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The I'-X transition rate for electrons in type-II superlattices is calculated for the case of optical-
phonon emission. The tight-binding method for electronic band structure and the dielectric continuum
model for phonons are used. The relative strength of scattering due to different phonon modes is exam-
ined for varying superlattice dimensions. The scattering rate is highest when the energy separation be-
tween the T and X levels is smallest, and decreases quickly as the separation increases. It is found that
the strongest scattering rate is due to the emission of AlAs confined modes. Changing of parity with lay-

er thickness and its effect on scattering are discussed.

I. INTRODUCTION

Recently, there has been considerable interest in hot-
carrier dynamics in heterostructures. One important is-
sue in this area has been the relaxation of photoexcited
carriers from higher-energy subbands to the lower ones.
This process has been studied extensively both experi-
mentally and theoretically because of its fundamental na-
ture as well as for possible device applications.!”” Most
of the work up to now has been on type-I heterostruc-
tures where the band gap of one material is entirely nest-
ed within the band gap of another material. Consequent-
ly, electrons and holes are both localized in the same lay-
er in these structures. On the other hand, in the so-called
type-1I superlattices, the holes are localized in one layer,
whereas the lowest-energy electrons are contained in the
opposite layer.® This is due to the staggered band align-
ment in these heterostructures. The well-studied
Al ,Ga,_,As/GaAs superlattices can be made type-II by
appropriately choosing the layer thicknesses and alloy
compositions. For example, GaAs/AlAs superlattices
with thick AlAs layers are known to be type-1I for GaAs
layer thicknesses less than or equal to 35 A (12 mono-
layers).® Type-I to type-II transitions can also be
achieved by application of external forces such as an elec-
tric field or hydrostatic pressure. In the case of type-II
structures, the lowest conduction-band level is not in the
GaAs but in the Al,Ga,_,As layer. In type-I hetero-
structures, electrons photoexcited from the valence band
to the conduction band relax to lower-energy levels
within the same layer. However, in type-II structures,
the electrons excited to a direct-gap energy level (I") in
one layer then can relax to an indirect-gap energy level
(X) in the adjacent layer. This is a very interesting case
because electron relaxation occurs in conjunction with
real-space transfer. This process, which is normally for-
bidden, is now possible due to the mixing of ' and X
states by the superlattice potential and relaxation of
momentum conservation due to interface disorder (lateral
mixing). Several experimental results related to I'-X
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transfer are available in the literature.’>~” In spite of the
spatial charge transfer, the relaxation rate can be very
high. Experimental evidence has been presented that
I'-X electron transfer occurs by the emission of long-
wavelength optical phonons.” However, a detailed
theoretical analysis for the I'-X transfer in type-II struc-
tures has not yet been given.

In this paper, we calculate the I'-X scattering rates due
to optical-phonon emission using a realistic band-
structure model and show that this is an important mech-
anism for the I'-X relaxation process in type-1I superlat-
tices. The paper is organized as follows. In Sec. II, we
present the tight-binding model and the dielectric contin-
uum model used in the calculation. Evaluation of matrix
elements is explained. In Sec. III, we present and discuss
our results of electron relaxation rates. Finally, in Sec.
IV, a summary is given.

