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I-V characteristics of 1D-OD-1D double-barrier structures and persistence
of fine structure at high temperatures
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A theoretical investigation of coupled quantum-wire —quantum-dot —quantum-wire resonant-tunneling
diodes is presented, with particular emphasis on the basic mechanisms producing the fine structure in

the current-voltage characteristics. The possibility of having two diferent types of fine structure is
remarked upon, and an explanation is proposed for the relative lack of thermal smearing observed in cer-
tain devices that could be important for the use of low-dimensional devices at high temperatures. The
I-V curves are calculated numerically for two typical structures and very good agreement with experi-
ments is obtained.

I. INTRODUCTION

Three-dimensionally confined structures, namely,
quantum dots, have been fabricated in recent years by
means of both etching techniques' and the use of split
gates, ' opening the way for the possibility of studying
systems containing very few electrons (typically 1-5 in
etched structures and 1 —50 in gated devices). The
marked feature of quantum dots is the character of their
spectra which, for isolated dots, takes the form of sets of
individual levels. Various experimental techniques have
been used to investigate the properties of such structures,
among which transport measurements have proven very
successful in highlighting the zero-dimensional (OD) na-
ture of quantum dots. In this paper we shall focus our at-
tention on etched structures, though we believe that most
of the arguments will also apply to gated devices.

A typical structure for studying transport properties of
quantum dots consists of a GaAs-A1„Ga& As double-
barrier structure that is etched vertically to nanometer
dimensions, yielding a quantum dot "sandwiched" be-
tween two quantum wires (1D-OD-1D resonant diode),
one acting as an emitter and the other one as a collector.

The discrete nature of the quantum-dot spectrum is re-
vealed in transport measurements by the appearance of a
steplike fine structure in the I-V curve superimposed on
the broader peak typical of the current-voltage charac-
teristics of quantum wells, ' ' which sparked hopes of
using quantum dots for new devices based on a resonant
tunneling logic. The sharpness of these steps is funda-
mental for such devices to exhibit multistable logic
behavior; their thermal robustness also becomes a very
important feature if such devices are to operate at high
temperature.

Evidence of tunneling through OD states was observed
by Reed et al. ' in their measurements of the I-V curves
of 1D-OD-1D cylindrical resonant diodes. At low tem-
perature (1 K) a series of upward steps in the current was
clearly detected. As the temperature was raised, the
sharpness of the fine structure progressively deteriorated
until it was completely lost by about 35 K [see Fig. 4(b)].
In more recent experiments by Ramdane, Faini, and Lau-

nois, Faini et al. , and Faini, in the same type of struc-
tures used by Reed et al. ,

' both upward and downward
steps of OD origin were observed at low T, and the latter
persisted almost unchanged up to 77 K [see Fig. 3(d)],
and beyond.

Several papers ' ' have pointed out the competition
between two mechanisms in a quantum dot, namely, size
quantization and charging effects, each producing a
discrete spectrum and manifesting in the same fashion ex-
perimentally. While the appearance of upward steps is
well understood theoretically ' "" in terms of the
single-particle aspect of 1D-OD-1D resonant tunnel-
ing, ' '" downward steps have received little attention
and their thermal properties, to the best of our
knowledge, have never been addressed. Studies of the
electrostatic effects in a quantum dot are also available in
the literature, ' ' however, quantitative calculations of
I-V curves of 1D-OD-1D structures including the electro-
static interaction inside a dot have, as far as we know,
never been performed.

To fill this gap we have modeled the electrostatic in-
teraction inside a quantum dot by means of a Hubbard-
like Hamiltonian, which has been inserted into a
transfer-matrix framework that enables us to calculate
the I-V curve of a quantum-wire —quantum-
dot —quantum-wire structure. The effects of a finite tem-
perature are also included, enabling us to give an ex-
planation of the observed thermal robustness of down-
ward steps and to suggest designing criteria to obtain de-
vices showing OD features at room temperature.

II. QUALITATIVE ASPECTS AND METHOD

The system under consideration is a cylindrical struc-
ture formed of two quantum wires and a quantum dot.
The wire exhibits a spectrum of 1D subbands filled up to
the Fermi energy, while the dot has a fully discrete spec-
trum, see Fig. 1. The study of the quantum-dot spec-
trum is simplified by the fact that, in all experimenta1 sit-
uations, its dimension along the growth direction, i.e., the
separation between the barriers (Fig. 1), is about ten
times smaller than the lateral size of the cylindrical pillar.
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FIG. 1. Top: schematic view of the 1D-OD-1D resonant
diodes. Bottom: opening and closing of channels when dot lev-

els and emitter subbands are equally spaced; the dot states are
shown at threshold voltage and in proximity to the subbands'
bottoms. The expected I-V curve is shown: as all the channels
close for the same voltage, the negative-di8'erential resistance
region does not show steplike structure.

