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Consider a d-dimensional antiferromagnet with a quantum disordered ground state and a gap
to bosonic excitations with nonzero spin. In a finite external magnetic field, this antiferromagnet
will undergo a phase transition to a ground state with nonzero magnetization, describable as the
condensation of a dilute gas of bosons. The finite-temperature properties of the Bose gas in the
vicinity of this transition are argued to obey a hypothesis of zero scale-factor universality for d < 2,
with logarithmic violations in d = 2. Scaling properties of various experimental observables are
computed in an expansion in € = 2 — d, and exactly in d = 1.

I. INTRODUCTION

Numerous experiments! have by now examined the
properties of S = 1 spin chain antiferromagnets which
posses the Haldane gap.? More recently, these antiferro-
magnets have been placed in a strong magnetic field,® and
found to display evidence of a zero-temperature phase
transition to a state with a nonzero ground state mag-
netization. Theoretical studies® 7 have also examined
this transition at zero temperature, and developed a pic-
ture of it as the Bose condensation of magnons with az-
imuthal spin S, = 1. Although this possibility has not
been considered before, it is not difficult to see that the
condensation of magnons in a finite field should occur in
quantum-disordered antiferromagnets in any dimension d
(provided, of course, the magnons continue to behave as
bosons). In this paper we shall present a general theory,
in dimensions d < 2, of the finite-temperature proper-
ties of quantum antiferromagnets in the vicinity of such
a field-induced quantum transition.

We begin by elucidating the precise conditions under
which our results apply. Consider an antiferromagnet
with a quantum-disordered ground state. The Hamil-
tonian must posses at least an axial symmetry; i.e.,
at least one component (say z) of the total spin must
commute with the Hamiltonian. The lowest excitation
with nonzero spin must be separated from the ground
state by a gap, and behave like a quasiparticle with
bosonic statistics. These conditions are clearly satis-
fied by Haldane gap antiferromagnets in which the in-
plane anisotropy can be neglected (the compound NENP
does have a rather small in-plane anisotropy,! and the

restrictions this places on applying our results to exper-
iments in NENP will be discussed later). In d = 2, the
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S = 1/2 kagomé Heisenberg antiferromagnet® is proba-
bly the most accessible candidate upon which our results
can be tested—it has been argued that the magnons in
this system are bosons.%1°

Now place this antiferromagnet in a magnetic field
pointing along the direction of axial symmetry. The
eigenenergy (k) of single magnon (boson) quasiparticles
with momentum % in a field H then takes the form

232
e(k)=A+

— gupS.H. (1.1)

2m
Here A is the magnon gap and m is the quasiparticle
mass, both determined in the zero field antiferromagnet.
The wave vector k is small, and is measured from ordering
wave vector of the corresponding classical antiferromag-
net. For the S = 1 Haldane gap chain, we have the az-
imuthal spin S, = 1. In the kagomé antiferromagnet, the
magnon excitations have been argued to be spinons:®1°
We therefore expect S, = 1/2. Later, we will discuss how
the field induced transition in the kagomé antiferromag-
net may offer a way of experimentally and/or numerically
determining the value of S,.

The antiferromagnet will undergo a 77 = 0 field-
induced transition at the field H = H. which is given
exactly by

guBSzHc =A. (12)
In the vicinity of this transition, we may describe low-
energy properties of the antiferromagnet by just studying
an effective Hamiltonian for the bosonic magnons.*® The
remainder of this paper will therefore consider properties
of the following coherent state path integral over the Bose
field ¥(z,7):

2
;—‘Il*(:r,T)VZ\II(:v,T) - u|\II(m,T)|2] + % /ddmdd:v'llll(a:,T)|2v(m —z')|¥ (2, 7)|?,
m

(1.3)

258 ©1994 The American Physical Society



50 FINITE-TEMPERATURE PROPERTIES OF QUANTUM . .. 259

where z is the d-component spatial coordinate, 7 is the
Matsubara time, the chemical potential

pw=gupS;H — A, (1.4)

and v is a repulsive interaction of a short-range ~ A~1.
This field theory has a phase transition exactly at T = 0,
1 = 0 which has been studied by Fisher et al.!! They
identified the upper-critical dimension as d = 2, above
which the interaction v is irrelevant. For d < 2, v is rele-
vant, but the exponents were nevertheless found to have
trivial values: The dynamic exponent z = 2, the corre-
lation length exponent » = 1/2, and the field anoma-
lous dimension n = 0. The triviality of the exponents is
partially related to the fact that the parameter tuning
the system through the transition, u, couples to a con-
served quantity—the density of bosons; any such transi-
tion'? must have zv = 1. The structure of the d < 2,
finite-v fixed point is thus very unusual: Despite describ-
ing a nontrivial, interacting, critical field theory, the ex-
ponents associated with all the relevant directions away
from this fixed point are trivial. In this paper, we shall
show that the interactions are crucial in determining the
finite-temperature properties of the Bose gas near this
fixed point. The fixed-point interactions are needed to
preserve hyperscaling for d < 2 and lead to highly non-
trivial scaling functions for the finite-temperature corre-
lations.

Before we state our zero-scale-factor universality hy-
pothesis for Z in its most general form, it is helpful to
consider one of its simple consequences at T' = 0. Ex-
amine the ground state boson density n = (|¥(z,7)|?)
as a function of y for small y. This problem was stud-
ied many years ago for the d = 3 hard-sphere Bose gas'?
with the result

_{2mp 1

_ 2 = =
n=|—4 87m+0(u) 6(p), d=3, T=0,

(1.5)

where a is the hard-sphere radius, and 6(z) is the unit
step function. Note that, in addition to its dependence
on m and p, the boson density is sensitive to the nature
of the boson-boson interactions (measured by the hard-
sphere radius a). A different choice for the boson-boson
repulsion would lead to different result for n. The situa-
tion in dimensions d < 2 is however strikingly different;
one manifestation of the zero-scale-factor universality is
that for small y

2mp d/2
n=< = ) CO(u), d<2 T=0  (16)

where C is a universal number, i.e., independent of the
details of the interactions between the bosons. We will
determine C in a d = 2 — € expansion; its exact value in
d = 1 is known:®* C = 1/w. The universality of C is a
direct consequence of having a finite-coupling fixed point
describing the onset at 4 = 0. For d > 2, interactions
are irrelevant, which leads to a violation of hyperscaling,
and a dependence of the density on the nature of the mi-
croscopic interactions [as in the a dependence of (1.5)].
Further, n will depend linearly on p for all d > 2. Pre-

cisely in d = 2, as we shall see below, (1.6) is violated
only by a logarithmic dependence on the microscopic in-
teractions.

For d < 2, the combination of the presence of hyper-
scaling, and the absence of any anomalous exponents in
the leading critical behavior, leads to remarkably univer-
sal finite-temperature properties. As in Ref. 13, we may
use finite-size scaling to deduce scaling forms away from
p =0, T = 0. However, the absence of any anomalous
dimensions (z = 2, n = 0, v = 1/2) means that the usual
two-scale-factor universality'4 is now reduced to a zero-
scale-factor universality described more precisely in the
following subsection.