II. FORMULATION

It is well known that the electron-optical-phonon in-
teraction in low-dimensional systems can be altered
strongly due to the confinement of the carriers and the
confinement of the phonons. Usually, a single-band,
spherical effective-mass model is used for the description
of the confined carrier states. It is commonly assumed
that each of these states is derived from bulk states of a
given symmetry only (e.g., I, X, or L), and levels derived
from different bulk states do not interact with each other.
In a superlattice, momentum in the growth direction is
not conserved due to the discontinuities in the superlat-
tice potential in this direction. Therefore, bulk states of
the same energy but different symmetry can couple with
each other. For a superlattice grown in the z direction,
the sixfold degeneracy of the X valley is removed, with
the formation of an X, doublet having momentum along
the growth axis, and an X, , quadruplet, with momentum
in the plane. The X, , and L minima are not coupled to
the I" valley due to the conservation of lateral momen-
tum. Therefore, only the I' and X, valleys are coupled
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through this potential. Accordingly, out of all the X
states, only the X, states are mixed with the T states by
the perfect superlattice potential, and, herein, the X point
will be used specifically to mean X,. As a result of this
coupling, the confined states are made of more than one
bulk state and the electronic band structure is more com-
plicated in type-II superlattices. Therefore, the
envelope-function approximation, which works very well
in many cases, is not suitable in this case. The basic as-
sumption of the envelope function approach is that the
zone center periodic parts of electronic wave functions do
not differ significantly between the materials composing
the heterostructure. This assumption is no longer valid
in type-II superlattices since the band extrema in the
different materials lie at the different points in the Bril-
louin zone. In type-II superlattices, a model for band
structure that can handle the mixing between different
valleys is needed. Several such methods have been em-
ployed in the literature.” !* In this study, an empirical
tight-binding method with an sp3 basis is used for
describing the electronic band structure.!>!® The mixing
of the I' and X valleys is included intrinsically in this
model since the complete band structure is described in
the tight-binding method. In the tight-binding method,
the wave function is built up from atomiclike orbitals:
1 ik-(R, +r1;)

¢n(k’f):; }a; Cn,i,a(k)ﬁ > e

XEialt— (R, +1,)],
(1)

where n indicates the band, i indexes the ions in the unit
cell, a designates the orbitals (i.e., s, p, p,, and p, for the
anion and the cation), ¢, ; , are expansion coefficients, N
is the number of unit cells in the crystal, a indexes the
Bravais lattice sites of the crystal, R, is the correspond-
ing lattice translation, and k is the electron wave vector.
In this equation r; and §; , denote the relative position of
the ith ion within the unit cell and the atomiclike orbitals
centered at the ith ion, respectively. The above equation
applies to both bulk materials and superlattices as long as
the unit cells are chosen appropriately. In the superlat-
tice, the unit cell should cover one period along the
growth direction. For a superlattice, we refer to the ex-
pansion coefficients ¢, ; ,(k) as the envelope functions.
The atomic orbitals making up the tight-binding wave
functions satisfy the orthonormality condition:

[, dretlr— (R, +1)) o [1— (R, +1)]
=84,¢0;i044 - (2)

In this calculation, first and second nearest-neighbor in-
teractions are retained. The parameters used in the
tight-binding calculation are taken from Ref. 9. These
parameters were optimized to reproduce the highest
valence band and lowest conduction band accurately.
The parameters across an interface are taken as the aver-
age of the values from the two bulk regions. The impact
of not knowing the parameters across the interface exact-
ly was minimized by using a minimum number of cross-
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interface parameters. The superlattice band structure is
not sensitive to these parameters except for very small
layer thicknesses. The spin-orbit coupling and camel-
back features of the X band are neglected, since these will
not affect the I'-X mixing. The X states in the plane of
the interface (X, ,) are not coupled to the I" states by the
perfect superlattice potential. However, these X states
are mixed with the T states by interface disorder.!> Obvi-
ously, this effect will be more important for very short
period superlattices. Interface disorder effects are not
taken into account in this study.

For proper calculation of the electron—optical-phonon
scattering rates, the effects of phonon confinement should
also be taken into account. It is well known that the vi-
brational modes in low-dimensional structures are
different from those in the bulk. Microscopic lattice-
dynamical models have been used with great success to
model these phonon modes.'”"'® However, using these
models in the calculation of electron-phonon interactions
requires intensive computation. Therefore, for the
description of optical-phonon confinement, the dielectric
continuum (slab) model employing electromagnetic
boundary conditions is used in this work because of its
simplicity and reasonable accuracy.'”?!' The elec-
tromagnetic boundary conditions ensure the continuity of
the electrostatic potentials and are based on having con-
tinuous tangential components of the electric field as well
as continuous normal components of the displacement
fields across the interface. This model predicts the ex-
istence of confined longitudinal-optical (LO) phonon
modes for both layers and several interface modes due to
the dielectric discontinuity between the two media.
There is no dispersion for confined phonon modes in this
model, and the frequency of each confined mode is taken
to be identical to the zone-center frequency of the bulk
LO phonon. At the same time, these modes are totally
confined within an individual layer, and the phonon po-
tential of one type of layer is identically zero in the adja-
cent layer. Hence, phonon potentials in each well do not
interact with each other, and consequently, confined pho-
non modes in a superlattice may be expected to be similar
to those for a quantum well in this picture.

