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Degenerate-four-wave-mixing experiments have been performed on crystalline silicon at 620 nm using

100-fs pulses. Symmetry analysis has been applied to monitor the fourfold (bulk) symmetry of the [100]
direction. Deviations from orthogonal polarization of the pump-and-probe beam with respect to the

diffracted-signal beam have been studied in detail. The rotation patterns exhibit the transformation

behavior of the relevant y"' tensor. Preliminary time-resolved measurements reveal distinct variations

of the signal occurring on a time scale of 10 fs upon excitation with 100-fs pulses, which cannot be

detected by standard correlation techniques.

I. INTRODUCTION

Degenerate-four-wave mixing (DFWM) is a widely
used experimental technique for investigating both the
relative magnitude and the dynamics of nonlinear-optical
properties of semiconductors. ' Laser-induced dynamic
gratings in silicon have been studied extensively to under-
stand and optimize wave-mixing applications and also to
determine material properties such as carrier decay and
diffusion times. ' Using different polarizations of the
two excitation beams it is possible to generate orienta-
tional gratings in which the excited states are predom-
inantly of one orientation in any given local region of the
sample, while the direction of the preferred orientation is
modulated inside the sample. It has been demonstrated
experimentally that the use of polarization properties
opens new possibilities for the picosecond and fem-
tosecond time-resolved spectroscopy in semiconduc-
tors. '

DFWM is described by a third-order nonlinear polar-
ization, which is nonzero in the bulk of centrosymmetric
materials, like crystalline silicon, and in contrast to the
(isotropic) linear polarization it displays anisotropic
behavior. The third-order susceptibility g ' of cubic
semiconductors is perhaps more interesting than y
since there are two nonzero independent elements of y
(for DFWM) given by yI, '» ——A and 3yP2', z

——B, and from
which we can define the anisotropic parameter
tr= (B —A)/A that v—anishes for an isotropic system.
Since the anisotropy is a relative quantity, it is easier to
determine experimentally than the absolute magnitude of

P ', and it is interesting because it is not determined by
symmetry, but rather is sensitive to the microscopic elec-
tronic properties of the solid. These characteristics have
contributed to the recent interest in using optical third-
harmonic generation (THG) as a microscopic probe of
crystal structure and symmetry in ion-implanted and
amorphous silicon. ' ' To date, however, the only mea-
surements of the anisotropy in P ' for silicon have been
performed either at A, =10.6 pm using difference frequen-
cy mixing' ' or for wavelengths 0.72&A, &1.92 pm us-
ing THG. ' ' ' To examine 0 for silicon at shorter
wavelength (A, =0.62 pm), we have become interested in
using DFWM, which allows observation of a diffracted
signal in transmission from a 10-pm-thick silicon crystal.

Our experimental results refer to a two-beam self-
diffraction geometry with 100-fs optical pulses that al-
lows both temporal studies by delaying one pump-beam
pulse against its counterpart or changing the polarization
configuration of the interacting beams. Hence, the for-
ward DFWM geometry was applied in all experiments at
a small intersection angle of 3' in order to achieve near
phase matching and to reduce the amount of scattered
light.

This paper will be organized as follows: after a short
introduction into the theory of the relevant y symme-
try properties with respect to the [100] direction, we
present experimental results as to the structural and po-
larization dependence of the observed DFWM signal un-
der femtosecond excitation. The obvious similarities be-
tween changes in the polarization conditions and varia-
tion of the delay between the pump-and-probe pulses will

0163-1829/94/50(4)/2425(7)/$06. 00 50 2425 1994 The American Physical Society



2426 BUHLEIER, LUPKE, MAROWSKY, GOGOLAK, AND KUHL 50

then be discussed. These time-resolved measurements in-
dicate that symmetry analysis is capable of detecting re-
laxation phenomena much faster than the laser pulse
duration t in the presence of two competing relaxation
channels with relaxation times rP~, with ~„r2~ t I.n

our particular experiment, we could resolve momentum
randomization of free electrons and holes in Si occurring
on a time scale of 10 fs upon excitation with 100-fs pulses
and could differentiate between momentum randomiza-
tion and intraband energy relaxation.