A. Zero-scale-factor universality

In simple terms, this universality is just the statement
that all response functions are universal functions of the
bare coupling constants p and m. There are no nonuni-
versal amplitudes; the usual case has two nonuniversal
amplitudes, or scale factors.!* The universality can be
stated more precisely in terms of the the boson Green’s
function

G(z,7) = (T¥(x,7)¥*(0,0)), (1.7)

where 7 is the ordering symbol in imaginary time 7. Af-
ter Fourier transformation as per

#/(ksT) ,
G(k,iw,) = / diz / dre~ike—enT) Gz, 1),
0
(1.8)

this yields G(k,iw,) at the Matsubara frequencies w, =
2mnT/h, from which the retarded Green’s function
G®(k,w) can be obtained by analytic continuation to real
frequencies using

GER(k,w) = —G(k,iw, = w). (1.9)

The Lehman spectral representation of the Green’s func-
tion implies that —wImG¥®(k,w) > 0, but does not con-
strain G® to be an odd function of w. Our central result
is the zero-scale-factor universality of GE, which is equiv-
alent to the scaling form

h Fuw hk n
A , , , (1.10
(kBT V2mksT ' kg ) (1.10)

where A is a highly nontrivial, but completely universal
complex-valued function; naturally, A is independent of
the nature of the boson-boson repulsion. An important
property of A is that it is analytic at all finite, real, val-
ues of all three arguments. Similar scaling forms hold for
other correlators of ¥—a particularly instructive observ-
able is the local Green’s function GE,

GR(k,w) = e

Gf(w)=/ 4k GR (k). (L11)

(2m)¢
If we take the imaginary part of this equation, it is ex-
pected that the resulting on-shell contributions on the
right-hand side will occur only at small momenta (deter-
mined by the frequency w), and the momentum integral
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is ultraviolet convergent. We may therefore deduce from
(1.10) the scaling form

1 |mw |4/2 hw m
By =-—2 -2 = 1.1
Gy (w) w‘ h ’ F(kBT’kBT)’ (1.12)

where F is a fully universal, dimensionless, positive func-
tion. It is quite instructive to consider the limiting be-
havior of F for small and large frequencies. We expect
that Gf should be analytic at w = 0 at any finite T}
this combined with the positivity condition on the spec-
tral weight noted above implies InGf(w) ~ w for small
w at finite T. Therefore, from (1.12) the scaling func-
tion F must satisfy F(@,t) ~ |[@|2~%2 at small @ [we
use here and henceforth the notation w = Aw/(kpT),
and t = pu/(kgT)]; the coefficient of the |@|?~%/2 term is
quite difficult to determine, and will be obtained in this
paper only in a special limit. For large w, or short times,
GE should display essentially free particle behavior, as
the dilute bosons have not had enough time to interact
with each other. Using the free boson spectral weight we
can deduce that

(27r)1-d/2

F@0= ")

O(w) as |w| = oo. (1.13)
Let us conclude this subsection by noting the precise
conditions under which the system is in the critical region

and (1.10) and (1.12) are valid. We must have
242

bl
2m

lul, ks T < v(0). (1.14)

Further the measurement wave vectors must satisfy

k< A. (1.15)

In d = 2 the zero-scale-factor universality is vio-
lated by a logarithmic dependence on the microscopic
interactions. Furthermore, the scaling function A will
have a singularity associated with the finite-temperature
Kosterlitz-Thouless transition. Zero-scale-factor univer-
sality does not hold for d > 2.

B. Neutron scattering

The dynamic information contained in G® is directly
observable in neutron scattering experiments. In Ap-
pendix A we discuss the relationship between the correla-
tors of ¥ and antiferromagnetic correlations measured by
the neutrons; this discussion is limited to the case where
the quantum-disordered phase has confined spinons, i.e.,
S, = 1, as in Haldane gap antiferromagnets. The rela-
tionship for the case of deconfined spinons (S, = 1/2) is
quite different!® and will not be considered in this paper
explicitly.

In the following, Aw will measure the energy lost by
the neutrons in their interaction with the antiferromag-
net. Consider first a scattering even in which the anti-
ferromagnet undergoes a AS, = +1 transition. Then,
from the discussion in Appendix A and the fluctuation-
dissipation theorem we may conclude that the scattering
cross section is given by the dynamic structure factor
S4+_(k,w) where

—2ZImGER(k,w)
Se-(bw) = T ke

(1.16)
where Z is a nonuniversal quasiparticle renormalization
factor between the magnon operators and the ones that
couple to the neutrons. (The wave vector k on the left-
hand side is measured from the antiferromagnetic order-
ing wave vector.) The scaling result for S;_ thus fol-
lows directly from (1.10). Next, consider scattering with
AS, = —1 for the antiferromagnet. The associated dy-
namic structure factor is then S_ (k,w) which is

_ 2ZImGE(k, —w)

S—+(k7w) 1 _e—hw/kBT

(1.17)

By not resolving the energy of the scattered neutron,
it is also possible to measure equal-time correlations em-
bodied in the static structure factors. However, the scal-
ing properties of these observables are subtle, and require
more careful interpretation. By performing a weighted
frequency integral over the scaling limit of G®, we are im-
plicitly only sensitive to frequencies much smaller than a
high frequency cutoff like A/2. Thus in the following, our
equal-time structure factors actually refer to scattering
experiments in which energy transfers greater than A/2
are not integrated over. Not blocking out these events
will produce a background structure factor which may
(as in the Haldane gap region defined below) overwhelm
the universal part of the static structure factor which is
considered here. Keeping this caveat in mind, we define
the structure factor S, _(k),

(1.18)

where the result is not sensitive to the precise locations
of the limits. The correlator S_, can be defined analo-
gously. From (1.18) and (1.10) we can deduce the scaling
result

hk m
\/2kaT,kBT> ’ (1'19)
where B, _ is a universal scaling function determined
completely by A [similarly for S_,(k)]. Finally, using
the fact that ¥ and ¥* are canonically conjugate fields,
it possible to deduce a frequency sum rule on InG® which
leads to

S, (k) = 2B, (

Bi(rt) = B_.(rt)+1, (1.20)
where we will henceforth use r = fik/v/2mkpT.

We reiterate that all of the above results in this sub-
section refer only to the case of antiferromagnets with
confined spinons.

C. Uniform magnetization

A second useful set of observables are those associated
with magnetic fluctuations around k = 0. The uniform
magnetization is a conserved quantity and, as a result,
the quasiparticle renormalization factor Z does not ap-
pear in their scaling forms. The simplest of these is mean



50 FINITE-TEMPERATURE PROPERTIES OF QUANTUM. .. 261

value of the magnetization density M itself, which is of
course related to the magnon density by

M = gugS,n. (1.21)

This relationship, and the considerations of this subsec-
tion, apply to both confined (S, = 1) and deconfined
(S; = 1/2) spinons. The mean value of the magnetiza-
tion is therefore

M =gupS.G(x=0,T=07) (1.22)
and obeys the scaling form
2mkgT 4/2 ©
= —_— —_— 1.23
M gﬂBSz ( 72 ) M (kBT ’ ( )

where the function M is again dependent only on A. The
result (1.6) follows from (1.23).

D. Phase diagram

The above discussion shows that the scaling functions
of a large number of experimental observables can be ob-
tained directly from the primary scaling function .A. The
remainder of the paper is therefore devoted primarily to
describing A and associated scaling functions in different
parameter regimes. It is convenient to discuss the prop-
erties of A separately in three distinct regimes, which are
analogous to those found by Chakravarty et al.l® in the
d = 2 O(3) 0 model. These regimes are illustrated in the
phase diagrams in Figs. 1 (d = 1) and 2 (d = 2). The
crossover boundaries between the regimes are delineated
by the value of the dimensionless ratio u/kgT (up to log-
arithmic terms in d = 2). We consider the three cases
separately.

1. p L —kpT

This is the analog of the quantum-disordered regime
of Refs. 16 and 13. Only a dilute gas of thermally ex-
cited bosons is present, and their mutual interactions are
weak. Properties of the quantum antiferromagnet can be
described by a low-magnon-density expansion about the
quantum-disordered ground state. In d = 1, we identify
this as the Haldane gap regime in Fig. 1.

