
PHYSICAL REVIEW B VOLUME SO, NUMBER 1 1 JULY 1994-I

Spin-gap fixed points in the double-chain problem
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Applying the bosonization procedure to weakly coupled Hubbard chains, we discuss the 6xed
points of the renormalization-group procedure where all spin excitations are gapful and a singlet
pairing becomes the dominant instability.

I. INTRODUCTION

Recently the Geld of non-Landau —Fermi-liquid states in
various quasi-one-dimensional systems has been very ac-
tive. Although basic properties of purely one-dimensional
systems (chains) are quite well known by now, it still
remains to be understood how these change under cou-
pling between chains. In particular, if an inGnite num-
ber of chains is coupled to form a two-dimensional
array then some kind of a dimensional crossover oc-
curs. Despite numerous intensive studies of these ques-
tions, it still remains open how the non-Landau —Fermi-
liquid one-dimensional features evolve into isotropic two-
dimensional behavior.

On the other hand one may expect new physics in
a system with a Gnite number of coupled chains which
may exhibit an unusual amalgamation of both one- and
two-dimensional features. Besides a general theoretical
interest, such systems are also attractive because they
can be found in real materials. Recently it was pointed
out that some substances such as Sr2Cu406 provide a
physical realization of weakly coupled double chains.
Moreover, higher stoichiometric compounds in the series
Sr„qCu„+q 02„present examples of coupled n-chain lad-
ders.

This expectation is reinforced by the behavior of
S = 1/2 Heisenberg multichain or ladder systems.
Whereas the single spin chain shows quasi-long-range
order with gapless spinon excitations, the double-chain
system shows spin liquid behavior with strictly short-
range order and Gnite gap in the spin excitation spec-
trum. This contrast in behavior has led to the conjecture
that a lightly doped double-chain system should preserve
the spin gap and become superconducting. Further in
view of the insensitivity of the spin liquid state to the ra-
tio of interchain to intrachain coupling, one expects that
it is robust and should occur also for a Hubbard model
even in the weak coupling regime. This expectation is
supported by recent numerical studies of Hubbard as
well as t J(Ref. 6) dou-ble-chain models. This is our
motivation to examine the renormalization-group (RG)
theory of weakly coupled Hubbard double chains and to
look for a spin liquid fixed point.

Recent weak coupling RG studies of the double-chain
Hubbard model revealed some strong coupling Gxed

points characterized by enhanced singlet pairing. How-

ever, the analysis performed in Ref. 7 is essentially re-
stricted to the case of weak fermion correlations. These
authors did not examine the half-filled case with weak
interchain hopping where the umklapp processes on the
individual chains become relevant.

In the present paper we undertake an attempt to con-
struct a description of the spin-gap Gxed point by using
a bosonic representation. This is expected to be an ade-
quate tool to demonstrate the development of the strong
coupling regime in both cases of weakly coupled Hub-
bard chains and of a strongly correlated double-chain t-J
model. The latter case will be considered elsewhere.

To clarify the essence of the double-chain physics in the
presence of strong correlations it is worthwhile to begin
with a review of well-known properties of the single-chain
Hubbard model.

Away from half filling the model can be only found
in the so-called Tomonaga-Luttinger (TL) regime which
corresponds to both gapless spin and charge excitations.
It is customary to describe the TL behavior in terms of
spin and charge correlation exponents K, and K .

The spin exponent K, equals unity everywhere in the
TL regime while K, gradually increases &om the value
K, = 1/2 at values of the on-site repulsion U = oo and
any electron density p g 1 [as well as at p m 1 and
arbitrary U/t (t is the intrachain hopping)] as U increases
or p gets smaller.

In the regime of strong correlation at p close to unity
one can argue that gapless spin fIuctuations drive the
coupling constants of the charge sector to the repulsive
region (K, & 1). In this case we can expect a change
of behavior when the exchange coupling between chains
is introduced. The spin gap, which we have argued is a
robust feature of the single rung ladder at p = 1, acts
to cut off the spin Buctuation spectrum at low energies
so that these may not renormalize the charge couplings
significantly. As a result there can be an efrective at-
traction at p ( 1 without a threshold value of the ratio
U/t. This will manifest itself in a finite spin gap also at
p ( 1 and a scaling to the Luther-Emery line rather than
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the Tomonaga-Luttinger line. Such behavior has been
reported for single-chain models with a spin gap caused
by frustrated or modulated exchange couplings on the
single chain. ' In the present case of a single rung lad-
der or double chain, we will choose the regime with the
interchain hopping t~ weak (t~ && U) so that as p ~ 1
real interchain kinetic energy processes characterized by
t~ will scale to zero. In this limit the induced interchain
exchange processes will remain finite and dominate.