II. EXPERIMENTAL METHODS

The experiments were performed using a standard
colliding-pulse mode-locked dye laser (CPM) (Ref. 18)
with an intracavity four-prism sequence' to provide
dispersion compensation. The CPM produced such
pulses with a bandwidth-limited duration of ~ =70 fs at
X=620 nm, an average power of 30 mW per beam and at
a repetition rate of 120 MHz. These pulses were
amplified in a conventional six-pass "bow-tie" dye
amplifier pumped by a copper vapor laser at a repeti-
tion rate of 7 kHz. After a second prism compressor
stage, the laser pulses had a width of 100 fs and an energy
of approximately 15 pJ. The laser beam was then split by
a dielectric beamsplitter into a pump beam (k, ) passing
through an optical delay line and into a probe beam (k~ },
as shown in Fig. 1.

Crystal polarizers in the two beams were adjusted for
vertical, i.e., s polarization. Both beams were focused
with a 175-mm lens onto the sample to spot sizes of
roughly 400 (Mm diam. The angle 8 between the two in-
cident beams was 3'. The sample, a 10-(Mm-thick Si(100)
single crystal was glued onto a 1-cm-thick quartz-cube
substrate, which was mounted in a computer-driven rota-
tion stage in order to change the angular orientation of
the crystal with respect to the polarization direction of
the incident laser pulses. The transmission of the silicon
sample was measured in a cw spectrometer to be 5%%uo at
A. =620 nm. The diffracted DFWM signal emitted in the
direction 2k —k, (i.e., under an angle —8 with respect
to the probe beam) was detected with a photomultiplier
tube (1P28} positioned after an analyzer controlling the
polarization of the diffracted light. We used two lock-in
amplifiers in series driven at the two difFerent reference
frequencies of the pump-and-probe beam, which were
chopped with 180 Hz and 3.3 kHz, respectively, to get a

background-free signal. A A, /2 plate for 620 nm was used
to adjust the laser polarization in either the pump or the
probe beam.

III. THEORY

P '=yIqIq[2(E"E' '}E~'+(E' 'E')'}E ']

+(+(3) 3~(3) )(E(e)E(P)E(P)} (2)

)&S

Theoretical expressions for the third-order nonlinear
polarization were derived by Armstrong et al. ,

' and the
waves created by this polarization, both in reflection and
transmission, were discussed in detail by Bloembergen
and Pershan. The comprehensive study of third-order
nonlinear processes was carried out by Maker and
Terhune. Sipe, Moss, and van Driel presented a phe-
nomenological theory for anisotropic second- and third-
harmonic generation obtained in reflection from the sur-
face and the bulk of cubic centrosymmetric single crys-
tals. The theory of DFWM is entirely analogous and
the purpose of this section is merely to present the equa-
tions necessary to derive the nonlinear susceptibility y
from the experimental observations.

In nonlinear materials, the induced third-order polar-
ization responsible for the emission of light in the
2k —k, direction (see Fig. 3}can be written as

P' '(Q))=y '(co;N, co, —N) E' '(co)E' '(co)E"(N), (1)

where the fields E" and E' ' on the right-hand side are
the excitation and probe fields inside the medium, respec-
tively. The high rank of the nonlinear susceptibility ten-
sor, fourth rank for y ', gives rise to anisotropic DFWM
in cubic crystals, in which the intensity of the diffracted
beam varies with the relative polarization orientation of
the interacting beams. For example, a Si (100) face when
illuminated with two s-polarized light beams will yield a
p-polarized diffracted beam whose intensity varies as
sin (4P), where P is the azimuthal angle of the surface,
thereby displaying the fourfold symmetry of Si (100},as
indicated in Fig. 2.