A
d=1
T
Quantum
Critical
z=2
Haldane . Luttinger Liquid
Gap 2=1
7
H

FIG. 1. Phase diagram in d = 1. There is a line of Lut-
tinger liquid critical fixed points at T' = 0 for H > H. which
have z = 1. The critical end point at 7' = 0, H = H,. has
z = 2; the zero-scale-factor universality is a property of this
critical end point. The dashed lines indicate crossovers.

d=2
T kT, (H=Hc) In(A/(H-H,))
BLKT=""4 Inin(A/(H-Hc))
t
Bl

2z=2

Quantum

XY order
D ™. (Quasi-long-range)

S

B,
H

FIG. 2. Phase diagram in d = 2. The dashed line is a

crossover while the solid line is a Kosterlitz-Thouless phase

transition. The field H has absorbed a factor of gup. The

location of the Kosterlitz-Thouless transition is determined
from Refs. 17 and 18.

2. |p| L k8T

This is the quantum-critical regime, in which z = 2
critical fluctuations are quenched in a universal way by
the temperature. The value kgT is the dominant energy
scale and universally determines everything: the boson
density, spectrum, and interactions. The only small pa-
rameter which may be used to determine scaling func-
tions is € = d — 2. As we will see, this is not particularly
effective in d = 1 where, fortunately, exact methods are
available.

It is instructive to consider the physics of this region as
a function of the measurement frequency w (see Fig. 3).
At large frequencies, w > kgT, or short times, the effects
of finite temperature have not yet become manifest, and
the system displays the physics of the 4 = T = 0 critical
field theory; i.e., it is a dilute gas of bosonic quasiparticles

W<k, T ; d=1,2

Quantum

relaxa2tional Dilute, repulsive
z=

1 bosons @

kgT

U> kT, d=1

t » . ) )
?e'l‘::a;‘i;nnal C.rxt%cal Luttinger Dilute, repulsive
2=1 | liquid | bosons
kgT [z

1> k,T; d=2

Quasi-long-range Dilute, repulsive
order | bosons hw

n

FIG. 3. Properties of the different regimes of Figs. 1 and 2
as a function of the measurement frequency w (the wave vec-
tor k =~ 0). All crossovers are described by the universal
scaling function A. The crossover for 4 > kpT in d = 1 near
Fw ~ kpT is also described by the Luttinger liquid scaling
function Ayg.
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with repulsive interactions. As one lowers the frequency
through kgT/Fk there is a crossover to a novel z = 2,
quantum-relaxational regime (Fig. 3). Now each boson
interacts strongly with thermally excited partners, lead-
ing to strong dissipation and overdamped quasiparticles.

3. > kgT

The behavior in d = 1 and d = 2 is quite different and
we will therefore consider the two cases separately.

In d = 1, the ground state is a Luttinger liquid, which
is itself a critical phase with z = 1 (Fig. 1). Again,
consider the physics as a function of w (Fig. 3). For
sufficiently large w (fiw > p) we have the dilute Bose
gas physics of the 4 = T = 0 critical point, similar
to that discussed above for the quantum-critical region.
At smaller w, there is a crossover (near Aw = pu) to
a Luttinger-liquid-like region where we may as well as-
sume that T = 0. However, at small enough frequencies,
hw ~ kT, the effects of a finite temperature finally be-
come apparent. The massless modes of the Luttinger lig-
uid are then quenched into a z = 1 quantum-relaxational
regime, rather similar to the z = 2 quantum-relaxational
regime discussed above. This last crossover is, strictly
speaking, a property of the z = 1 critical point on the
Luttinger liquid fixed line determined by the value of u,
and not a property of the z = 2 critical end point at
¢ =T = 0. It is thus described by a reduced Luttinger
liquid scaling function Ar. We will obtain exact results
for Ay using an argument based on conformal invariance.
We will also discuss an important compatibility condition
between the scaling functions .4 and Ay, and show how
the more general A collapses into the small u limit of Ag.

In d = 2 (Fig. 2) the ground state is a boson super-
fluid, which survives at finite temperature. There is a
Kosterlitz-Thouless phase transition at a finite 7', which
has been studied in some detail earlier.!”>'® In the su-
perfluid phase, therefore, one has a large frequency di-
lute Bose gas behavior crossing over to a small frequency
Goldstone phase with quasi-long-range order (Fig. 3).

The outline of the rest of the paper is as follows.
We will begin, in Sec. II, with a renormalization group
analysis of the partition function Z. This will allow us
to demonstrate the logarithmic corrections to scaling in
d = 2 and obtain the leading terms of theinae=2—-d
expansion. These leading terms are consistent with the
zero-scale-factor universality. We will then, in Sec. III,
turn to a discussion of the exact properties of A and Ay,
in d = 1. A brief summary and a discussion of relevance
to experiments appear in Sec. IV. Three appendixes con-
tain discussions of some peripheral points.

II. RENORMALIZATION GROUP ANALYSIS

The momentum shell renormalization group equa-
tions for Z have already been obtained by Fisher and
Hohenberg.'® However, their analysis of the equations
was restricted to d = 2, u > 0, and temperatures at or
below the Kosterlitz-Thouless transition. In this section

we will extend this analysis to cover the remaining re-
gions in d = 2 (Fig. 2), and to dimensions d < 2 in an
€ = 2 — d expansion (Fig. 1). The analysis'® proceeds
by introducing an upper cutoff A in momentum space,
and replacing v by a contact interaction u = A~%(0).
Degrees of freedom in a shell between A and Ae™¢ are in-
tegrated out, followed by a rescaling of coordinates and
field variables,

7' = e, (2.1)
(2!, 7') = e/ 2W(x, 7).

Note that the there is no anomalous dimension in the
rescaling factor for ¥ as n = 0. Further, the scaling
dimension of |¥|? is exactly d, as it must be for any con-
served charge density.!®

It is convenient to consider the cases T =0and T > 0
separately:

A.T=0
The renormalization group equations are!®11
dy
ar =2p, (2.2)
du mK A4-2
ﬂ = (2 - d)u - Tuz, (23)

where K4 = S3/(2m)? and Sy is the surface area of a unit
sphere in d dimensions. We integrate these equations to
a scale ef” where the system is noncritical, i.e., when
p ~ ah?A?/(2m) where « is significantly smaller than
unity, but not so small that the system is still critical.
For p > 0, the magnetization M and the boson density
n = M/(gupS,) are then given by

n=e Zgﬁ; (2.4)

For d < 2, and € = 2 — d small, u approaches its fixed-
point value

ﬁ2
= Kahd2m©

u*

(2.5)
Inserting this fixed-point value and the dependence of £*
on the initial value of u into (2.4) we find to lowest order
in € that n indeed has the form (1.6) with the universal
number C given by

C=—.

yy (2.6)

In d = 2, u approaches 0 logarithmically slowly. For
large ¢ we have

2w h?
mi

u(l) = 2. (2.7)

Inserting this into (2.4) we find”
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mu h2A2
= . 2.8
™= dnk2 In <2mu (28)
Note the logarithmic violation of the perfect scaling of
(1.6).

B.T>0

We will restrict our analysis to the center of the quan-
tum critical region in d = 2 (Fig. 2) and d < 2 (Fig. 1):
The initial value of p will therefore be fixed at p(f =
0) = 0 and the initial value of the temperature T’ will be
close to 0. We will only need the finite T renormalization

group equations for u and T which are!®
aTr
— =27,
dl
du 20K u

af =TT A N
xP kT \ 2m ®

To leading order in € (leading logarithms) it is sufficient
to assume that for d < 2 (d = 2) u is given by Eq. (2.5)
[Eq. (2.7)]. We will now integrate the renormalization
group equations until a scale £* where

(2.9)

h2A2
) =— . 2.10
u) = —a2 (210)
The correlation length £ is then given by
-~
=2 (2.11)

while the boson density is

n=e%(|Up(x=0,7=07)),

e | (j;’;dexp[ s (ﬁlkz_”w))]_l

2m

kBT([*)

~

—de* *\ \ 4/2
- (2"”’“25(3 )) In(1 — M€/ TE)).
(2.12)

In the last step we have anticipated that to leading order
in € it is sufficient to evaluate the integral directly in
d=2.