A mean field analysis, i2 as well as an exact
diagonalizations of the t Jmo-del predicts that the spin

gap remains upon doping and. the resonant valence bond
(RVB) state at p = 1 evolves into a superconductor with
approximate d-wave symmetry. Noack et cls found a
similar behavior in their numerical studies of moderately
coupled Hubbard ladders.

In this paper we investigate the case of a weakly cou-
pled Hubbard ladder with p & 1 and t~ & U & t using
RG methods and look for a strong coupling fixed point
with the same characteristics.

II. BOSONIZED WEAK COUPLING LIMIT
OF THE DOUBLE-CHAIN PROBLEM

To get a first insight into the problem we start with
a conventional bosonization of the small U/t Hubbard
model on two weakly coupled chains:

H = t) (ut u;—+i +dt d;+i +H.c.)

t& ) (dieu'~ + us~de~)

+U) (u;u;u; u; +dtd; dJ d; )

(2.1)

Here u, and d; denote fermions on upper (u) and lower

(d) chains.
Apparently, at U « t~, t the interaction term has to

be treated as a small perturbation to the rest of the
Hamiltonian (2.1) and the bare transverse hopping leads
to the formation of two [bonding (B) and antibonding

(A)) bands: (A, B) = ~(u p d). Thus at U && t~ a
proper starting point is provided by the two-band model
which was previously studied in the framework of a gen-
eral weak coupling g-ology. is i4 The analysis carried out
in Ref. 7 was also based on the two-band picture.

However, if the opposite condition t~ && U is satisfied,
then the effect of band splitting is completely suppressed

@~(z) ) exp ipkpz+ (yPf +8t
2

+pap~ + 08~) (2 2)

where p = 8, J is the chirality index and the fields 8t,
are dual to the Pt, [8~, = J n~, (z')dz', where z~, is

a momentum variable conjugated to Pf, ].
Applying the formula (2.2) and introducing the linear

combinations P+, = ~(cg, kP,",), 8+, = ~(8,",+8,",)
corresponding to total (+) and relative (—) charge or spin
density Huctuations, one can readily obtain the bosonic
form of the Hamiltonian (2.1),

due to the requirement to avoid a double on-site occu-
pancy. This behavior persists down to quarter filling

(p = 1/2). In the framework of the RG approach this
phenomenon manifests itself as a vanishing of the renor-
malized t~. In view of this we suppose that in the case
t~ && U one has to start &om the picture of two degen-
erate bands to implement correctly the fermion correla-
tions.

The preceding RG analysis of the general two-band
model in absence of umklapp processesis i4 already shows
many technical complexities. For this reason the results
of these studies are not simply physically transparent.
Moreover, it turns out that all nontrivial fixed points
are located far in the strong coupling regime where the
lowest order RG calculations cease to be valid. So one
might expect that a more informative investigation can
be done on the basis of a bosonic representation which
is usually capable of giving a correct evolution toward
strong coupling and even of providing an asymptotically
exact solution of the Luther-Emery type. is Recently the
method of bosonization was applied to the double-chain
problem in the context of a special model which includes
only forward scattering. is This analysisis led to the pre-
diction that coupled chains provide a proper basis for the
occurrence of singlet pairing.

In this paper we will perform a more general analysis
than that of Ref. 16 to see whether the above statement
holds for a wider class of models.

To proceed with a bosonic representation we introduce
a conventional set of bosonic fields P~, P~ where the "fia-
vor index" f has one of two values u or d. These fields
describe fiuctuations of charge (c) and spin (s) densities,
respectively. In the continuum limit the fermion opera-
tors can be written in terms of these variables as follows:

H& = —) v.KP (88.+)'+ ~ (84.+)'+ v.K.+(88.+)'+ ~ (8$.+)'

+t~[cosP cosP, + cos(P,+ + bz) cosP,+]cos8, cos8, +gnscos2$,+cos2$, +g~cos(2$,++ 2hz) cos2$, ,

(2.3)

where last two cosine terms represent spin backscattering and umklapp processes, respectively. Each of these terms is,
in fact, a sum of two contributions cos 2v 2P, , coming from u and d species. The umklapp term becoines relevant when
the doping h(= 2