For cubic media, the polarization-density-source term
responsible for the —e direction diffracted beam can be
written as
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FIG. l. Experimental setup. For details, see the text.
FIG. 2. Schematic of the propagation and polarization

configurations considered in the text.
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The first term on the right generates a DFWM response,
which is isotropic and therefore independent of P; the
second term on the right side leads to anisotropic
behavior. In order to calculate the DFWM response as a
function of ({},it is necessary to transform the anisotropic
term to the laboratory frame. The anisotropic term can
be simplified using the complex cubic anisotropy parame-
ter o,

+1111 X1212 a+1111 '(3) (3) — (3) (3)

To describe the rotation of the sample by ]about its sur-
face normal, one must transform y»» =g2222 +3333 from(3) — ( ) — (3)

the cubic crystal axis, e&, e2, and e3, to the laboratory
coordinate system, x, y, and z. As shown in Fig. 2, the
unit vectors e3 and z are defined as normal to the plane of
incidence. The azimuthal angle {i) is defined such that for
/=0', e, and e2 are parallel to x and y, respectively. For
a rotation of the sample by P about z, y' ' transforms ac-
cording to

mismatch b,k, where 6k= ~2k~
—k, —k, ~

is the wave-

vector mismatch between the generated signal wave and
the driving polarization field. To determine the DF%M
intensity I,(P) as a function of P, recall that the excita-
tion and probe fields in Eq. (2) are inside the crystal,
whereas I,($) is measured outside the crystal. Therefore,
the tensor elements in the beam frame, y'; ki, have to be
multiplied by the appropriate Fresnel factors. In all our
experiments, the interacting beams propagate within less
than 3' with respect to the surface normal; therefore, we
can neglect the z component of the electrical fields E",
E(~', and E". This approximation is reasonable, since
the only y';~&& component involving a z component of the
electrical fields is y' ' (see Table I), which scales with
sin 8=10 . We can now express E" in terms of the
isotropic component 8 =3g&2z, and the anisotropic com-(3)

ponent A B=y—'11'» —3g'iz)2, as a function of p for the
parallel configuration [see Table I and Eq. (2)]

E"(y}=IB+—'[3+cos(4$}](A 8)]E"—E' 'E' ',
(6a)

[y'Jk, ]'=R,p(p)RJq(p)Rk„(p)R)g(p)y~~, (4)
and for the orthogonal geometry

where [R,"(P}] is the matrix for the transformation be-

tween the cubic crystal coordinate system and the labora-
tory coordinate system. [R; (P) ] takes the form

cosf —sing 0

I R,j(P)] = sing cosg 0
0 0 1

The anisotropic [yIJk&] components, given with respect
to the laboratory coordinate system, are listed in Table I.
%e will discuss two geometries for the excitation and
probe experiment: parallel and orthogonal geometries in
which the electric polarization of the diffracted field E"
is either parallel or orthogonal to the y direction. In both
geometries, the polarization of the excitation field E"
and probe field E(1') is parallel to the y direction. Note
that our definition of the orthogonal configuration differs
from the one given by Wherrett, Smirl, and Boggess in
that here E" is perpendicular to E'~' allowing investiga-
tion of a purely anisotropic DF%'M signal, The excita-
tion and probe beams are taken to propagate in the x-z
plane (Fig. 2) with wave vectors k, and k, respectively.
The difFracted beam propagates with a wave vector of
k, =2k —k, . It should be noted that the two-pulse self-
diffraction geometry in principle implies a small phase

E"(P)= —,
' [sin(4$)( A 8)]E"E—'i'EP ' . (6b)

+8 sina~ (7)

where a represents the angle between the x axis and E".

IV. RESULTS AND DISCUSSION

To investigate the presence of the anisotropic com-
ponent (A 8), we first —consider the intensity of the
difFracted beam I,(g, a) at zero time delay between the
excitation and probe pulse as a function of {(}. Figure 3(a)
shows the experimental measurements of I, ({(},a) ob-
tained by setting a=0'. The fourfold symmetry of E„"
[see Eq. (6b)] leads to an eightfold intensity pattern as a
function of {(). The solid line in Fig. 3(a) is a fit of Eq. (7)
to the experimental data. As stated above, the results of
Fig. 3(a) were achieved by setting the polarization of the
diffracted beam perpendicular to the polarization of the

Finally, joining Eqs. (6a) and (6b) results in the following
expression for the intensity of the difFracted beam with
arbitrary linear polarization:

I,(g, a) ~ ~E„"(P)cosa+E~"(P) sina

~
~ —,

'
( A —8) [ [3+cos(4$ ) ] sina+ sin(4$ }cosa J

TABLE I. Anisotropic [y,j'1I&] components of the (100) surface. The prefactor —oyI'&'» and zero
[g,'g1 ] components have been omitted.