Longitudinal quantization produces such a large energy
difference that all but the energy levels resulting from the
lowest longitudinal quantization are irrelevant in this
work. We will return to this point later in the paper.

The lateral confining potential in the wires and dot is
essentially the same, and results from the pinning of the
Fermi level at the surface at about midgap. ' ""While
the quantum-wire regions are doped to ensure the pres-
ence of electrons in the conduction band, the region
around the quantum dot is kept undoped to avoid con-
tamination of the Al Ga&, As barriers. As previously
reported, "' the nonuniformity in the doping concentra-
tion gives rise to large upward band bending around the
quantum dot. Due to the band bending around the dot,
at zero applied voltage the quantum-dot states are well
above the Fermi energy in the emitter and so no electrons
can tunnel.

The application of an external voltage moves the states
in the quantum dot towards the Fermi energy in the
emitter. The potential barrier to the well gives rise to a
large threshold voltage"" before the lowest dot level is
aligned with the Fermi energy and electrons from the

emitter wire can tunnel. As the voltage is further in-
creased the higher quantum-dot states will follow suit.

As in the case of large-area quantum wells, the effects
of surface roughness and changes in the confining poten-
tial along the structure have little consequence on the
tunneling process because the variations that they pro-
duce are smooth on the length scale of a typical electron-
ic wavelength. One can, therefore, assume that the tun-
neling process takes place in a "lateral state" conserving
regime, i.e., the electrons from the lowest emitter sub-
band tunnel only through the lowest dot state, those from
the second subband tunnel via the second dot state, and
so on, as a detailed calculation by Bryant' confirms. In
other words, the transverse nature of the subband wave
function ensures that there is little cross coupling be-
tween wire and dot states arising from different subbands.
Thus, we can consider the contribution from tunneling
via each subband independently. There will be, therefore,
step increases in the current as each tunneling channel as-
sociated with a subband opens. This is shown schemati-
cally in Fig. 1.

For higher voltages, the lowest quantum-dot level will

eventually reach the bottom of the lowest subband in the
emitter and resonant tunneling from the lowest subband
will no longer be possible. There will then be a step de-
crease in the current as that channel closes. There will be
similar step decreases in the current for each subband at
the voltage corresponding to the alignment of the dot lev-
el with the appropriate subband. We would expec&,
therefore, the I-V characteristic to consist of the super-
position of these upward and downward steps.

The lateral confining potential in the emitter and dot is
essentially the same; a single-particle picture would,
therefore, predict similar energy separations both in the
quantum wires and dot. The channel opening occurs at
voltages determined by the alignment of the dot levels
with the Fermi level. The channel closure, however,
occurs through alignment of the subband minima and the
dot levels. If the dot-energy level separation is essentially
the same as in the wires, al/ the channels will close simul-

taneously giving rise to a large but structureless drop in
the current (as shown in Fig. l). Only if the dot-energy
levels are different from those in the wire will a down-
ward staircase be seen (Fig. 2). In practical terms, one
can assume the energy spacing in the two regions to be
different if such a difference is not swamped by the width
of the resonant levels inside the dot. There is, in fact, ex-
perimental evidence for both types of fine structures'
[Figs. 3(d) and 4(b)].

It is important to note that the above analysis suggests
quite different thermal behavior for the opening and clos-
ing of the channels. The opening of a channel is related
to the states in the emitter that are at the Fermi level. As
the temperature is raised, the I-V structure resulting
from channel opening wi11 acquire a finite width,
reflecting the thermal occupation of the states around the
Fermi level in the emitter. The step increase in the
current will be washed out when the thermal smearing
( =kT) is of the same order as the dot-energy splittings,
i.e., when

kT =E„+) —E„. (I)
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On the other hand, the closure of a channel is related to
those states lying at the bottom of a subband. These are
several meV below the Fermi energy (see Fig. 2), so that
they will only be affected by thermal smearing at much
higher temperatures, i.e., when

E2

kT =E —E„.f (2)
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FIG. 2. The energy separation of the dot states is bigger than

the subbands splitting in the emitter, and this results in the
downward steps in the negative-differential resistance region of
the I-V curve. Note that in the vicinity of channel closing the
electrons that tunnel resonantly are far away from the Fermi en-

ergy.