Let us now examine the results of integrating (2.9) for
d < 2. To leading order in € we find

h2A2 £ e—2t'de/
) = —14 2¢
w(o) “ 2m /o RAT \ |
P omT(e)
Using T(£) = Te?, it is straightforward to perform the

integration and obtain from (2.10) the leading result for
£*:

(2.13)

op* 2mkgT 1
20 _ L
e = “J2p2 2¢ In (26) . (2.14)
From (2.11) we therefore deduce
¢ ! L (2.15)

" [2¢n(1/2)"/2 \2mksT

and from (2.12) we obtain for the boson density

_ (2mkpT\¥* 1 1

These last two results are consistent with the zero-scale-
factor universality of (1.19) and (1.23) and yield proper-
ties of the scaling functions By_ and M at p = 0.

Finally consider properties in the quantum-critical re-
gion in d = 2. The analog of Eq. (2.13) is

B2A2 L gp e—2l'
a2t
w) = a5 - | g R (2.17)
P\ 2mT ()

Integrating this to leading-logarithmic accuracy and us-
ing (2.10) we find

. 2mkgT R2A2
—2¢ B

=4——1Inl — . 2.18
€ h2A2a o (2mk3T> ( )

We therefore have from (2.11) for the correlation length

s 1
N ., (2.19)
V2mkgT {4 In ln[ﬁzAz/(zkaT)]} :

which violates the universality of 1.19 at x = 0 by the
double logarithms. From (2.12) we get for the boson
density

_ 2mkpT 1 1
— 2mkpT 1
G { m{2A2/(2mks 7))}

o (2.20)

again logarithmically violating (1.23) at p = 0.

III. EXACT RESULTS IN ONE DIMENSION

We have so far determined that for small € = 2 —d the
i =T = 0 critical field theory has a contact interaction
of strength u* = O(¢), and all other two-multiparticle
interactions can be neglected. Remarkably, following
Haldane,?° it also possible to determine the exact critical
field theory for € = 1 or d = 1. The critical field theory
then has u*|.=1 = oo (the bosons are thus impenetrable).
Moreover, all other boson interactions continue to be ir-
relevant. In Appendix B we consider a one-dimensional
Bose gas in the vicinity of this strong-coupling fixed point
and demonstrate this explicitly.

The methods of Appendix B and earlier works2%:21:5
use the well-known equivalence between the d = 1 im-
penetrable Bose gas and free fermions. The field theory
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of the critical end point at u = T' = 0 is therefore given
by the free fermion Hamiltonian

R d?
Hp = /dzxp’fF(m) (‘%aﬁ

where U are canonical fermion fields. Correlators of
this theory can only depend upon m, y, and T, and the
zero-scale-factor universality is therefore manifest. The
scaling limit of the correlators of the uniform magnetiza-
tion can now be obtained almost trivially: The uniform
magnetization density just measures the number of par-
ticles and its correlators are therefore the same as those
of ngSz‘IJ}.\II r. In particular we have for the scaling
function for the uniform magnetization in (1.23)

M(t):l/:ody !

2__ b
e ev -t 1

——u) Ur(z), (3.1)

(3.2)

where t = pu/(kgT). This scaling function has the limit-
ing value M = €*/(24/7) as t — —oo in the Haldane gap
region, and M = v/t/m as t — oo in the Luttinger liquid
region (Fig. 1). This last result combines with (1.23) to
yield (1.6) with C = 1/x.5

Observables associated with correlations of the stag-
gered magnetization, like G®, are much more difficult
to obtain—it is necessary to express the impenetrable
Bose fields in terms of the Fermi fields by a contin-
uum Jordan-Wigner transformation?® and then evalu-
ate the correlator—a naive Wick’s theorem expansion
of this correlator will yield an infinite number of terms.
Recently, Korepin and Slavnov,?? following earlier work
of Lenard,?® have succeeded in resumming this expan-
sion and showing that all space-time-dependent, finite-
temperature correlators of the impenetrable Bose gas can
be expressed in terms of the solution and Fredholm deter-
minant of a linear Fredholm integral equation. Thus de-
termination of the universal scaling function A4 in d = 1
has been reduced to the problem of solving completely
an integral equation, and taking the Fourier transform
of the result. Analytic methods can take us no further,
and it is necessary to resort to numerical analysis of the
integral equations. We have begun such a numerical pro-
gram, and have so far obtained essentially exact results
for the equal-time correlations—these are described be-
low in Sec. IITA. It should be possible to extend our
results to obtain local, time-dependent correlations [and
hence the scaling function F' in (1.12)] but we have not
yet done so. A general picture of the form of F' can be
obtained from the asymptotic limits quoted in Sec. T A;
should it become experimentally useful to obtain more
precise numerical results for F', we shall be happy to pro-
vide them.

We also note that, recently, Korepin and collabora-
tors?42% have succeeded in determining exact results for
certain asymptotic properties of GF by applying the
quantum-inverse scattering method to the integral equa-
tions noted above. For the equal-time GE they ob-
tained results for the leading and next-to-leading terms as
z — oo, while for unequal-time correlators, both z and 7
were sent to co. Unfortunately, these asymptotic results

are not very useful in determining experimental observ-
ables which require Fourier transformation to functions of
momenta and frequency (the large = behavior of a func-
tion implies little about the small k limit of its Fourier
transform). Simply Fourier transforming the asymptotic
terms leads to results which compare very poorly with
the exact results which we obtained by the alternative
means described below. We comment on some features
of these exact asymptotic results in Appendix C.

In Sec. IIIB we will consider the limit u > kgT where
it is possible to make much greater analytic progress in
determining the scaling functions. As we have already
noted, the lower frequency properties in this region are
described by Luttinger liquid criticality, and it possible
to use conformal invariance arguments to obtain closed-
form results.

A. Equal-time structure factor

The most convenient procedure for determining equal-
time correlations begins with Lenard’s?® result for the
density matrix of the impenetrable Bose gas, which is
tantamount to a formal solution of the integral equation
of Ref. 22. His result can be written as??

G(z,7 =07) = (0|Gr(1 — 2GF)~t|z)det(1 — 2GF),
(3.3)

where the operator G acts on the real axis between 0
and z, and has the matrix elements

. , © Jk etk(z—z')
<1:|GF1$> = /oo %e[ﬁzkz/@m)—u]/(kBT) n 1’

(3.4)

i.e., the fermion Green’s function. The form (3.3) is
amenable to rapid numerical evaluation. We discretize
the real line between 0 and z into N points, whence the
operators in (3.3) become N x N Toeplitz matrices. A
straightforward extension of Levinson’s algorithm?® was
then used to compute the determinant and inverse of
1—2GF. The computer time required for this step scales
only as N2, and we were able to easily uses values up to
N =10000. The results for G for large  were compared
with the exact asymptotic results of Ref. 24, with excel-
lent agreement. Finally, we performed a spatial Fourier
transform, and obtained results for the scaling function
B_ of the structure factor S_, (k) defined below (1.19)
and by (1.20).

Our results for some representative values of t =
p/(kBT) are shown in Fig. 4. A computer program to ob-
tain numerical values of B_4(r,t) (r = hk/+/2mkgT) for
arbitrary r,t can be obtained from the authors; the accu-
racy is limited only by computer time, but it is possible
to obtain three significant figure accuracy quite rapidly.