—'[3+cos(4P)]
4 sin(4$)

0
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excitation and probe beam. Obviously, it is essential to
check the perpendicular adjustment of the polarizations
and to consider the accuracy to which the polarizations
of the incident beams can be defined. It is possible to set
the excitation and probe polarization directions parallel
within an accuracy given by the extinction ratio of the
polarizers ( —10 ). Therefore, the observed isotropic
contribution in I,(g, a) [see Fig. 3(a)] can be attributed to
arise from a leakage of the parallel component of the
diffracted beam E"((t ) through the imperfectly crossed
analyzer (a —=0').

This is not surprising, as the light must pass through a
quartz lens, the sample, and the substrate before en-
countering the analyzer. We can measure this signal by
rotating the analyzer so that it passes a small contribu-
tion of I-polarized light. The results of this measurement
are shown in Figs. 3(b) and 3(c) where the analyzer was
rotated +3 and —3' away from the x direction. Figure

3(b) shows that the isotropic amplitude 8 and the aniso-
tropic term ( 3 —8) must be of the same order of magni-
tude when the analyzer is rotated 3' away from the x
direction. However, rotating the analyzer by —3' away
from the x direction results in a sign change of the iso-
tropic term 8, due to a change of the sign of sina. This
behavior is manifested in the differences between the ro-
tation patterns of I, (P, +3 ) and I, (P, —3'), as shown in
Figs. 3(b) and 3(c), respectively.

In order to demonstrate the sensitivity of I,(P,a ) on a,
we have calculated I, (P,a ) as a function of a for different
azimuthal angles, /=0', 22. 5', 45', and 67.5', the results
are plotted in Fig. 4 corresponding to curves (a)—(d), re-
spectively, and we used a value of ~o.

~

—=0.21 in our calcu-
lation as determined from Figs. 3(b) and 3(c). Curves (a)
and (c) in Fig. 4 indicate that the minima in Fig. 3(a)
should vanish for exactly crossed ideal polarizers, a=o',
but should increase parabolically with ~a ~, as given in Eq.
(7). The sensitivity of I,(g, a) on the polarization angle a
is manifested in the disappearance of curves (b) and (d) at
a—= —3' and +3', respectively. This means that the first
and second maxima in Fig. 3(a) become minima, as one
can infer from Figs. 3(b) and 3(c).

Similar variations of the diffracted signal intensity in
dependence on the rotation angle P are observed if in-

stead of the analyzer in the signal beam the polarization
of the pump beam is turned by a small angle 0, . This
behavior can be derived from the symmetry given in
Table I.

However, the DFWM signal is insensitive to the polar-
ization direction of the probe beam as no isotropic contri-
bution to E" is allowed under crossed polarization of
probe and diffracted beams, as long as the pump beam is
linearly polarized. Figure 5 presents the theoretically
predicted variation of the signal intensity I,(/=22. '5, a)
as a function of a if either the polarization of the signal,
pump, or probe beam is slightly tilted.

In fact, the high sensitivity of the rotation pattern to
small admixtures of an isotropic contribution to the pure-
ly anisotropic component expected for exactly perpendic-
ular orientation of the analyzer in the signal path to both
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FIG. 3. DFWM signal (0) vs azimuthal angle P for (a) a =0',
(b) a=+3', and (c) a= —3' deviation of the signal polarization
direction from p polarization. In each case the pump-and-probe
beams were s polarized. The solid lines are fits using Eq. (7).

FIG. 4. DFWM signal calculated as a function of the devia-
tion a from p polarization for different azimuthal orientations
of the Si sample: curve (a) /=0, (h) /=22. 5', (c) /=45', and
(d) /=67. 5'.
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FIG. 5. DFWM signal I,(/=22. 5} vs a for deviating polar-
ization of the signal (solid line), the pump (dotted line), or the
probe beam (dashed line).

the pump-and-probe-beam polarization allows monitor-
ing of the photoexcited carrier dynamics on a very short
time scale.