In a typical device structure' ' "we would expect that
E„—E„+&=5meV while Ef —E„=20rneV. This would

give typical maximum temperatures for the observation
of channel opening (upward staircase in the I Vcur-ve) as
30 and 200 K for the channel closings (downward stair-
case on the I-V).

This has very important consequences for the design of
high-temperature operation of quantum-dot devices. It is
now seen that it is essential to optimize the differences be-
tween the energy levels in the dot and the wires. This is a
very different requirement from optimizing the energy
separation within the dot. The structural parameters are
not directly relevant to the former since, in the etched
structure, it is the lateral potential which governs the sep-
aration and this is the same for wire and dot. However,
the confinement within the dot can give rise to a large
Coulornbic term, which as we shall show, can produce
the required effect.

As already pointed out in several works, ' ' ' ' the
confining potential in etched structures is smooth and can
be assumed to be parabolic without lack of accuracy.
With this assumption, one finds for the single-particle en-

ergy spacing,

8x10 3:: (o) 1K : (b) T=25 K

4x10 3 4x10 3

~ ~ ~ ~ I

0.1 O.Z 0.1 O. Z

8 x 10-3:
: (c) 77 I&

4x10 3

0.6
v

~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~
1 14 1.8

V(Volt)
FIG. 3. Calc lu ated I-V curve at 1 K for the double-barrier structure of Faini et al. ; (b) the temperature is raised to 25 K: the up-

ward steps are almost lost while the downward ones show no change; (c) I-V curve at 77 K showing very good agreement with (d) the
experimental curve at 77 K. All calculated curves are shown from threshold voltage.
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potential,

'm—co'(r )'= ,'E—„, (4)

i.e., the energy that characterizes the parabolic
confinement scales with the inverse of the radius R of the
cylindrical diode; here m is the electron effective mass
and b, Vis the lateral confining potential ( =Es,z/2).

To estimate the electrostatic interaction inside the dot,
we can take as a first approximation the extension r of the
electron wave functions by recalling that, for a parabolic

e (2mb, V)'U=
4ne&fi.R

(5)

where E„is the energy of the nth harmonic oscillator
state. Taking (r ) from Eq. (4) as the average separation
between two electrons in the dot, one finds for the
Coulomb interaction, '
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where the symbols in Eqs. (4) and (5) have their usual
meaning. The average separation of two electrons in the
dot so calculated assumes that the wave functions have
negligible spread in the longitudinal direction, since the
size along the growth direction is about ten times smaller
than (r ).

For GaAs the two energies are approximately equal (at
5 meV) for R =90 nm. Thus, for devices where the ra-
dius is significantly less than 90 nm, we would expect size
quantization to dominate. These devices would be
characterized by upward steps with poor high-
temperature resolution. In contrast, devices with R
larger than or of the order of 90 nm, there would be a
significant contribution to the level spacing from
Coulombic effects within the dot. This should enable the
more thermally robust downward staircase to be ob-
tained.

A convenient way of accounting for the electrostatic
repulsion is to use a Hubbard-type interaction. This re-
sults in an enhancement of the energy spacing between
the ¹h and (N + 1 }th level, in a Hartree-Fock sense,
from (E„+, E„}as giv—en by an independent-particle
picture to (E„+, E„)+NU,w—here U is the average elec-
trostatic interaction of two electrons inside the quantum
dot. Such an approximation should give a fairly faithful
account of the principal effects of electrostatic interaction
in a confined region, as it has proven to do, for example,
in explaining the enhanced period of Aharonov-Bohm os-
cillations of the conductance of quantum dots. '

Assuming a parabolic confining potential, the Hubbard
Hamiltonian for a quantum dot becomes

H= g(p2, +p2)l

1
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FIG. 4. (a) Calculated and (c) experimental I-V characteris-
tics of the devices by Reed et al. at 1 K: see how the total num-
ber of fine structures is again correctly reproduced by our calcu-
lations. These fine structures are mainly produced by channel
opening so that they disappear rather quickly as the tempera-
ture is raised as shown in (b) (T=30 K). Note, however, how
the two downward steps survive at high temperature in (b).

where m is the effective mass, co characterizes the
strength of the parabolic confinement, N is the total num-
ber of electrons in the dot, and U is the average electro-
static interaction.