We note that the zero-temperature limit of S__ (k) was
computed by Vaidya and Tracy:2” They also pointed out
that the T = 0, S_, (k) has nonanalyticities?® (which
are, however, unobservably weak) at integer multiples of
2kr, where kr is the Fermi wave vector of Hp.
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FIG. 4. Exact results for the scaling function B_(r,t)
for the structure factor [Eq. (1.19)] in d = 1. We have
r = hk/+v/2mkpT, and t = p/(kpT). We have chosen some
representative some representative values of ¢; a computer
program to evaluate B_ for arbitrary ¢ is available from the
authors.

B. Luttinger liquid

This is the regime where p > kgT. In the fermionic
description of the problem, this means the Fermi sea is
much deeper than the temperature. In this case the
ground state and its pertinent excitations can be de-
scribed by a theory in which the spectrum is linearized
near the Fermi points k = +kp determined by

R
T o2m

(3.5)

By the same token, as long as the probe frequency w and
momentum k do not cause excitations that probe the sea
deeply (i.e., stay in the linearized region) the Bose gas
will exhibit characteristics of the line of finite-u, 2 = 1
Luttinger liquid critical points at T' = 0—the Luttinger
liquid scaling function for the Green’s function will be
denoted by Ar. In terms of Fig. 3, it means that the
Ay will describe the lower frequency crossover around
hw ~ kpT. The ratio fw/kpT can take arbitrary values
as long as both Aw and kT remain significantly smaller
than p. The depth of the Fermi sea will not enter any
of the calculations of Ay and p will enter only via the
Fermi velocity c¢. For example, in the low density limit,

¢ is given by
o ke (24 1/2
T m o \m '

We shall see all this happen as we analyze the exact re-
sults momentarily. The crossover around /uw ~ p in Fig. 3
is not part of the Luttinger liquid criticality, and is in-
stead associated with the z = 2 critical end point, and the
scaling function A. It should be apparent from this dis-
cussion that the limits Aw/kgT — oo and p/kgT — oo
of A do not commute.

Note that Luttinger liquid criticality and associated
scaling forms hold even when the condition that p be
small in (1.14) is violated. Suppose, however, that

(3.6)

kT, w and A%k%/(2m) are much smaller than p, and
that y itself is small so that Eq. (1.14) is satisfied. Then
zero-scale-factor universality of the z = 2 critical point
at u = 0, T = 0 must be simultaneously satisfied. This
will lead to a compatibility condition between the scaling
functions A and Ay, which we shall shortly examine.
Let us begin by writing down the scaling forms of the
Luttinger liquid at T = 0. We know that at equal times
_ D
G(z,7=0 ):z—", z—o00, T=0,0>0. (3.7
The constant D and the exponent 7 will, in general, have
a nonuniversal dependence upon the microscopic cou-
plings. However, knowledge of D, 7, and a zero-sound
velocity ¢ will universally determine all remaining hydro-
dynamic properties in the Luttinger liquid regime. For
example the unequal-time correlation function will have
exactly the same form as above with z replaced by the
Euclidean distance vz2 + ¢272. As for 7, it has a value
that depends on the Luttinger coupling. At the point
p = 0, the bosons are impenetrable and equivalent to
free fermions. For g > 0, the deviation from the im-
penetrability condition can be translated into a residual
interaction between fermions by integrating out doubly
occupied states (see Appendix B). This is the marginal
coupling of the Luttinger liquid. Let us note for future
reference that n = 1/2 for zero Luttinger coupling. Some
readers may have trouble reconciling this with the fact
that fermion-fermion correlation functions fall as 1/z in
free field theory. However, we have already noted that
there is a rather complicated relationship between the
Fermi and Bose fields and we remind the reader of the
chain of transformations relating the two. First the hard-
core bosons are described by the Pauli matrices o1. The
latter are then converted to a single component fermions
¥ by a Jordan-Wigner transformation. These fermions
are filled up to some Fermi momentum determined by
the chemical potential. When linearized near the Fermi
points, the spinless Fermi field turns into a pair of rel-
ativistic fields ¥y g. The hard-core boson correlation
function at equal times is

(T(0)T1(2)) = (Tp(0)ei™ fo ¥r=)¥r=de" gt (5)).
(3.8)

If we now write

Up(z) = Ve kre | gpetkre (3.9)

and drop terms that oscillate at ks, we obtain

(T (0) T (z)) ~ (T (0)ei™ o (T2 (=)L (=) + k(") r(=)]d=’
x¥l(z)+ L & R). (3.10)

Clearly this is a complicated object in the Fermi theory.
To evaluate it one uses bosonization. Using the standard
dictionary it is possible to show that it is proportional to
the two-point function

(e iVTHO) ivTdE)) o L

7 (3.11)
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where ¢ is the field dual to the usual boson field. (See
for example Ref. 28.)

We now consider the correlations at finite tempera-
tures. In general the passage from zero to nonzero tem-
peratures is nontrivial since in the latter case not only the
ground state but excited state correlations enter. How-
ever, in two Euclidean dimensions, in a relativistically
invariant theory such as this one, we have the remark-
able result from conformal field theory that was first
pointed out by Cardy.?® Using the conformal mapping
between the infinite plane and the strip of finite length
L, = hc/kpgT along the imaginary-time direction, one

can obtain from Eq. (3.7)
_ D 27TkBT K h 27l'kBT1:
o o2n/2 ke s he
-n/2

 cos 2nkgTT
h

(The operator e~ V70 is a primary field, which allows
us use of conformal invariance as above.) The subscript
L has been placed to emphasize that this formula is valid
only near the lower frequency crossover in Fig. 3.

The ease with we obtain this result should not detract
us from noting its importance—rarely does one have the
thermally averaged correlation functions of an interacting
system. We shall therefore spend some time analyzing
this result.

As a first step let us extract from this the correlation
function at equal time, for long distances. It is readily
seen that

Gr(z,7)

(3.12)

-\ _ 27I'kBT K —T]TrkBTZ
7= (4 o ()

T>0, p>0, z—> oo. (3.13)

Now let us consider the regime where (1.14) is also
satisfied and so zero-scale-factor universality holds. Thus
D, n, and c can no longer be nonuniversal, but must
be universal functions of 4 and m. Let us now invoke
the asymptotic (long distance) hard-core boson scaling
functions at the pu = 0 critical point which are known by
exact solution:2724

_ V2mkgT poo (_"___\WE
TR JmoP h avi)’

(3.14)

G(z,07)

where t = p/(kgT). The constant p is a known univer-
sal number; more details on this formula are relegated to
Appendix C. We see that this agrees with the Luttinger
liquid result Eq. (3.13) if

1/2 . 1/4
1 2u Poo [ 2Mmpu
== == D="—"—|—— . (3.15
=g ¢ (m) ’ ™ ( h2 (3.15)

Notice also how the chemical potential entered only via

the Fermi velocity as anticipated (excluding the p depen-
dence of the prefactor D).

We now consider the Fourier transform of (3.12) to
obtain the corresponding Gp(k,iw,) at the Matsubara
frequencies along the imaginary frequency axis,

o B/ (kaT) .
Gr(k,iw,) = / dm/ dTe"(kz_“’"T)GL(I,T).
J —oo 0

(3.16)

Given the scaling form of G (z,7) it follows that the two
integrals involved in the transform lead us to the scaling
form

D ([ he \*7" hw  hck
GR(k.w)= 2 — A = = 7
L (k) c (kBT) L (kBT’kBT)’ (3.17)

where Ay, is a completely universal scaling function, de-
pendent only upon the value of . We will determine Ay,
in closed form below.