Figure 1 shows a schematic drawing of the band-edge
alignment of a type-II superlattice grown in the z direc-
tion. The thickness and dielectric constant of material I
(I) are denoted by d, (d,) and €, (€,), respectively. The

F—d2 dq } dz—'1
€1 €2 €4 €2 €1
_____________________ X
1 11 | 1 I
I
(n-1)d +dq nd nd + dq (n+1)d
|“ n'™ Unit Cell ‘—‘——"4

z —

FIG. 1. Schematic drawing of the band-edge alignment of a
type-II superlattice grown in the z direction.
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electron—-optical-phonon interaction Hamiltonian in this
structure can be expressed as an expansion of the scalar
potential in terms of the normal modes as follows:?!

H=3 (—e)e"""4(qy2)aq +aly ) . 3)
q
J
oy 1" R
— l —
bc,(@pz)= ANd,eO] (@) €0

{sin[m#(z—nd)/dl]/[qﬁ+(m1r/d1 LA
X

0, nd+d,<z<(n+1)d ,

where A is the cross-sectional area in the x-y plane, N
denotes the total number of unit cells, and n indexes the
unit cells. The confined phonon frequency w; ; is taken to
be identical to the bulk LO phonon frequency at the
center of the zone. The Hamiltonian for the confined
modes of material II is given by a similar expression. The
interface phonon modes in a superlattice, on the other
hand, are modified due to the periodicity of the structure
and the overlapping of potentials.!®?° In this case, the
phonon potential extends over the whole superlattice.
The resulting Hamiltonian due to interacting interface
modes is very complex. To simplify the calculations, in
this work, we derive the Hamiltonian for interface modes
only for the case of g,=0. The phonon-dispersion rela-
tions obtained with this condition are as follows:
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Here, a__ (a, ) is the creation (annihilation) operator, ¢

“lu 9
is the electrostatic potential, and q, and p are the two-
dimensional phonon wave vector and position vector in
the x-y plane, respectively. The electrostatic potentials

for the confined modes of material I are given by'®

nd<z<nd+d,, m=123,...,

€,coth q“dl +e€,coth q”d2 (6)

for antisymmetric modes. Typical dispersion relations
for symmetric and antisymmetric interface modes are
shown in Fig. 2. In this figure, the interface phonon fre-
quencies do not go to the bulk frequencies of the constitu-
ent materials as g, goes to zero. For the general case of
4,70, they do approach bulk vales at the zone center.!

The deviation of the dispersion curve with g, =0 from the
dispersion curve with small but nonzero g, is significant
only when g is small. These phonon modes are not ex-
cited in the intersubband transition because the excess en-
ergy of the scattered electron permits only relatively large
g, phonons to be emitted in this process. Therefore, the
values of the dispersion relations with g,=0 and with

small but nonzero g, are very close to each other for the
€ tanh qudl +etanh q"d2 ) g, range of interest here. Accordingly, the dispersion re-
lations from the above equations are appropriate for our
purposes. The electrostatic potential of the symmetric in-

for symmetric modes, and terface mode (with g, =0) is given by

|
2 112 3¢ 3, -1/2
S = | e o4 1 iqep
#1r(q),2) eod % tanh q”dl % —tanh q"d2 l \/E” e (aq” +at ~q )
cosh[q,(z—(nd +d,/2))]/cosh(q,d,/2) , nd <z<nd+d, ,