—k~) vanishes. As usual, the bare values of the correlation exponents K+, = ~ can be changed
l
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by short wavelength renormalizations. Neglecting these corrections we obtain that the bare correlation exponents
governing the charge dynamics K,+[= (1+—) ~

] are smaller than unity while the spin exponents KP[= (1+—)~~2]

are opposite and K,+ & 1. In addition, the bare values of the amplitudes g~g and gU are equal to —,.
To perform a renormalization procedure we divide up all variables on slow and fast components and then integrate

out the fast variables. Using the bare values of correlation exponents one can estimate scaling dimensions of various
terms in (2.3) according to the conventional formula 7

(p and p' are arbitrary)

b, (cos pP, , cos p'8, ,) = — p K, , +1(,
4l " K") (2.4)

The Hamiltonian (2.3) has to be supplemented by extra terms which are generated in the course of renormalization.
Indeed, performing an expansion of the partition function Z = Tr exp( —PH~) in t~ one immediately observes that
the interchain hopping produces the following relevant terms (the new couplings g, should not be confused with the
traditional g-ological notations):

b,H = gg cos 2Q, cos 28, + g2 cos 28, cos 2Q, + gs cos 28, cos 2Q,

+g4cos(2$,+ + 2bx) cos28, + g5cos2$, cos2$, +gs cos2$+ cos28,
+gycos(2$+ + 2bx) cos28, + gscos(2$,+ + 2hz) cos2$,+ + gscos28, cos28, . (2.5)

All these terms have scaling dimensions not greater than 2 and result &om the second-order perturbation corrections
to the single-chain Hamiltonian EK t2&((g,. used, + dJu;)2).

Physically these terms correspond to processes of coherent interchain particle-hole and particle-particle hopping
triggered by the single-particle one. The crucial importance of these processes was previously pointed out by many
authors (see, for instance, Refs. 18,19).

In the second order in t~ the RG equations derived by the use of the method of Ref 20 h. ave the following form

(g = lnz):

dgg ( 1 l t2~ I 1
g, y ~ K. y

Ks ) 2 l Ks
—K, — —g4gU,K, )

(2.6)

dg, ( 1 & t; (
2 —K, — ig2y —K, + Kc g3gBS )K, )

(2.7)

dg, (, 1 & t'„(,
2 —K+ — gs + —" K.+ +d('K, 2('K, +

—g2gas,K+) (2.8)

2 —K,+ — ig + —K,++
d( l

' K, )
I

—gigv~K )
(2.9)

g5

dg
= (2 —K —K )gs+ —K +KC 8 C 8 K. )

(2.10)

2- K.'—K, 2 ' K, ' K,gs + —K,+ + —K.+ —
I

—gsg9 g4gs, (2.11)

dg, =~2 —K+ — g, ~ ~ K+~
d( l

' K ) 2 l
' K,

—K — —g4g9,K. )
(2.12)

(' =
]

2 —K+ — gs+ —K,+—
l

' K.+ 2 l
+ Ks

s c j
(2.13)
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egg 1

df.' l K,
g~ (

gg + ——Kc + —Ks + —Ks —Ks &4&7 ~3~6 )
s

(2.14)

gBS = (2 —K, —K, )gBs g293&
+ (2.15)

dgU = (2 —K, —K,+)gU —ggg4& (2.16)

din Kc 1 K— 2 2 2 1 2 2 2 2

d
' = 2l

— . (~ +a. +~U)+K (u +u. +g. +a.),
)c

(2.17)

dlnK, 1 3 3 3 1
(&3 + &3 + &Bs) + K (A + &4 + gs + Qs)K,

(2.18)

"lnKc 1 +Kc (~4 + ~7 + gS + ~U) &

2
(2.19)

s + 3 3 3 3
2Ka (~3 + 96 + ~8 + gBS) & (2.2O)

dint' 1 ( 1 1
(2.21)

In addition, there are two equations describing evolutions
of velocities v, , but one can always include these correc-
tions into the definition of the correlation exponents.

In comparison with the equations obtained in Refs. 13,
14 our RG equations (2.6)—(2.21) are already written in
terms of physically relevant combinations of original g-
ological" couplings, and so one could hope that this de-
scription might appear to be more transparent. As we
shall show the above system consistently demonstrates
a development of the strong coupling regime in rather
general conditions, and so we do not take into account
next-to-leading order corrections which would be only
necessary if one discussed fixed points at finite coupling.