Now if we take the limit u/kpT — oo at fized w/kgT
and Ack/kgT [while satisfying (1.14) of course], the sys-
tem is described simultaneously by the Luttinger lig-
uid result (3.17) and the zero-scale-factor universality of
(1.10). Comparing these two results and using (3.15) we
obtain immediately the compatibility condition between
the reduced scaling function A at n = 1/2 and the scal-
ing function A,

- .1 _ k
Ap(@,F)|y=1/2 = 75’;_ Jim —-A (w, m,t) . (3.18)

We are using here, as before, the notation @ = fw/(kBT),
k = hck/(kgT), and t = p/(kgT). We have demanded
here that p enters Ay only through c. Notice that the
t — oo limit is taken at fixed @, and as we have noted
before and shall see explicitly below, the @ — oo limit of
Ay does not agree with the @ — oo limit of A which was
implicit in (1.13).

The remainder of this subsection is devoted to obtain-
ing explicit results for .4 and associated scaling func-
tions in Minkowski space. There are two ways to pro-
ceed.

The first approach is to perform the transform for com-
plex (Matsubara) frequencies and then make the substi-
tution iw, = w to obtain —GR(w). The transforms are
tedious to perform but the interpretation of the results is
instructive and we shall do so soon. The general princi-
ples we learn about analytic continuation into the com-
plex plane are usually illustrated with trivial examples
(i.e., noninteracting propagators) and here we have one
of the few nontrivial and hence instructive cases.

The second approach is peculiar to this problem and
relevant because conformal invariance methods always
give the correlations in coordinate and not momentum
space. Thus one can continue the results from imaginary
to real time first and then take the transform. That cal-
culation may be found in Sec. 3.3 of Ref. 30 and has its
own pedagogical value.

Returning to the first approach, we used the identity
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a2 1 /wd/\/\"/z—le_’\x (3.19)
0

~ T(n/2)

to put the cosh and sin terms in (3.12) up in the ex-
J

ponent. The z and 7 integrals were then analytically
performed, followed finally by the ) integration. After
using (3.17), the final result gave us values of the scal-
ing function Ay at the Matsubara frequencies along the
imaginary frequency axis. We found

|@| + ik n |w|—ik
i)\ p (L B2
4n 4 + 4n

) (i
11—
Ay (iF) =T (-3) 2

n
4 +

) (e

This result was obtained earlier by Schulz* and Shankar3°
in a different context but not analyzed in any detail.

First, the above function A (|@]) specifies our knowl-
edge at positive and negative Matsubara points. Our
goal is to construct the physical real frequency correla-
tion function and its singularity structure from it. As
it stands, AL can only be used for numerical purposes
and not for studying analytic structure since |@| is nei-
ther analytic nor antianalytic. In other words we can use
Ay to calculate values of the putative function at the
Matsubara points. The “mod” symbol tells us that the
function we are seeking has the same value at any postive
Matsubara point and its negated image.

Now, on the real frequency axis we have a retarded cor-
relation function, which we assume is well defined. Since
the factor e** converges in the upper half-plane (UHP),
the function on the real axis has an analytic extension to
the UHP which is free of singularities. Its values at the
Matsubara points @ = 27n, with n an integer are given
by Ar. Such a function is readily found: Simply drop
the mod symbol on @ in the formula for Ay. Let us call
the function (with the mod symbol dropped) AYHP (@).
This AYHP (@) is the unique analytic function (with good
behaviour in the UHP) determined by our knowledge at
postive Matsubara frequencies. Being an analytic func-
tion it has a continuation to the lower half-plane (LHP)
which is however not guaranteed to be free of singulari-
ties or to have anything to do with the original problem.
In particular the poles that the I' functions have in the
LHP are not germane to the physical response function.
In fact this continuation to the LHP of AYHP (@) does not
even agree with the data we have in Eq. (3.20) for nega-
tive Matsubara points: Since AYHF (@) # AVHP(—w), it
is not invariant under the change of sign of frequency as
the given data are. However, there is an analytic func-
tion which will duplicate the given data in the LHP: It
is obtained by replacing |@| by —@ in Eq. (3.20). Such a
function AYHP (@) satisifes

AP () = AVHP (_g), (3.21)
This function will agree with Az of Eq. (3.20) at points
with negative Matsubara frequencies and be free of sin-
gularities in the LHP. However, its poles in the UHP
have no physical significance. Thus the function at real
frequencies is the limit of two different functions as we
approach the real axis from above or below. The true

: (3.20)

[@| + ik o |w| -k
4 It 4+ 4

[
singularities of the physical response function are due to
the mismatch of these two functions and not due to the
poles they have in regions where they no longer represent
the physical function or a continuation of it.  So we
must consider the difference between these two functions
AYHP (%) and AP (@) on the real frequency axis. It
is readily shown that the two functions are conjugates
of each other there so that the discontinuity is just twice
the imaginary part. The physical response function’s real
singularity is therefore a cut and not poles. This is rea-
sonable since a theory with gapless excitations on top of
the ground state (and hence a cut at zero temperature)
cannot lose its spectral weight in these regions by the
inclusion of higher states in the thermal average at fi-
nite temperatures. (The converse is possible: A cut-free
region on the real axis at T' = 0 can close up at T' # 0.)
In Fig. 5 we plot ~ImA(@,k)/@ as a function of @
and at a representative set of values of k. Notice that
for large k there is a well-defined peak at @ ~ k: This
is a signature of the propagating modes in the Luttinger
liquid ground state and represents the behavior of the
intermediate region kg7 <« w < u in Fig. 3. At smaller
values of k notice that the peak in Fig. 5 remains at

0.60
0.45
ImA L / w

0.30

0.15

0.00

FIG. 5. Exact values of the scaling function
—ImAL(w,k)/@ [given in Eq. (3.20)] for the Green’s func-
tion in d = 1 in the Luttinger liquid regime at n = 1/2 [Eq.
(3.17)). We have @ = #w/(kgT), k = hck/(ksT). The values
for k = 1 are 3 times larger than those on the graph. Notice
how the spectrum evolves from an overdamped, relaxational
peak at small k (as for k = 1) to a damped, propagating mode
at large k (as for k = 3, 5).
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w = 0. This is the z = 1 quantum-relaxational behavior
(Fig. 3) where the strong interaction between the ther-
mally excited Luttinger modes has left only overdamped
excitations.

We now consider a couple of other experimental ob-
servables, related to local and equal-time correlations,
respectively.

1. Local Green’s function

The local Green’s function GF was defined in (1.11). In
the Luttinger liquid regime, we can deduce that, provided
w < W, this observable satisfies the scaling form

ImeL(w) = —sgn(W)g|w|"_1FL (%) , (3.22)

where F, is a universal function, specified completely by
the function Ay in (1.11). Moreover, as the Luttinger
liquid criticality has a particle-hole symmetry, F, must
be an even, positive function of @. As already noted, we
expect on general grounds that InGF(w) ~ w for small
w at finite T: Therefore FL(w) ~ [@|*~7 at small &. We
also note that for n > 1 the real part of the local Green’s
function will not satisfy an analogous scaling form be-
cause the integral in (1.11) is then dominated by large
momentum contributions.

There is again a compatibility condition between the
Luttinger liquid scaling function Fy, and the scaling func-
tion F in (1.12) quite analogous to that for Ag, A in
(3.18); we have

— T .. _
FL(W)|n:1/2 = p—o.: tlggo F(w,t) (323)

As before, the limits W — oo and t — oo do not commute,
and the @ — oo limit of the exact F, computed below
will not agree with that of F in (1.13).