X |coshlq,(z—(nd +d, +d, /2))] /cosh(g,d, /2) , nd+d,<z<(n+1d . M

An expression analogous to Eq. (7) can be obtained easily for the antisymmetric interface modes. Figure 3 shows a typi-
cal interface phonon potential for the symmetric and antisymmetric modes.
Having obtained the appropriate electronic states and phonon modes, the electron-scattering rate due to optical-
phonon emission is calculated by using Fermi’s “golden rule:”
W,.n (k)= El (K, K| 28( (E;—E;+fio) , (8)
where H,,, (k,k’) is the matrix element, m (n) indicates the initial (final) subband, and k (E;) and k’ (E) are the initial

and final wave vectors (energies), respectively. The temperature is taken to be close to 0 K and the phonon occupation
number is taken to be very small. Under this condition, the matrix element, H,,, (k,k’), is obtained as follows:

Hmn(k’k’)=2 2 cr:i’,a’(k’)cm,i,a(k) 2 e—ik"(Ra'+’i’)eik‘(Ra+ri)

iLi' a,a’ a,a’

X [, dr$(r)Es olr—(Ry+r)1E o[r— (R, +1))] . ©)
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FIG. 2. Dispersion relations for the symmetric and antisym-
metric interface modes for a superlattice of 8 monolayers of

GaAs and 12 monolayers of AlAs with g, =0.
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Phonon Potential (arbitrary units)

-1.0 1 | 1 1
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FIG. 3. Electrostatic potentials for the symmetric and an-
tisymmetric AlAs interface modes in a superlattice of 8 mono-
layers of GaAs and 12 monolayers of AlAs with ¢,=0 and
q,=0.05(2m/a), where a is the lattice constant. In this figure,
the first and third regions are GaAs, the second region is AlAs.
One period of the superlattice is from z=0-20. The potentials
repeat with this periodicity throughout the superlattice.
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The phonon potentials vary slowly in a unit cell com-
pared with the atomic orbitals which are localized
strongly at atomic locations. Therefore, the phonon po-
tentials can be taken out of the summation in the above
equation. Due to the orthonormality of the atomic orbit-
als, performing the summation in Eq. (9) reduces the ma-
trix element to the following:

Ifmn(k’k’)z 2 2 cr:i,a(k’)cm,i,a(k)

X$(R,+r,)8(k'—k+q,) . (10)

The sum over all possible finite states within the two-
dimensional Brillouin zone is evaluated numerically.?
For simplicity, the interface phonon energy is taken as a
constant in the energy-conservation equation since the
dispersion is small. For the calculation of the Hamiltoni-
an, however, phonon frequencies are taken to be those
obtained from the dispersion relations given above.

III. RESULTS AND DISCUSSION

As a specific example, a superlattice with M layers of
GaAs and N layers of AlAs is conside;red in this study.
The lattice constant a is taken as 5.66 A for both materi-
als. Table I lists the band-edge values of GaAs and AlAs
taken from Ref. 9. In this paper, we are especially in-
terested in the energy range from the X point of AlAs
(1.68 eV) to the X point of GaAs (2.1 eV). This is where
the ' and X bands mix strongly. In a superlattice, bulk
states of same energy and parallel momentum, but of
different wave vector in the z direction combine to make
an electronic state. The energy levels at the miniband
minimum obtained from the tight-binding calculations as
a function of AlAs layer thickness are shown in Fig. 4.
The GaAs layer was kept constant at 8 monolayers. The
levels are labeled as I' and X following the effective mass
notation for convenience although each level is actually a
combination of these two bulk states. Here, the superlat-
tice states are named after the more dominant of the two
bulk states forming them. In this figure, superlattice en-
ergy levels mainly derived from the same bulk states are
connected with lines for easier visualization. Due to this,
it may appear as if the levels cross at certain points.
However, the levels actually do anticross due to the mix-
ing effects included in this calculation. This happens
when the two levels with the same parity become very
close in energy. A careful examination of Fig. 4 reveals
that these levels actually repel each other. As can be
seen, the effect of changing the AlAs layer thickness is to
make the energy difference, and accordingly, the interac-
tion between the lowest I' level and the X levels vary.

TABLE 1. Band-edge values for the I" and X points in GaAs
and AlAs. Zero point for the energy reference is the top of the
GaAs valence band.