This Hamiltonian can also be viewed as resulting from
an approximation to the Coulombic interaction within
the dot. It has already been pointed out that due to the
confinement the Coulomb interaction can be approximat-
ed by simpler analytically tractable forms, which can give
exactly solvable model Hamiltonians. The present
Hamiltonian arises when the in-plane Coulomb interac-
tion is approximated by a constant rather than by a para-
bolic term. As in the case of the Johnson-Payne model,
one should primarily consider U in Eq. (6) as a fitting pa-
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rameter to best account for the effects of confinement,
surface charges, finite size along the growth direction,
etc. , that nontrivially modify the Coulombic interaction
inside the quantum dot. It can be seen from Fig. 1 in
Ref. 8 that a constant is at least as good an approxima-
tion as a parabolic potential for typical dot dimensions.

The approach we follow to calculate the I-V curve con-
sists of embedding Hamiltonian (6} in an effective-mass,
transfer-matrix framework. That is, the system consists
of a double-barrier-defined quantum dot within a quan-
tum wire. The states in the wire and dot are calculated
for the transverse and longitudinal potential along the
wire-dot-wire system for a given applied potential" using
the transfer-matrix method. Such a calculation also pro-
vides us with the wave function of each occupied electron
state inside the dot. The expression for N is obtained by
integrating over the occupied electron wave functions in-
side the dot:

N=g J dx J dy f dE f(E)
n

X Z E ~ XpPpZ

(7)

where the E„arethe energies of the subbands in the
emitter, f (E) is the Fermi-Dirac distribution function,
and a is the width of the quantum dot in the growth
direction. The sum over the subbands also accounts for
the degeneracy of each subband. Equation (7} shows that
N is both a function of temperature through the Fermi-
Dirac factor and the external bias through voltage-
induced changes in the wave functions and occupancy of
the dot. Each time N is calculated one finds a new posi-
tion of the energy levels in the quantum dots, so that the
whole procedure is iterated to self-consistency. Once
self-consistency is achieved, the transmission coeScients
for electron tunneling through the dot are calculated and
summed to give the current. Repeating the procedure for
all values of the applied voltage we obtain the I-V curve.
A more detailed account of our method will be presented
in future work.

III. RESULTS

The calculations presented here have been designed to
model two experimental structures. In the device de-
scribed by Reed et al. ' R was 50 nm. From the discus-
sion above, we would expect that size quantization would
dominate over electrostatic effects. In the Faini et al.
diodes the radius was 100 nm, so that the electrostatic
effect would be slightly more pronounced than size
quantization. Furthermore, Faini et al. used 85-A bar-

0
riers whereas Reed et al. ' employed 40-A barriers, so
that in the former case the electron confinement and
hence the electrostatic repulsion inside the dot could be
expected to be more effective. Su, Goldman, and Cun-
ningham' obtained the same conclusion by means of a
time-dependent analysis of resonant tunneling in double-
barrier structures.

Our calculations are shown in Fig. 3 for the structure
of Faini et al. In these calculations the value of U given

by Eq. (5} was 5 meV and the size confinement was also
about 5 meV. One can see [Fig. 3(a)] that, as expected, at
low temperature both upward and downward steps are
present. As the temperature is raised, however, the up-
ward steps are rapidly lost and have virtually disappeared
by 25 K [Fig. 3(b}], while the downward steps survive
with little changes to 77 K. The experimental results at
77 K are shown in Fig. 3(d} for comparison. The down-
ward staircase is clearly seen while the upward staircase
has disappeared altogether. Comparison of Figs. 3(c) and
3(d) shows that our calculations correctly reproduce the
number of fine structures observed experimentally. The
difference in the voltage scale of the structure between
theory and experiment reflects primarily the diSculty in
modeling the voltage drop in the collector and has noth-
ing to do with the physics of the dot. In addition there is
a smooth background current present in the experimental
device. '

The calculations have been repeated for the device
structure measured by Reed et al. ' Here size quantiza-
tion is about 11 meV while the electrostatic repulsion
from formula (5} yields a value of about 7 meV, but due
to the thin barriers used, the electrostatic repulsion inside
the dot is expected to be considerably reduced (Su, Gold-
man, and Cunningham' ). For this reason we have
chosen a value of U of 3 meV for the structures of Reed
et al. Our calculation at 1 K is shown in Fig. 4(a). This
reproduces the fine structures observed experimentally,
Fig. 4(c). Confirming our expectations, the I-V curve is
dominated by upward steps. In the experiment, the up-
ward steps are seen to disappear quickly with increasing
temperature (Fig. 3, Ref. 1), while the two downward
steps are still visible at the highest temperature in agree-
ment with the theoretical development shown in Figs.
4(a) and 4(b). The use of the larger value (7 meV) for U
simply scales the structure on the voltage axis without
changing the physical interpretation or temperature
behavior.

