Variation of Epc, the binding energy of the ground
state of a heavy-hole exciton, as a function of L at x =0.96
(solid line), x =0.37 (dashed line), and x =0.041 (dot-dashed
line).
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hole are the exact (unnormalized) ground-state solutions to the finite triangular well problem. f,(z,) is similar to f,(z)
of Eq. (4), but takes z, as its variable. f}(z;) can be written as

¢\ Ai[(V} /b)3(z, —bE, /V})]+c;Bi[(V; /b)/3(z,—bE, /V},)], 0<z,<b

falzp)= {c3Ai[(V} /b)'*(—z, —bE}, /V},)]+c Bil(V; /b)*(—2, —bE, /V})], —b <z, <0,

csexp[—(V, —E)V 2|z, | =b)], lz,|>b.

Here E, is the energy of the lowest hole subband, and ¢},
¢y €3, €4y €5, and E, are obtained by the continuity con-
ditions of f)(z,) and its first derivative at the interface
(z,=0,|z,|=b). In order to employ the electron effective
Bohr radius as length unit and the electron effective Ryd-
berg as energy unit, we take V; =V,m, /m,. The func-
tion g(p,z,¢) is the same as in Eq. (5). The expectation
value of H at the exciton ground state can then be ob-
tained:

Ec=[ [ [ [v'Hpdpdz,dz,dg, (11)

and we minimize this expression as a function of a and .
Finally, the exciton binding energy Ep- of the ground
state is obtained by subtracting E. from E, and E,, i.e,,
EBC=E2 +Eh _EC'

ITII. RESULTS AND DISCUSSION

In Fig. 2 we demonstrate the variation of Egp, the
binding energy of the donor ground state, as a function of
the triangular well width L (=2b) at x =0.96, 0.37, and
0.041. Crowne, Reinecke, and Shanabrook? have ob-
tained results for a donor in an infinite §-doped triangular
well. Although our results are different from theirs in
general for large values of x and small values of well
width L both are similar. Further, our results are much
different from the ones for a square quantum well (see,
e.g., Chaudhuri and Bajaj®). In general, the binding ener-
gy of the donor ground state in a triangular well is much
more than in a square well.

In Figs. 3 and 4 we give the variation of Ep¢, the bind-
ing energy of the ground state of the light- and heavy-
hole excitons, as a function of L at x =0.96, 0.37, and
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FIG. 5. Probability P of finding the heavy-hole exciton inside
the well, as a function of L at x =0.96 (solid line), x =0.37
(dashed line), and x =0.041 (dot-dashed line).
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0.041, respectively. These results are different from those
for a square quantum well (see, e.g., Greene, Bajaj, and
Phelps*) and for a 8-doped quantum well (see, e.g., Proet-
to’). Our results, in general, give larger energies than
those in a square well, and much larger energies than
those in a 8-doped well.

The electrons and holes in square quantum-well struc-
tures are acted upon by the potential barrier only outside
the well, and so are free inside the well. In a triangular
quantum-well structure, however, the electrons and holes
are acted upon by the potential barriers both outside and
inside the well. To demonstrate the effects of this
confinement in the triangular well, we calculate the prob-
ability of finding an exciton inside the well, defined as

P=fowf_bbf_bbf:”‘p*lﬁpdpdzedzhd¢ 3 (12)

In Fig. 5 we plot the variation of P for the heavy-hole ex-
citon as a function of L at x =0.96, 0.37, and 0.041.
Compared with the results of Greene, Bajaj, and Phelps*
our results are larger. This means that an exciton in a tri-
angular quantum-well structure is confined much more
than one in a square quantum-well structure. As for Fig.
6, it presents the lateral extension of the light-hole exci-
ton (p?)!/? and the z-direction extension {(z, —z,)*)!/?,
both as functions of L at x =0.37. We find that these
two extensions are much less than those in a 8-doped
quantum-well structure. In a &-doped quantum-well
structure, the effective potential for the electrons is a po-
tential well, while for the holes it is a potential barrier; as
a result the extension of the exciton is larger. But in our
structure the effective potential is a potential well for
both the electrons and holes, so the extension is smaller.
The reduced extension serves to increase the ground-state
binding energies of the donor and exciton.

In summary, the ground-state binding energies of the
donor and excitons in triangular quantum-well structures
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FIG. 6. Extension of light-hole exciton in plane {p*)!/? (solid
line) and in the z direction ((z, —z,)*)!/? (dashed line) as a
function of L at x =0.37.
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are greater than in other structures (e.g., square quantum
wells, 8-doping triangular quantum wells). In our struc-
ture the lateral extension and the z-direction extension of
the exciton are smaller than in other structures. The
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probability of finding the exciton inside the well is greater
than in other structures. Hence triangular quantum-well
structures may be significant for theoretical research and
practical applications.
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