Band edge GaAs (eV) AlAs (eV)
r 1.52 2.58
X 2.1 1.68




The parity behavior of states needs to be mentioned
briefly because of the effect of parity on the overlap. In a
superlattice, the electronic wave functions have definite
parity only when the electrons are at the miniband
minimum or miniband maximum. The coefficients of the
s (p,) orbitals have the same (opposite) parity as the level
itself.® When k,=0 is assumed (i.e., at the bottom of a
miniband), the parity of the superlattice wave function is
the same with respect to the center of the barrier and the
center of the well. In this case, the parity of the I'; state
is even, regardless of AlAs layer thickness. The parity of
the X levels, on the other hand, depends on the number of
AlAs monolayers. The X; levels (i=1,2,3, . ..) with odd
(even) i have the same (opposite) parity as N. The parity
behavior of states is important because the states of oppo-
site parity do not mix for k,=0. For k,70, the electron
states do not have well-defined parity and all states mix.
This mixing, however, is much weaker than had their
parities been the same.

Figure 5 shows the tight-binding envelope functions for
the third and fourth energy levels for the superlattice of
M =8 and N=16. (These energy levels correspond to X,
and I'; in Fig. 4, respectively.) As can be seen, the en-
velope functions have distinct I' and X characters here.
The envelope function of the fourth level is localized
mostly in the GaAs layers and therefore it is I'-like. The
envelope function of the third level is X-like since it is
strongly localized in the AlAs layers. For these superlat-
tice dimensions, the energy difference between the I' and
X levels is large enough so that their interaction is small.
Consequently, they can be identified as I'-like and X-like.
For the superlattice of M =8 and N =14 shown in Fig. 6,
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FIG. 4. Energy levels obtained from the tight-binding calcu-
lation as a function of AlAs layer thickness. The GaAs thick-
ness is constant at 8 monolayers. The discrete energy levels are z (monolayers)
marked as I (squares) and X (circles) after the more dominant
one of the two bulk states making up the confined state. FIG. 5. Tight-binding envelope functions for a

(GaAs),/(AlAs)y superlattice of M =8 and N=16 with k=0.
In this case, the p, and p, components vanish. The origin of the
coordinate system (z=0) is located at an As plane which is fol-
lowed by M monolayers of GaAs and N monolayers of AlAs.

Tight-Binding Envelope Functions (arbitrary units)

z (monolayers)

FIG. 6. Tight-binding envelope functions for a
(GaAs),/(AlAs)y superlattice of M =8 and N=14 with k=0.
Here, p, and p, are zero. The coordinate system is identical to
that of Fig. 5.
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both the third (I';) and fourth (X;) levels have sizable '
and X character. This is because they are very close in
energy and have the same parity. The effect of parity can
been seen in Fig. 7 where the envelope functions for the
superlattice of M =8 and N =15 are plotted. In this case,
the energy difference between the I' and X levels is com-
parable with the energy difference for N =14. However,
the parities are different. Therefore, there is no strong
mixing and interaction of these states contrary to the case
where N =14. These figures demonstrate the strong
effect of changing the layer thickness on the I'-X interac-
tion. This strong dependence is due to the fact that
thickness controls both the energy separation between I'
and X levels and the parity of X levels.

The scattering rates due to emission of different pho-
non modes are shown in Fig. 8. The results presented are
the sum of contributions by all normal modes for a given
type of phonon. In calculating the intersubband scatter-
ing rates, the electron is taken to be initially at the bot-
tom of the lowest I' subband (I";). It then transfers to
the lowest X subband (X,) by emitting an optical pho-
non. As can be seen from this figure, the relaxation rates
depend strongly on the AlAs layer thickness. There are
two reasons for this behavior. First, the energy separa-
tion between the I and X levels and, hence, the I'-X in-
teraction, change as the thickness is varied. Second, the
parities of the X levels alternate as the AlAs thickness is
varied by one monolayer each time. From Figs. 4 and 8,
the transition rate is strongest when the I' and X levels
are closest in energy and have the same parity. Under
this condition, the levels interact very strongly with each
other and the I'" level has large X character. Therefore,