Let us finally present the exact computation of Fp.
We use the result (3.12) at z = 0, Fourier transform to

Matsubara frequencies, analytically continue, and take
the imaginary part to obtain the following result for F:

rE-E)
(7))

Fp @) = @ " «"" /2 sinh ('f‘zi')

(3.24)
A plot of this function is shown in Fig. 6.
For small @ we have
an—1/2] (ﬁ)
FL(@) = 2/ B> ", |@| —0.  (3.25)

1+7

o [ ——
()
This is the behavior characteristic of the z = 1 quantum-
relaxational regime of Fig. 3. It is expected that the

limits @ — 0 and t — oo do commaute, and so combined
with (3.23), the above result gives us the small @ behavior

1.6
1.2
Fi.

0.8}
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®

FIG. 6. Exact scaling function Fy (@) [given in Eq. (3.24)]
for the imaginary part of the local susceptibility in d = 1 in
the Luttinger liquid regime at n = 1/2 [Eq. (3.22)]. We have
w = hw/(ksT).

of F(w,t) at large values of ¢.

In the opposite limit of large @ we crossover to the
critical correlations of the Luttinger liquid ground state
in which case

21—n7r3/2
r (1 + n) r (Q)
2 2

This last result can also be obtained by a Fourier trans-
form of the relativistic zero-temperature correlator.

FL(@) = @] & 0. (3.26)

2. Structure factor

The two structure factors S;_(k) and S_4 of the an-
tiferromagnet were defined in Eq. (1.18). The Luttinger
liquid behavior has particle-hole symmetry, and so in this
regime, the two structure factors are essentially equal and
will be denoted by the common value Sr, (k). The scal-
ing form for Sy (k) follows from (1.16), (1.18), and the
scaling of G in (3.17):

he \'77 fick

where the constant Z was introduced in (1.16) and B
is a universal function obtained below. There is a com-
patibility condition between the Luttinger liquid scaling
function By, and the scaling function B, _ in (1.19) which
is quite analogous to that for Ay, A in (3.18):

(3.27)

— s . 1 k
Br(K)ln=1/2 = Vape Jm 7—;3+— (mi) . (3.28)

Using the other scaling function B_, on the right-hand
side would yield, from (1.20), an identical result. Again
the limits t — co and k — oo are not expected to com-
maute.

Finally, the exact determination of By: We simply per-

form a spatial Fourier transform of (3.12) at 7 = 0; we
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FIG. 7. Exact scaling function By (k) [given in Eq. (3.29)]
for the structure factor in d = 1 in the Luttinger liquid regime
at 7 = 1/2 [Eq. (3.27)]. We have k = fick/(kBT).

obtain in this manner

JE
r (1__7’) T (Q + ﬁ)
By, (E) = g~ 1/2 2 2 21r .
r (Q) r <l + 1&)
2 2" 2
This result is illustrated in Fig. 7. For small k, By, reaches

a constant whose value is easily obtainable from (3.29).
For large k we find from (3.29)

2l-ngl/2p (-1——;—2)
r(3)

Again this last result could have also been obtained by
direct computation at 7" = 0.

(3.29)

1
B

Br(k) = |k] = oco. (3.30)

IV. CONCLUSIONS

This paper has studied the universal, finite-
temperature properties of a dilute Bose gas with repulsive
interactions in dimensions less than or equal to 2. In the
vicinity of the T = 0 onset at zero chemical potential g,
it was argued that the leading scaling properties obey, for
d < 2, a hypothesis of zero-scale-factor universality. This
means that the entire two-point correlator is a universal
function of just u, T', and the bare boson mass m.

The main motivation behind this study is the mapping
onto it of the properties of quantum-disordered antiferro-
magnets in a finite field. In particular, in d = 1, Haldane
gap antiferromagnets undergo a magnetization onset at
a critical field which is expected to be in the universal-
ity class of the Bose gas transition. Applicability of our
theory requires that there be no spin anisotropy in the
plane perpendicular to the applied field. Most materials
do have some anisotropy—in this case we would require
that the temperature T be larger than the anisotropy
gap, before applying our results.

We have described the rather complicated properties
of numerous scaling functions, which may be rather dif-
ficult to disentangle experimentally. A useful starting
point for neutron scattering experiments appears to be
the following. Perform the experiment somewhere in the
Luttinger liquid region where the absolute value of the
scattering cross section is also the largest. Measure the
local susceptibility Gff(w) and see if it collapses onto the
scaling form (1.12). For large p/kpT, we have a rather
complete picture of the scaling function F: For w smaller
than or around kT, we can deduce F from (3.23) and
(3.24), while for extremely large w we can use (1.13).

Another possible application of our results may be to
quantum-disordered antiferromagnets in d = 2. By mea-
suring the ground state magnetization in a field, and
comparing the result to (1.4), (1.21), and (2.8) it may
be possible to determine the spin S, of the elementary
excitations above the ground state. Of course, we would
also need an independent determination of the quasipar-
ticle mass m.
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APPENDIX A: MAGNON OPERATORS

It is clear that the predominant coupling of neutrons
will be to the antiferromagnetic order parameter ¢, with
a =z,y,z. In a zero-field spin-fluid phase with confined
spinons, this order parameter corresponds to a real, mas-
sive, bosomic triplet. In this appendix, we want to explore
in some more detail the relationship between ¢, and the
complex bosonic field, ¥ in Eq. (1.3). The subtle point
we wish to elaborate on is the following. In the presence
of a magnetic field, only one of the three real components
of ¢, will move down to lower energies, and one might
naively conclude that the low-energy theory should there-
fore include only this real field: So then why does our
low-energy theory (1.3) have a complex scalar ¥?7

Before addressing this issue, we note in passing that
the field theory (1.3) will also describe the magnetiza-
tion onset transition in antiferromagnets with deconfined
spinons; however, in this case, the relationship between
the neutron scattering cross section and the field ¥ will
be quite different,’® and will not be considered in this
paper explicitly.

For simplicity, we consider d = 1, although the analysis
is quite general. First we expand the real triplet ¢, in
terms of magnon creation and destruction operators as
usual:

¢a(w)=/w dt 1

hatid ak ikz 1 —-ik:c, Al
[ on T laa(be™ ke, (A1)

where
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wg = \/AZ +k2,

A is the Haldane gap, and a,, a], the magnon destruction
and creation operators for each of three polarizations.
Let us focus on the two combinations

_beEQy _ [Tdk 1
V2 "/_w ZWM{[ ‘
+lal (k) £ daf (k)]e 1.

(A2)

¢+ () (k) + iay (k)]e™

(A3)

Observe that ¢ are adjoints of each other, but commute
with each other. Let us now consider an effective theory
for energies far below the Haldane gap. In this case we
can make the replacement

wi =~ A (A4)
and obtain
bo) = [ Gl (h) & iay ()™
+lal (k) F ia}(K)]e~*") (A5)
= L [Us(2) + VL (o), (A6)

2A
where U, (z) destroys a spin &1 magnon at z while
\Il;(a:) creates a spin F1 magnon at . Suppose we next
argue that, when the applied uniform field is near its
critical value, only the spin up magnon (very light) will
either be easily created or destroyed, so that we may drop

the spin down creation and destruction operator in the
above expressions. Then we obtain

1

¢+ = \/2—A“I’+($)’ (A7)
b= =t (@) (A8)

Observe that now (up to a scale factor) ¢, which were
previously commuting, are now canonically conjugate
fields. This is just like in the Hall effect wherein = and
y, which are commuting coordinates in the full Hilbert
space become conjugates in the lowest Landau level. It
is also clear from the discussion that the field ¥ in the
coherent space integral in Eq. (1.3) is precisely this com-
plex conjugate pair.

In other words, the answer to the question raised in the
first paragraph of this appendix is the following: One also
has to include a high-energy component of ¢ because it is
canonically conjugate to the low-energy mode. The two
together make up the complex scalar ¥.

