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Numerical study of the efFect of Coulomb repulsion on resonant tunneling

Shinji Nonoyama
Department of Crystalline Materials Science, Nagoya University, Furo cho-, Chikusa ku, -Nagoya 464-0l, Japan

Akira Oguri, * Yasuhiro Asano, and Sadamichi Maekawa
Department ofApplied Physics, Nagoya University, Furo-cho, Chikusa ku,-Nagoya 464 Ol -Japan

(Received 21 March 1994)

The effect of on-site Coulomb repulsion on the process of resonant tunneling is studied in the tight-
binding model of a quasi-one-dimensional system. The conductance through a small region where the
Coulomb interaction is strong is calculated as a function of chemical potential with use of the Kubo for-
mula. The Green's function and the number of electrons in the region are obtained self-consistently us-

ing the recursion method in the mean-field approximation. It is found that the conductance shows vari-
ous doublet structures depending on the broadening of the virtual bound state and the Coulomb interac-
tion.

Recent advances in scanning tunneling microscopy and
lithography techniques have made it possible to make
various structures on the nanometer scale. These ad-
vances have brought about great interest in the possibility
of realizing electron devices, where the quantum-
mechanical behavior of electrons plays an essential role in
their operation principles. Furthermore, in these
nanometer-scale systems, the physics of electron-electron
interaction has become the subject of current experimen-
tal and theoretical interest. Many experimental findings
in quantum dot structures approaching atomic dimen-
sions are reported. ' For example, the Coulomb oscilla-
tion ' and the Coulomb staircase in conductance have
been observed experimentally in various small dot struc-
tures, and a semiclassical stochastic model, called the
Coulomb-blocade model, has been significantly success-
ful in explaining experiments on these small structures.
Also, analysis of the experimental findings in view of re-
cent numerical studies ' yielded detailed information on
single particle levels in the quantum dot. Thus, it is con-
sidered to be important to study the efFect of Coulomb in-
teraction on the transport phenomena from a general
point of view.

At low temperatures, resonant tunneling is the dom-
inating mechanism for particle conduction through small
systems with localized states. Numerical studies for in-

I

vestigating the effect of intra-atomic Coulomb interaction
on the resonant site in the process of resonant tunneling
have been reported by several researchers. For instance,
using the one-impurity Anderson model, Ng and Lee re-
ported that the resonant transmission picture of one-
particle tunneling is strongly modified, and that the re-
sulting conductance peak is expected to have a non-
Lorentzian line shape due to the Kondo efFect. Also,
Kawabata predicted, using the Friedel sum rule, in a
quasi-one-dimensional system the conductance through a
quantum dot is close to 2e /h, if the temperature is lower
than the Kondo temperature Tg.

In this study, we have calculated the conductance
through a dot in the quasi-one-dimensional system nu-
merically within the Kubo formalism using the recursion
method in the case where the temperature is higher than
Tz. We have obtained the Green's function and the
number of electrons self-consistently in the mean-field ap-
proximation.

We consider a quasi-one-dimensional quantum wire,
which is assumed to be infinitely long on either side of a
small region where electrons are confined by a potential
V, , as shown in Fig. l. In order to investigate the
effect of on-site Coulomb correlation on the process of
resonant tunneling, we introduce the following tight-
binding Hamiltonian:

M —1 M
H=tg g g(C,t+, C, +C~t C, +, )+tg g g

i j=1 o i j=1 o.

N M N M
+ X X P Vi,j,crCi,j,crCi,j,o+ U X X ni, j, lni,j, f

(Ci+] j &Ci j &+C ji&Ci+]j &)+g g g et j &Ci j &Cij
i j=1 cr

i=1 j=1 i=lj=l

where C; j is the creation operator with spin a at the
lattice site (i,j ) The qua.ntities t ( (0), e, j, and V; j
are the hopping integral between the nearest neighbors,
the on-site potential, and the confinement potential, re-

spectively. The last term is an interaction term describ-
ing the effect of on-site Coulomb interaction between two
electrons with different spins in region II. In the present
calculations, N and M are set to 10 and 4, and V; j is
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given by

Sltl [at sites (1,1),(1,M),
V, = (N, 1), and (N, M) ]

0 (otherwise),
j=M

and c, is zero. Next, we introduce the Green's func-
tion defined by

G*[(i,j,o ),(i',j ', o'),E]
region I region II region III

~ ~ l ~ I ~ I
2 J 0' . 2,J,OE—H+20

li,j,~) =—c,,.lo&, (3)

where l0} denotes vacuum. To calculate the Green's
function corresponding to H, we employ the mean-field
approximation and the recursion method' *" which al-
lows us to solve for a potential of any shape. The number
of electrons at the lattice site (i,j ) in region II can be cal-
culated from G+ by the following equation:

(n, )= ——f" dE ImG+[(i,j,a), (i,j,a),E], (4)

FIG. l. Schematic illustration of the system. The closed
squares express the confinement potentials. The on-site
Coulomb correlation exists only in region II (shaded region).
The parameters M and N are the lattice numbers for the y direc-
tion of the wire and for the x direction of region II, respectively.

where LM denotes the chemical potential. Using Eq. (4)
and the recursion method, we can obtain the Green's
function and the number of electrons in region II self-
consistently. Then, the conductance I is calculated from
the Green's function by making use of the Kubo formu-