03F n=3 E=1.802ev ! [

Tight-Binding Envelope Functions (arbitrary units)

1 1 1 1 1
0 5 10 15 20

z (monolayers)

FIG. 7. Tight-binding envelope functions for a
(GaAs),,/(AlAs)y superlattice of M =8 and N=15 with k=0.
Here, p, and p, are zero. The coordinate system is identical to
that used in Figs. 5 and 6.
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FIG. 8. T'|-X, transition rate due to optical-phonon emission
as a function of AlAs layer thickness. The GaAs thickness is 8
monolayers throughout. Scattering rates due to the GaAs
confined phonon modes are very small and hard to distinguish
in the figure.

the overlap between the initial and final states is large.
This interaction and the resulting large overlap decreases
rapidly as the energy separation increases.

An interesting point to note about Fig. 8 is that the
dominant phonon modes alternate between being even
and odd. This is because the parity of the X level alter-
nates each time the AlAs thickness is changed by one
monolayer. For even (odd) AlAs layer thickness, parity
of the lowest X level is even (odd); hence, the even (odd)
phonon modes are strong. Also, the effect of parity can
be observed at crossover points where the I' and X level
energies become very close. From Fig. 4, it is seen that
the two levels have almost the same energy for N =S5, but
they do not mix and repel each other. This is because I';
and X, have the opposite parity for this thickness. For
other thicknesses where the two levels become close,
however, they do repel each other because they have the
same parity. This is the reason why the transition rate
for N=19 is much stronger than for N =20. The energy
separation between the I'; and X4 levels is actually small-
er for N =20 than it is for N =19. However, as explained
before, the parities are opposite. This results in strong
(weak) mixing and transition rate for the N =19 (N =20)
case. For all thicknesses considered in this paper, the
AlAs confined modes are the strongest, followed by AlAs
interface modes. The GaAs modes are weaker than the
AlAs modes, with the GaAs confined modes being the
weakest. This is due to the fact that the final state X,
wave function is strongly confined within the AlAs lay-
ers. Consequently, the overlap involving GaAs confined
modes is very small. The contributions from the inter-
face modes become weaker as the AlAs thickness in-
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FIG. 9. T';-X, transition rate due to optical-phonon emission
as a function of AlAs layer thickness. The GaAs thickness is 8
monolayers throughout.

creases. This is similar to the case of type-I superlattices.

Depending on the layer thickness, there may be more
than one X level to which the ' electron may transfer.
The relaxation rate from I'; to X, is shown in Fig. 9. The
result for I'; to X; relaxation is similar to Figs. 8 and 9
and is not shown here. The discussion given for the
I';-X, transition applies for both these transitions as well.
The results obtained here may be compared with an ex-
periment by de Paula et al.,’ where the I to X transition
rate via phonon emission was obtained by a time-resolved
anti-Stokes measurement. For the case of M =8 and
N =14 (which corresponds approximately to the experi-
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mentally measured thicknesses of 23 A and 41 A, respec-
tively), they found the transfer time to be around 1 ps,
which is in agreement with the rate calculated in this
study. However, it is very difficult to make an exact com-
parison due to the nature of the experiment. Another
point to note is that it was not possible in their experi-
ment to determine whether intrasubband scattering was
also involved. In addition, there may be mechanisms oth-
er than optical-phonon emission for electron relaxation,
e.g., carrier-carrier scattering, nonpolar optical-phonon
scattering, and acoustic-phonon scattering. Besides these
mechanisms, interface roughness may cause additional
scattering as well.

IV. SUMMARY

The I'-X intersubband scattering rate due to phonon
emission is calculated by using the tight-binding method
for electrons and the dielectric continuum model for pho-
nons. Electron transition rates are presented as a func-
tion of AlAs layer thickness. As expected, the scattering
is strongest when the levels anticross. Among the various
phonon modes, the strongest are found to be the AlAs
confined modes and the weakest are the GaAs confined
modes. Scattering rates due to the interface modes are
observed to get weaker with increasing AlAs thickness.
The parity behavior of electron states and its effect on
scattering are examined. The results obtained are in gen-
eral agreement with the experiment.
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