APPENDIX B: BOSON HUBBARD MODEL
IN ONE DIMENSION

Consider bosons b; moving on the sites, i of a chain
described by the Hamiltonian

H=-w} (blbisa + bl 16— 2b§b,~)

+¥ (%"i(ni -1) - lmi) ,

where n; = bzbi is the number operator, w is the hopping
matrix element, and V is the on-site repulsion between
the bosons. In the limit of large V, states with more
than one boson on a site will only occur rarely, and it
should pay to restrict the Hilbert space by projecting
out such states. However, the elimination will generate a
residual interaction of order w?/V between the states on
the restricted space. This interaction can be determined
by the usual second-order perturbation theory and leads
to the effective Hamiltonian

He = w3 (blbies + bl 10 = 2bf6) =Y me

2
e

7

(B1)

26701, 1 biy1b; + bIb]_ biiab;

+ b1l 1bioabi) (B2)
We reiterate that H. is nonzero only on states with at
most one boson per site. Notice now that this reduced
Hilbert space is identical to that of spinless fermions. The
transformation between the b; and the spinless fermion
operators f; is of course the Jordan-Wigner mapping

b= [J(1 - 2£]£5) fi-

3<i

(B3)

We now insert (B3) in (B2) and take the continuum limit
with f; = /a¥p(z = ia), w = h%/(2ma?) (a is the lattice
spacing), and obtain

- #) Up

R d?
_ =
HF——/d:L’\:\I/F( 5o 2

8w2a® dU! d¥p
- WU

= (Ba)

It is now clear by power counting that the four-fermion
coupling term is clearly an irrelevant perturbation to the
=T = 0 fixed point. It is in fact also not difficult to see
that all interactions between the fermions are irrelevant,
and that this result is not special to the boson Hubbard
model considered here. The key point is of course that
a term like \IITF‘II;,lII r¥Yr, which is the only interaction
term which is relevant by power counting about the free
fermion fixed point at u = 0, vanishes identically because
of the fermion anticommutation relations.

The significance of the four-fermion coupling changes
when we consider the scaling dimensions of operators
about the Luttinger liquid fixed points. In this case we
decompose the fermion field into left- (¥1) and right-
(¥Rr) moving excitations with a linear dispersion, and
obtain the long-wavelength Hamiltonian



50 FINITE-TEMPERATURE PROPERTIES OF QUANTUM ... 271

HL = /d.’l? LE‘
_ 32w?a’k}
\%4

d¥ dv

t dYr gt d¥r
hc(\IlR il )
\If}tqf}ququ} , (B5)

where ¢ = fikp/m and the Fermi wave vector kr is given
by h%k%/(2m) = p. Performing power couting on the
z = 1 free field part of H;, we now find that the four-
fermion coupling is now marginal. Note however that the
coefficient of this four-fermion coupling is suppressed by a
factor of k%, which vanishes as one approaches the z = 2
critical end point. By the usual logarithmic perturbation
theory at T = 0 we can determine that the four-fermion
interaction modifies the exponent 7 of Sec. III B by

AL (B6)

n= 2 V ’
where v is a numerical constant of order unity. (The
perturbation theory yeilds exponents for the fermionic
correlators: These can be related to the exponents of the
bosonic correlators by the exponent identities of Ref. 20.)
Notice, as expected, that the correction to n vanishes as
u — 0. It is also apparent that the impenetrable limit
V — oo is equivalent to the vanishing density (u — 0)
limit.

At finite T, there will be corrections to the correlators
with terms like (y/tp/V) In(u/kpT). These cannot be
neglected when

1%
kT < pexp (-’7'————%_”) ) (B7)

where 7' is of order unity. Zero-scale-factor universality
is thus violated for arbitrarily small x4, when T is smaller
still and satisfies (B7). Notice however that the boundary
specified by (B7) lies well below kgT ~ p crossover to
the Luttinger liquid regime (Fig. 1).

APPENDIX C: IMPENETRABLE BOSE GAS
IN ONE DIMENSION

Its et al.?* have recently obtained some exact asymp-
totic results for the equal-time boson Green’s function
of the d = 1 impenetrable Bose gas. Recall that this
model is precisely the scaling limit describing the z = 2
quantum phase transition with zero-scale-factor univer-
sality. In this appendix, we show how the requirement
that the scaling functions be analytic in p/kgT can lead
to a considerable simplification of their results.

The asymptotic results of Its et al. can be written in
the form

Gz, 7=0"1) = 2";::BTA (kﬂT)
B

con [ ).

as ¢ — oo, (C1)

where A(t) and f(t) are functions to be determined (as
before ¢t = p/kpT). From the arguments in Sec. III, it
is clear that A(t) and f(¢) are also universal crossover
functions of the 4 = 0, T = 0, quantum phase transition
the repulsive, d = 1 Bose gas with arbitrary, short-range
interactions. Its et al. obtained two separate, closed-
form, integral expressions for fi(t) and A4 (t) valid re-
spectively for ¢ > 0 and ¢ < 0. The two expressions were
quite distinct and there appeared to be no straightfor-
ward relationship between them.

Here, we point out that the absence of any singularity
in the finite-T' Bose gas in fact requires that f(t) and A(¢t)
be analytic for all finite, real values of ¢t. In other words,
the functions f1(t) and f_(t) must be analytic continu-
ations of each other [similarly for A (¢t) and A_(¢)]. We
have in fact succeeded in proving that the expression of
Its et al. for fi(t) is the analytic continuation of their re-
sult for f_(t). We have been unable to establish a similar
result for A, (t), but have performed numerical tests on
their expressions, which leave essentially no doubt that
A is also analytic.

With the help of the above considerations, it is possible
to deduce from Ref. 24 a simple closed-form result for f(t)
and A(t) which is valid for all t:

f(t)=1+%/°°dy ln((eyz_t+1)(y2-t))’

(T —1)(y% +1)

A(t) = %exp [—2 [m dy (Eifd(yi)) ] . (C2)

The value of the constant p,, was obtained by matching
to the T = 0 result of Vaidya and Tracy,?’

Poo = me /2273 AZE = 0.924182203782... , (C3)

Ag being Glaisher’s constant.3! Note that the analyticity
of f and A for all real ¢t is manifest. We have plotted
the functions f(t) and A(t) in Fig. 8. They obey the
asymptotic limits

o= [T, o,
V-t t — —oo,
| poo/V/, t — oo,
Alt) = { 1/(2v=0), t— —oo. (C9)
24
- — A
N — f
1.8} N
F \\\
12} TN
0.6 |- T
L 1 L I L | . I s |
0.0, 3 1 1 3 5

FIG. 8. The scaling functions f(t) and A(¢) [t = p/(kBT)]
of the d = 1 Bose gas defined by Egs. (C1) and (C2).
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Both asymptotic limits of f(t), and the t — 400 limit of
A(t), can be obtained directly from (C2). The t - —o0
limit of A(t) is more difficult to obtain from (C2), and
we used instead the second expression for A(t) in Ref. 24.
Demanding that these two methods of obtaining the limit
be identical in fact provides one with an independent
derivation of the value of the constant p.
We also recall?* that

¢3/2) (1 o

f(O):— 2\/5

= 0.95278147061075. ..
7 ()

(Cs)

We have already noted that taking a Fourier trans-
form of the asymptotic results (C1) to obtain the struc-
ture factor yields results which compare very poorly with
numerically exact results of Fig. 4.

Finally, we note that the requirement of analyticity
as a function of ¢ should apply to essentially all of the
equal-time and unequal-time results of Its et al.242% In
every case, they have obtained separate expressions for
t < 0 and t > 0: Proving that these are analytic continu-
ations of each other will lead to highly nontrivial checks
on the results, and should also produce some fascinating
mathematical identities.
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