10, 11

282t2 M M

y y y [G [(i,j,o ),(i,j ', o)] G[( i—l,j',~ ),(i —l,j, )o]

j=1 j'=1 a

+G[(i —l,j,a ),(i —1 j ', o )]G[(i,j', o ),(i,j,cr)]

G[(i,—j,o ),(i —l,j ', u)]G [(i,j ', 0 ),(i —l,j,o )]
—G [(i —l,j,o ),(i,j ', o ) ]G [(i —1j ', e ),(i,j,o )]], (5)

with solution of ( n
&
}A(n

&
) can appear in the condition' of

G[(i,j,cr), (i',j ', o )]: I G [(i—,j—,a ),(i',j ', o )]
22

U)
sin'm&n)

' (7)

—G [(i,j,o ),(i',j ', cr)]] .

(6)

Now, we discuss the electron conduction through the
region where the on-site Coulomb interaction exists. For
simplicity, we consider only the case where the number of
propagating mode is set to unity. Figure 2 shows the
conductance calculated with use of Kubo formula. For
U &0.5lt l, the ground state in the present model is spin
singlet with {n;

& ~ }= {n, &
}. In this case, there are

three conductance peaks of the resonant tunneling occur-
ring when the chemical potential p crosses a virtual
bound state. As U increases, each position of the peak
shifts to the right and the peaks are broadened [see Figs.
2(a} and 2{b)], since the levels of virtual bound state are
raised by the repulsive interaction while the height of
conSning potential is a constant. When U is equal to l r l,
the Srst peak of the conductance splits into two [see Fig.
2(c)]; each peak corresponds to the process of the reso-
nant tunneling for electrons with up or down spin. The

where 6 is the resonance half-width and ( n ) is the total
number of electrons in the virtual bound state. For
U & Sltl, the condition of Eq. (7) can be satisfied for all
virtual bound states, and hence, one can notice the dou-
blet structure for every conductance peak [see Figs. 3(a)
and 4(a}]. For U~Sltl, the third peak in the case at
U=O shifts to the region for p~ ltl. To clarify the
behavior of electrons with up and down spins, we have
calculated the number of electrons in region II as a func-
tion of p. First, we consider the case of U=Sltl. As can
be seen from Fig. 3(b}, when p is much smaller than the
value of the lowest virtual bound state, the distribution of
up-spin electrons is identical with that of down-spin elec-
trons. When p approaches the virtual bound state, the
number of electrons with up spin increases while that
with down spin decreases, since the condition of Eq. {7)
can be satisfied. When p passes through the virtual
bound state with down-spin electrons, the ground state
becomes spin singlet again. This is because repulsive in-
teraction between electrons is no longer significant, in the
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FIG. 4. (a) Conductance plotted as a function of p, . The mag-
nitude of U is 7It~. (b) The number of electrons plotted as a
function of p. The circles and the squares denote the up-
electron number and the down-electron number in the region II.
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FIG. 2. Conductance plotted as a function of p. Chemical
potential is measured from the energy of the bottom of the
lowest subband. The magnitude of U is (a) 0, (b) 0.5

~ tI, and (c)

case where there are the same number of levels for up-
and down-spin electrons below )Lt. The features of spin
split of virtual bound states, which depend on U, are
schematically shown in Fig. 5(b). Thus, at U=5~t ~, lev-
els for up and down spins appear alternately, and in prin-
ciple, the aspects in Fig. 3 are considered to be analogous
to those predicted qualitatively by Kawabata. 9 Next, the
case of U=7~t~ is considered. In this case, the second
level for up spin comes to be lower than the first level for
down spin [see Fig. 5(c)], and hence, magnetic transition
with spin rearrangement takes place at the second level
for up spin, as shown in Fig. 4. Thus, resonances for
electrons on the same spins occur successively, and in
most region of p, the solution of (n&)A(n&) appears
(see Fig. 4).

In the present calculations, we did not consider the
electrostatic energy e /C, where C is the capacitance
between dot and lead, so that the period of the successive
resonance peaks cannot be compared with that in the ex-
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FI(s. 3. (a) Conductance plotted as a function ofp. The mag-
nitude of U is SItI. (b) The number of electrons plotted as a
function of p. The circles and the squares denote the up-
electron number and the down-electron number in the region II.
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FIG. 5. Schematic Sgures of the virtual bound states depend-
ing on U. (a) U=O, (b) U=SItI, and (c) U=7It(.
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periment of the Coulomb oscillation. Moreover, our cal-
culation is based on the mean-Seld approximation so
that, of course, we can hardly comment on the Kondo
problem. However, as is shown so far, by our method we
can investigate the electronic properties of the dot which
have a structure spread over many sites. Also, we will
study the effect of disorder and constriction geometry on
the electron transport through the region where the
Coulomb interaction is strong in the near future.

In conclusion, we have calculated the conductance and
electronic state in a quantum wire with confinement po-
tentials self-consistently. We have investigated the effect

of on-site Coulomb correlation on the process of resonant
tunneling. It has been found that the conductance shows
various doublet structures depending on the height and
broadening of the virtual bound state and the Coulomb
interaction. Our method can also be applied to mul-
timode quantum wire, and those results will be given else-
where.
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