For this purpose, a variable delay ~ was introduced
into the path of the probe beam (as shown in Fig. 1), such
that for positive delays the excitation pulse precedes the
probe pulse into the sample. Figure 6 presents a plot of
the time-integrated intensity diffracted into the direction
2k~ —k, versus the time delay between the two pulses.
The temporal width of the signal (130 fs) more or less
resembles that of the profile corresponding to third-order
convolution of the laser pulses. This observation proves
that phase memory effects of the coherent polarization
created by the first pulse must be extremely short lived
and are hard to detect as an asymmetry of the signal

shape. The anisotropic signal can be attributed to the
achievement of anisotropic state filling in silicon, whereas
the isotropic amplitude B is associated with isotropic ex-

citation of states in k space.
Recall that the population created by the first pulse,

which is expected to be long lived compared to the pulse
time, is not observable in a two-pulse self-diffraction ex-
periment if the time delay is large compared to the opti-
cal dephasing time since generation of a signal diffracted
into the direction 2k —k, necessitates coherent interac-
tion between the field of the second pulse and the
coherent polarization left behind by the first pulse.
Therefore, the isotropic amplitude is expected to decay
with the dephasing time.

The anisotropic term (A B},a—ssociated with aniso-
tropic state filling, decays preferentially by momentum
relaxation but the optical coherence becomes completely
negligible only after energy relaxation. In silicon, the
intravalence-band energy relaxation time T„is about 1

ps, whereas the reorientational diffusion time To has
been found to be much shorter than 1 ps. Hence, while
the direct effect of the radiation is to create excited car-
riers with a preferential momentum orientation in k
space (anisotropic state filling), momentum randomiza-
tion and intraband-energy relaxation will lead to a rapid
decay of the anisotropy. For excitation densities of
~10's cm 3, as used in the present experiments, phase
relaxation due to electron-electron, hole-hole, and
electron-hole scattering is expected to occur on a time
scale of 10 fs.

The anisotropic contribution to the DFWM signal,
which is measured by the crossed polarization
configuration utilized in our experiment exhibits a
significant time delay by approximately 20 fs with respect
to the total diffracted intensity, which has been moni-
tored independently by a second detector and is depicted
as the dashed trace in Fig. 6. This result becomes ex-
plainable if one assumes an additional isotropic contribu-
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probe

probe
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-0.50. -0.25 0.00 0.25
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FIG. 6. Anisotropic (solid line) and total (dashed line)
DFWM signal measured as a function of the delay ~ between
the two pulses.

FIG. 7. Pulse-mixing schemes for negative (top) and positive
(bottom) delay ~ between the pump and probe pulses.
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tion for negative delays when pulse two contributing two
photons to the DFWM signal arrives before pulse one.
For this pulse sequence, the mixing occurs via the scheme
depicted in the top part of Fig. 7, whereas for positive de-

lays, it is dominated by the third-order polarization of the
interband transition shown in the bottom part of Fig. 7.
From this result we have to conclude that the polariza-
tion path involving transitions between the lowest and
higher conduction bands has a lower anisotropy than the
valence lowest conduction-band transition.

We have performed measurements of I,(g, a--0') as a
function of tI) for different delay times r. The results are
shown in Figs. 8(a) and 8(b) for delays of —70 fs (dashed
line) and +70 fs (solid line), and 0 fs (solid line) and +25
fs (dashed line). As can be seen from Fig. 8, the variation
of I versus P changes tremendously with the delay time
between the excitation and probe pulses. Comparison of
Fig. 8 with Fig. 3 suggests that the time delay leads to the
increased inhuence of the isotropic component on the
measured signal pattern similar to slight rotations of the
polarizers for the pump or the signal beam. The increas-
ing importance of the isotropic as compared to the aniso-
tropic part of the signal with increasing delay points to
slightly different relaxation times of the isotropic and an-
isotropic contribution to the polarization created by the
first pulse. This observation confirms that momentum
randomization is faster than intraband-energy re&axation
but does not result in a complete loss of the phase coher-
ence.

The traces recorded for negative and positive time de-
lay - reveal the same differences as the curves measured
for positive and negative a. According to Eq. (7), we
thus have to conclude that the sign of the isotropic com-
ponent must be opposite for positive and negative delays.
In particular this result excludes imperfect perpendicular
orientation of the polarizer in the signal beam with
respect to the polarization of the two exciting beams
since a small isotropic component originating from slight
misorientation of the polarizers should have the same
sign independent of the delay.