First, in the case of spinless fermions away &om half
filling the only relevant couplings are g~, g2, and K and
Eqs. (2.6)—(2.21) reduce to those found previously. 3

However, in the physically relevant case of spin-2
fermions away &om p = 1 one can only neglect the cou-
plings g4, g7, gs, and gU associated with umklapp pro-
cesses and then the n»aber of residual couplings is large
(10) and coincides with that found in Ref. 7.

The fact that Eqs. (2.6)—(2.21) originate from the re-
pulsive Hubbard model simpli6es their analysis signifi-
cantly. To see that one can choose a two-step renormal-
ization procedure to that of Ref. 23 and integrate the
above equations first up to the scale Q = ln —wheretg
the renormalized amplitude of the single-particle hop-

~2Ag~(
~'(&) = &*ti(o) 2~t~ i

(2.22)

where 6;,i = 1, ..., 9, BS,U denote dimensions of rel-
evant operators and C; are the coefficients standing in
&oat of terms proportional to t~& in the right-hand side
of (2.6)—(2.14).

It follows from (2.22) that gq ((6) = —gz ((6)
&It3((6) = g4($6) = —

A&t 2 while all the other couplings
g;((6),i = 5, ..., 9 are of order A3. On the other hand at
( ) $0 one can also omit in (2.6)—(2.14) all inhomoge-
neous terms using g((6) as bare values. Naively, it would
mean that one has to account for the leading couplings
gg 2 3 4 plus g~s, gU first and then to treat all the rest as
additional perturbations. However, it turns out that the
solution is not so straightforward.

ping t~(g) becomes of order unity (and stops). It can
be easily seen that at g (6 one can still neglect renor-

malizations of the correlation exponents K,+ = 1 —'2

and Kp = 1 —~3 from their bare values corresponding

to z,+ = —z+ = A = —.
7rt

By straightforward generalization of the analysis of
Refs. 22,23 one can obtain the evolution of the couplings

g;(f) given by Eqs. (2.6)—(2.14) with only inhomogeneous
terms proportional to t~& kept,
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I.et us consider first the case away kom half filling.
Then it can be shown that the couplings g» g3 and gag
all tend to zero though g~ diverges. Asymptotically the
following relations hold:

g2(4) exp (i K,
»(&)

gs(()
»(&)

exp(~K, —

—K,K. K.

—K+
/

)

-+ 0,

m0,

(2.23)

"'"'-- (~'K-+ ' -K--K'~ o
(()

exp c K e s

gi(&) —gl(0)
K;(() K.-(0) '

2 —K.-(g)—

Thus we infer that K, (() vanishes while K, (jr) goes to
infinity. But this means that the assumption about the
smallness of the couplings gs 9 made on the basis of
their values at ( = (o was not quite correct. Namely,
one has to include those terms which contain one of the
fields P, or 8, which are "close" to getting locked. A
simple inspection yields that the second relevant coupling
(besides gi) is gs while in the case of p = I one has to
keep g4 s U as well. The resulting system of equations in
the range (0 ( ( ( &

reads as

coupling regime in accordance with the complete &eezing
of charge degrees of &eedom at p = 1.

To facilitate the analysis of the leading instabilities of
the complete Hamiltonian (2.3,2.5) one has to consider
eight relevant order parameters where plus and minus
correspond to intra- versus interchain type of ordering,

CDW+ ——) 4f t @ „cos(P++ P, ) cos(P+ + P, ),

(2.3o)

CDW = ) @~t4' „cos(/++8, ) cos(/++8, ),

(2.31)

SDW+ ——) 4'~t ilI „cos(P++ P, ) cos(8+ + 8, ),

(2.32)

SDW = ) 4~t@ „cos(P++ 8, ) cos(8+ + P, ),

(2.33)

SS+ ——) 0 4f 4f „cos(8++ 8, ) sin(P+ + 4&, ),

(2.34)

dgy 1

dg 2
= —(Z —Z )gl g4gU

dg6 1

d( 2
= —(z, —z, )gs —g4gs,

dZc = gi +gU&

(2.24)

(2.25)

(2.26)

SS = ) o'@~ @ „cos(8++ P, ) sin(/+ +8, ),

(2.35)

TS+ ——) u4'~ 4' „cos(8++8, ) sin(8+ +8, ),

(2.36)

dz 2 2 2
gs (2.27)

TS = ) o 4f„@~„cos(8++ P, ) sin(8,+ + tt&, ).