IV. DISCUSSION AND CONCLUSIONS

It is clear from the previous section that the Hubbard
transfer-matrix method gives a good account of the trans-
port properties. The model as it stands, however, does
omit some processes.

For the structures considered here, the size quantiza-
tion along the growth direction can be neglected because
the energy scale it produces is much larger than the
lateral one. Furthermore, for narrow quantum wells, the
linewidths of the higher longitudinal states are very
broad because of their position near the top of the well (if
they are bound at all}, which makes the observation of
fine features in transport due to these states unlikely. '
This argument effectively rules out the possibility of ob-
taining fine structure from the longitudinal quantization,
even if one could etch the lateral dimensions so that la-
teral and longitudinal confinement were comparable.
However, in the case of wide quantum wells where quan-
tum confinement could be similar in all directions,
channel-closing fine structure could be produced by lon-
gitudinal states being moved below the emitter band bot-
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tom in the way described in Sec. II. Their thermal prop-
erties would then be similar to those described in Fig. 3.
However, wide quantum wells would have a fine-energy
structure, so the resulting critical temperature would still
be low.

We have taken no account of inelastic processes. In
particular, the occurrence of the downward steps requires
that the filling of the dot states be negligible once they
move below the relevant subband energy. This is to be
expected in the structures considered above because the
states are separated by less than the optical phonon ener-
gies available, ' so the inelastic scattering rate into the
level from the higher occupied states will be low. ' The
corollary is that optical phonon energy then provides a
natural upper bound to the state separation one could
have and maintain the channel-closing structure.

Taken together, these two limitations would suggest
that the structural values for an etched pillar would be in
the region of R —80-100 nm to give a maximum
difference between dot and wire levels and, hence, op-
timally separated fine structure. For a doping level as in
the above devices this structure would then survive to a
temperature of -300 K. In addition, the thickness of the
barriers has to be about the size of the Bohr radius'
( —100 A in GaAs) to have efficient confinement and
strong Coulomb repulsion in the dot. A further reduc-
tion in the lateral radius would produce a larger electro-
static repulsion, but size quantization would increase
even more and would eventually push all the emitter sub-
bands above the Fermi energy. In these conditions the
device would be "pinched off" and no current would flow.

The maximum temperature at which downward steps
are observable is determined mainly by the energy separa-
tion between the Fermi level and the 1D subbands in the
emitter. Such separation can be controlled by changing
the doping level in the structure so that, in principle, one
could tune a device to show sharp downward steps within
a large range of temperatures. For example, in the struc-
ture by Faini et al. , the barriers and the

lateral radius are suitably dimensioned to show electro-
static effects, while the doping concentration is quite low.
An increase of the latter by a factor of 2 or more should
be technologically feasible; no major changes to the elec-
trostatics would be expected, while the lowest subbands
would be about 25 meV below the Fermi energy. In these
conditions the downward steps due to the lowest sub-
bands should survive up to room temperature.

U. SUMMARY

In this paper we have studied the I-V characteristics of
1D-OD-1D resonant diodes. We have implemented a
technique to calculate I-V curves of 1D-OD-1D resonant
diodes that accounts for size confinement as well as
Coulomb repulsion inside the dot. Based on the
transfer-matrix technique and the Hubbard Hamiltonian,
such a method can account for the effects of finite tem-
perature. (The presence of a magnetic field can also be
investigated and will be reported later. )

We have pointed out, both qualitatively and via direct
calculations of the I-V curves, that in principle fine struc-
ture can be observed in the negative- as well as in the
positive-differential resistance regions. The presence of a
sizable electrostatic repulsion in the quantum dot is a key
ingredient to observe downward steps, hence the geo-
metrical features of the device have to be carefully
chosen. The importance of downward steps lies in their
robustness against thermal smearing, which makes them
the prime candidate to develop devices based on OD

features.
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