The experimental finding is understandable if the addi-
tional isotropic contribution created by the pulse-mixing
sequence kz+kz —k, for r 0 has the opposite sign and
is larger than the isotropic signal due to the sequence
—k, +k +k .

V. SUMMARY

We have presented experimental and theoretical results
for the cubic anisotropy of the third-order susceptibility
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FIG. 8. DFWM signal vs azimuthal angle P for different time

delays between the pump-and-probe pulses: (a) —70 fs (dashed

line), +70 fs (solid line) and (b) +25 fs (dashed line), 0 fs (solid
line).

for femtosecond DFWM in crystalline silicon. A detailed
study of the rotation patterns exhibiting the fourfold
symmetry of the! 100] direction has been performed with
respect to the polarization of the pump, probe, and the
diffracted beam. The sensitivity of the anisotropy to de-
lay times between the pump and probe beam of less than
10 fs suggests that DFWM can be a useful probe of not
only the symmetry of the potential in which the electrons
move but also of the details of that motion.

Preliminary time-resolved measurements indicate that
the isotropic component of g ' is dominated by band-
filling processes, while the anisotropic component exhib-
its the behavior of anisotropic state Ailing in k space.

'See, for example, special issue IEEE J. Quantum Electron.
QE-22 (1986).

2D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard,
and W. Wiegmann, IEEE J. Quantum Electron. QE-22, 265
{1984).

C. Weber, U. Becker, R. Renner, and C. Klingshirn, Appl,
Phys. B 45, 113 (1988).

4H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dy-

namic Gratings (Springer-Verlag, Berlin, 1986).
~H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz,

L. Konetzke, and X. Yang, Phys. Rev. B 36, 3247 (1987), and
references therein.

6A. L. Smirl, T. F. Boggess, B. S. Wherrett, G. P. Perryman,
and A. Miller, IEEE J. Quantum Electron. QE-19, 690
(1983).

V. M. Petnikova, S. A. Pleshano, and V. V, Shuvalov, Sov. JEJ



50 ANISOTROPIC INTERFERENCE OF DEGENERATE FOUR-WAVE. . . 2431

88, 360 (1985).
M. A. Vasil'Eva, J. Vischakas, V. Kabelka, and A. V. Masalov,

Opt. Commun. 53, 412 (1985).
J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35,

1129 (1987).
D. J. Moss, H. M. van Driel, and J. E. Sipe, Appl. Phys. Lett.
48, 1150 (1986).
C. C. Wang, J. Bomback, W. T. Donlon, C. R. Huo, and J. V.
James, Phys. Rev. Lett. 57, 1647 (1986).

i2E. C. Fox and H. M. van Driel, IEEE J. Quantum Electron.
QE-25, 1104 (1989).
C. C. Wang and N. W. Ressler, Phys. Rev. B 2, 1827 (1979).
J. J. Wynne, Phys. Rev. 178, 1295 (1969).
E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys.
Rev. Lett. 29, 865 (1972).
W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437
(1971).

~D. J. Moss, H. M. van Driel, and J. E. Sipe, Opt. Lett. 14, 57
(1989).
R. L. Fork, B. I. Greene, and C. V. Shank, Appl. Phys. Lett.
38, 671 (1981);R. L. Fork et al. , IEEE J. Quantum Electron.
QE-19, 500 (1983).
R. L. Fork et al. , Opt. Lett. 9, 150 (1984).
W. H. Knox et al. , Opt. Lett. 9, 552 (1984).
J. A. Armstrong, N. Bloembergen, J Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).
N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
P. D. Maker and R. W. Terhune, Phys. Rev. 137, 801 (1965).

24B. S. Wherrett, A. L. Smirl, and T. F. Boggess, IEEE J. Quan-
tum Electron. QE-19, 680 (1983).
J. A. Lietoila and J. F. Gibbons, Appl. Phys. Lett. 40, 624
(1982).

2sH. Bergner, V. Bruckner, and M. Supianek, IEEE J. Quantum
Electron. QE-22, 1306 (1986).