(2.37)

dZS —gs + gs& (2.28)

c 2 2 2
+

= g4+gs +gU. (2.29)

Away from half filling all g4, s U freeze at ( ln
& (and,

consequently, z+ is frozen too) and there are only gi, s
left over. Then the system (2.24)—(2.29) demonstrates a
development of the strong coupling regime in all channels
except the + charge one [namely& gi(() & gs(g) -+ —oo and
z, (f),z+(f) ~ oo while z, (() -+ —oo]. As usual, these
tendencies have to be undersood in such a way that at

all couplings reach values of order unity and do
not vary further.

Including the couplings g48 U at b —+ 0 one can see
that they do not alter the behavior found for the doped
case while the + charge sector is also driven to the strong

Remember that if any of the fields (P,+, or 8,+,) gets
locked, then the corresponding cosine acquires a nonzero
expectation value and (cos P(z) cos $(0)) ~ ](cosg(0))]
as z tends to infinity. On the other hand, Buctuations of
both this variable and its dual one become gapful. For-
mally one can identify the state where PP, is ordered
with the limit K+, ~ 0 whtile 0+, becomes ordered at
K+, -+ oo.

Then one can easily see that in the case when 0, and
P,+ are locked the only competing instabilities are the in-
terchain charge density wave corresponding to the order
parameter CDW cos(4&+ + 8, ) and the interchain
singlet pairing described by SS cos(8, + P, ). In
fact, the former state can be also recognized as a coun-
terpart of the two-dimensional Qux phase. Indeed, this
state is characterized by the commensurate with density
Qux 4 = 2A:~ which is defined as a circulation of a phase
of the on-rung order parameter (u,. d, + d,.u;) through at . t

plaquette formed by two adjacent rungs of the ladder. In
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the case of spinless fermions this type of ordering called
"orbital antiferromagnet" was first considered in Ref. 24
as a prototype of recently proposed two-dimensional Hux
states.

Although the Qux phase can be in principle realized
in some extended models we see that in our case of the
double-chain Hubbard model where the field P, also gets
locked the ground state is a spin-gapped singlet supercon-
ductor.

It is also instructive to express the above order param-
eters in terms of the hybridized one-particle states cor-
responding to the above-mentioned "bonding" and "an-
tibonding" bands,

CDW = ) A~~ A1, —B~~ Bl, ,

SS = ) At~ At~ —B~~ B~~ (2.3S)

Considering the distribution of signs of the order pa-
rameter SS on the "four-point Fermi surface" [k
(k~, 0), (—ki;, 0), (k~, z'), (—k~, z')] we observe that it
corresponds to "d-wave" type pairing. We conjecture
that in a two-dimensional array of weakly coupled dou-
ble chains with a continuum Fermi surface this type of
ordering does transform into ordinary d-wave pairing.

testify in favor of this picture.
We also want to stress that our conclusions contradict

a recent claim about the existence of the strong coupling
6xed point where some spin excitations remain gapless
made in Ref. 25. These authors considered the double-
chain t—J model without an interchain spin exchange
(J~ = 0). Then on the bare level their Hamiltonian
can be assigned to the universality class of the purely
forward scattering model considered in Ref. 16. In this
special case indeed the only field becoming massive is 0, .
In principle, it cannot be ruled out that for some spe-
cific double-chain models only part of all relevant fields
acquires masses and the others remain massless. One ex-
ample of this type was discussed by the authors of Ref. 26
who found only P, and P+ to be massive in the &ame-
work of the model including solely an interchain interac-
tion of fermions with opposite spins.

However, our investigation of Hubbard-type models
shows that the presence of the interchain one-particle
hopping is already sufficient to generate the antiferro-

magnetic spin exchange term with J~ ~& which makes
all spin modes gapful at p ( 1. We believe that spin
liquid behavior with a finite spin gap which evolves into
"d-wave" pairing upon doping is a robust feature of a
whole variety of spin isotropic models of strongly corre-
lated fermions on weakly coupled double chains.

III. CONCLUSIONS

In the present paper we applied the bosonization
method to find further arg»roents in support of the re-
cently proposed scenario of singlet superconductivity in
the spin-gap state of doubled Luttinger chains. Previ-
ous results obtained in the framework of the mean field
approach z as well as earlier numerical studiess s s also
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